Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Identification and Phylogenetic Analysis of Bacterial Strain
2.2. Genome Sequencing and Its Assembly
2.3. Taxonogenomic Analysis
2.4. Genome Annotation
2.5. Comparative Genomic Analysis
2.6. Domain Prediction and 3D Structure Modelling
2.7. Data Availability
3. Results and Discussion
3.1. Genome Structural Features
3.2. Phylogenetic and Taxonogenomic Description
3.3. Comparative Genome Analysis
3.4. Genome Functional Annotation
3.5. Prediction of Secondary Metabolite Gene Clusters
3.6. Antibiotic Resistant Gene Prediction
3.7. Adaptation to Stress
3.8. PUFA Biosynthetic Gene Cluster
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shewan, J.M.; Hobbs, G.; Hodgkiss, W. A determinative scheme for the identification of certain genera of Gram-negative bacteria, with special reference to the Pseudomonadaceae. J. Appl. Bacteriol. 1960, 23, 379–390. [Google Scholar] [CrossRef]
- Hammer, B.; Long, H. Factors influencing bacterial growth in butter. Bacteriol. Rev. 1941, 5, 337–374. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Gibson, D.; Shewan, J.M. A numerical taxonomic study of some Pseudomonas-like marine bacteria. Microbiology 1977, 98, 439–451. [Google Scholar] [CrossRef] [Green Version]
- MacDonell, M.; Colwell, R. Phylogeny of the Vibrionaceae, and recommendation for two new genera, Listonella and Shewanella. Syst. Appl. Microbiol. 1985, 6, 171–182. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Yoo, H.-S.; Lee, D.-H.; Park, S.-H.; Kim, Y.-J.; Oh, D.-C. Shewanella algicola sp. nov., a marine bacterium isolated from brown algae. Int. J. Syst. Evol. Microbiol. 2016, 66, 2218–2224. [Google Scholar] [CrossRef]
- Luhtanen, A.-M.; Eronen-Rasimus, E.; Kaartokallio, H.; Rintala, J.-M.; Autio, R.; Roine, E. Isolation and characterization of phage–host systems from the Baltic Sea ice. Extremophiles 2014, 18, 121–130. [Google Scholar] [CrossRef]
- Li, Z.; Lin, S.; Liu, X.; Tan, J.; Pan, J.; Yang, H. A freshwater bacterial strain, Shewanella sp. Lzh-2, isolated from Lake Taihu and its two algicidal active substances, hexahydropyrrolo [1, 2-a] pyrazine-1, 4-dione and 2, 3-indolinedione. Appl. Microbiol. Biotechnol. 2014, 98, 4737–4748. [Google Scholar] [CrossRef]
- Wang, M.-Q.; Sun, L. Shewanella inventionis sp. nov., isolated from deep-sea sediment. Int. J. Syst. Evol. Microbiol. 2016, 66, 4947–4953. [Google Scholar] [CrossRef]
- Nichols, D.S.; Nichols, P.D.; Russell, N.J.; Davies, N.W.; McMeekin, T.A. Polyunsaturated fatty acids in the psychrophilic bacterium Shewanella gelidimarina ACAM 456T: Molecular species analysis of major phospholipids and biosynthesis of eicosapentaenoic acid. Biochim. Biophys. Acta-Lipids Lipid Metab. 1997, 1347, 164–176. [Google Scholar] [CrossRef]
- Valentine, R.C.; Valentine, D.L. Omega-3 fatty acids in cellular membranes: A unified concept. Prog. Lipid Res. 2004, 43, 383–402. [Google Scholar] [CrossRef]
- Gao, H.; Obraztova, A.; Stewart, N.; Popa, R.; Fredrickson, J.K.; Tiedje, J.M.; Nealson, K.H.; Zhou, J. Shewanella loihica sp. nov., isolated from iron-rich microbial mats in the Pacific Ocean. Int. J. Syst. Evol. Microbiol. 2006, 56, 1911–1916. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beblawy, S.; Bursac, T.; Paquete, C.; Louro, R.; Clarke, T.A.; Gescher, J. Extracellular reduction of solid electron acceptors by Shewanella oneidensis. Mol. Microbiol. 2018, 109, 571–583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fredrickson, J.K.; Romine, M.F.; Beliaev, A.S.; Auchtung, J.M.; Driscoll, M.E.; Gardner, T.S.; Nealson, K.H.; Osterman, A.L.; Pinchuk, G.; Reed, J.L. Towards environmental systems biology of Shewanella. Nat. Rev. Microbiol. 2008, 6, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Ho, C.T.; Lee, J.-H.; Van Duong, H.; Han, S.; Hur, H.-G. Mercury capture into biogenic amorphous selenium nanospheres produced by mercury resistant Shewanella putrefaciens 200. Chemosphere 2012, 87, 621–624. [Google Scholar] [CrossRef]
- Suganthi, S.H.; Murshid, S.; Sriram, S.; Ramani, K. Enhanced biodegradation of hydrocarbons in petroleum tank bottom oil sludge and characterization of biocatalysts and biosurfactants. J. Environ. Manag. 2018, 220, 87–95. [Google Scholar] [CrossRef]
- Lemaire, O.N.; Honoré, F.A.; Tempel, S.; Fortier, E.M.; Leimkühler, S.; Méjean, V.; Iobbi-Nivol, C. Shewanella decolorationis LDS1 chromate resistance. Appl. Environ. Microbiol. 2019, 85, e00777-19. [Google Scholar] [CrossRef] [Green Version]
- de Santana, F.S.; Gracioso, L.H.; Karolski, B.; dos Passos Galluzzi Baltazar, M.; Mendes, M.A.; do Nascimento, C.A.O.; Perpetuo, E.A. Isolation of bisphenol A-tolerating/degrading Shewanella haliotis strain MH137742 from an estuarine environment. Appl. Biochem. Biotechnol. 2019, 189, 103–115. [Google Scholar] [CrossRef]
- Zou, L.; Huang, Y.-h.; Long, Z.-e.; Qiao, Y. On-going applications of Shewanella species in microbial electrochemical system for bioenergy, bioremediation and biosensing. World J. Microbiol. Biotechnol. 2019, 35, 9. [Google Scholar] [CrossRef]
- Vaidya, S.; Dev, K.; Sourirajan, A. Distinct osmoadaptation strategies in the strict halophilic and halotolerant bacteria isolated from Lunsu salt water body of North West Himalayas. Curr. Microbiol. 2018, 75, 888–895. [Google Scholar] [CrossRef]
- Roeßler, M.; Müller, V. Osmoadaptation in bacteria and archaea: Common principles and differences. Environ. Microbiol. 2001, 3, 743–754. [Google Scholar] [CrossRef]
- Hau, H.H.; Gralnick, J.A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 2007, 61, 237–258. [Google Scholar] [CrossRef] [PubMed]
- Gram, L.; Trolle, G.; Huss, H.H. Detection of specific spoilage bacteria from fish stored at low (0 C) and high (20 C) temperatures. Int. J. Food Microbiol. 1987, 4, 65–72. [Google Scholar] [CrossRef]
- Yagi, H.; Fujise, A.; Itabashi, N.; Ohshiro, T. Characterization of a novel endo-type alginate lyase derived from Shewanella sp. YH1. J. Biochem. 2018, 163, 341–350. [Google Scholar] [CrossRef] [PubMed]
- Frolova, G.; Pavel, K.; Shparteeva, A.; Nedashkovskaya, O.; Gorshkova, N.; Ivanova, E.; Mikhailov, V. Lipid composition of novel Shewanella species isolated from Far Eastern seas. Microbiology 2005, 74, 664–669. [Google Scholar] [CrossRef]
- Russell, N.J.; Nichols, D.S. Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 1999, 145, 767–779. [Google Scholar] [CrossRef] [Green Version]
- Kawamoto, J.; Kurihara, T.; Yamamoto, K.; Nagayasu, M.; Tani, Y.; Mihara, H.; Hosokawa, M.; Baba, T.; Sato, S.B.; Esaki, N. Eicosapentaenoic acid plays a beneficial role in membrane organization and cell division of a cold-adapted bacterium, Shewanella livingstonensis Ac10. J. Bacteriol. 2009, 191, 632–640. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Chan, O.; Kato, C.; Sato, T.; Peeples, T.; Nigggemeyer, K. Phospholipid FA of piezophilic bacteria from the deep sea. Lipids 2003, 38, 885–887. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Jian, H.; Zhang, B.; Li, S.; Wang, F.; Zeng, X.; Gao, L.; Bartlett, D.H.; Yu, J. Environmental adaptation: Genomic analysis of the piezotolerant and psychrotolerant deep-sea iron reducing bacterium Shewanella piezotolerans WP3. PLoS ONE 2008, 3, e1937. [Google Scholar] [CrossRef]
- Wang, F.; Xiao, X.; Ou, H.-Y.; Gai, Y.; Wang, F. Role and regulation of fatty acid biosynthesis in the response of Shewanella piezotolerans WP3 to different temperatures and pressures. J. Bacteriol. 2009, 191, 2574–2584. [Google Scholar] [CrossRef] [Green Version]
- Horvath, A.; Koletzko, B.; Szajewska, H. Effect of supplementation of women in high-risk pregnancies with long-chain polyunsaturated fatty acids on pregnancy outcomes and growth measures at birth: A meta-analysis of randomized controlled trials. Br. J. Nutr. 2007, 98, 253–259. [Google Scholar] [CrossRef]
- Bang, H.; Dyerberg, J.; Hjørne, N. The composition of food consumed by Greenland Eskimos. Acta Med. Scand. 1976, 200, 69–73. [Google Scholar] [CrossRef] [PubMed]
- Lagarde, M.; Burtin, M.; Sprecher, H.; Dechavanne, M.; Renaud, S. Potentiating effect of 5, 8, 11-eicosatrienoic acid on human platelet aggregation. Lipids 1983, 18, 291–294. [Google Scholar] [CrossRef] [PubMed]
- Das, U.N. Autism as a disorder of deficiency of brain-derived neurotrophic factor and altered metabolism of polyunsaturated fatty acids. Nutrition 2013, 29, 1175–1185. [Google Scholar] [CrossRef] [PubMed]
- Konstantinidis, K.T.; Serres, M.H.; Romine, M.F.; Rodrigues, J.L.; Auchtung, J.; McCue, L.-A.; Lipton, M.S.; Obraztsova, A.; Giometti, C.S.; Nealson, K.H. Comparative systems biology across an evolutionary gradient within the Shewanella genus. Proc. Natl. Acad. Sci. USA 2009, 106, 15909–15914. [Google Scholar] [CrossRef] [Green Version]
- Weisburg, W.G.; Barns, S.M.; Pelletier, D.A.; Lane, D.J. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 1991, 173, 697–703. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, H.R.M.; Argolo, C.S.; Argôlo-Filho, R.C.; Loguercio, L.L. A 16S rDNA PCR-based theoretical to actual delta approach on culturable mock communities revealed severe losses of diversity information. BMC Microbiol. 2019, 19, 74. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [Green Version]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Yoon, S.-H.; Ha, S.-M.; Lim, J.; Kwon, S.; Chun, J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 2017, 110, 1281–1286. [Google Scholar] [CrossRef]
- Bertels, F.; Silander, O.K.; Pachkov, M.; Rainey, P.B.; Van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 2014, 31, 1077–1088. [Google Scholar] [CrossRef]
- Aziz, R.K.; Bartels, D.; Best, A.A.; DeJongh, M.; Disz, T.; Edwards, R.A.; Formsma, K.; Gerdes, S.; Glass, E.M.; Kubal, M. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 2008, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grissa, I.; Vergnaud, G.; Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 2007, 35, W52–W57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McArthur, A.G.; Waglechner, N.; Nizam, F.; Yan, A.; Azad, M.A.; Baylay, A.J.; Bhullar, K.; Canova, M.J.; De Pascale, G.; Ejim, L. The comprehensive antibiotic resistance database. Antimicrob. Agents Chemother. 2013, 57, 3348–3357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medema, M.H.; Blin, K.; Cimermancic, P.; De Jager, V.; Zakrzewski, P.; Fischbach, M.A.; Weber, T.; Takano, E.; Breitling, R. antiSMASH: Rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011, 39, W339–W346. [Google Scholar] [CrossRef]
- Wu, S.; Zhu, Z.; Fu, L.; Niu, B.; Li, W. WebMGA: A customizable web server for fast metagenomic sequence analysis. BMC Genom. 2011, 12, 444. [Google Scholar] [CrossRef] [Green Version]
- Darling, A.C.; Mau, B.; Blattner, F.R.; Perna, N.T. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004, 14, 1394–1403. [Google Scholar] [CrossRef] [Green Version]
- Seemann, T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics 2014, 30, 2068–2069. [Google Scholar] [CrossRef]
- Chen, T.; Zhang, H.; Liu, Y.; Liu, Y.-X.; Huang, L. EVenn: Easy to create repeatable and editable Venn diagrams and Venn networks online. J. Genet. Genom. 2021, 48, 863–866. [Google Scholar] [CrossRef]
- Schultz, J.; Copley, R.R.; Doerks, T.; Ponting, C.P.; Bork, P. SMART: A web-based tool for the study of genetically mobile domains. Nucleic Acids Res. 2000, 28, 231–234. [Google Scholar] [CrossRef]
- Kelley, L.A.; Sternberg, M.J. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc. 2009, 4, 363–371. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Kaushik, R.; Mishra, A.; Shanker, A.; Jayaram, B. ProTSAV: A protein tertiary structure analysis and validation server. Biochim. Biophys. Acta-Proteins Proteom. 2016, 1864, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Richter, M.; Rosselló-Móra, R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 2009, 106, 19126–19131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantinidis, K.T.; Tiedje, J.M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl. Acad. Sci. USA 2005, 102, 2567–2572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, J.; Yu, H.; Yang, X.; Dong, R.; Liu, Z.; Zeng, M. Complete genome sequence provides insights into the quorum sensing-related spoilage potential of Shewanella baltica 128 isolated from spoiled shrimp. Genomics 2020, 112, 736–748. [Google Scholar] [CrossRef] [PubMed]
- Tseng, S.-Y.; Tung, K.-C.; Cheng, J.-F.; Lee, Y.-H.; Wu, Z.-Y.; Hong, Y.-K.; Chen, S.-Y.; Huang, Y.-T.; Liu, P.-Y. Genome characterization of bile-isolated Shewanella algae ACCC. Gut Pathog. 2018, 10, 38. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Song, F.; Chen, M. Complete Genome Sequence of Shewanella sp. Strain Lzh-2, an Algicidal Bacterial Strain Isolated from Lake Taihu, People’s Republic of China. Microbiol. Resour. Announc. 2021, 10, e00339-21. [Google Scholar] [CrossRef]
- Cimermancic, P.; Medema, M.H.; Claesen, J.; Kurita, K.; Brown, L.C.W.; Mavrommatis, K.; Pati, A.; Godfrey, P.A.; Koehrsen, M.; Clardy, J. Insights into secondary metabolism from a global analysis of prokaryotic biosynthetic gene clusters. Cell 2014, 158, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Letzel, A.-C.; Pidot, S.J.; Hertweck, C. Genome mining for ribosomally synthesized and post-translationally modified peptides (RiPPs) in anaerobic bacteria. BMC Genom. 2014, 15, 983. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Wong, H.L.; Kindler, G.S.; MacLeod, F.I.; Benaud, N.; Ferrari, B.C.; Burns, B.P. Discovery of an abundance of biosynthetic gene clusters in shark bay microbial mats. Front. Microbiol. 2020, 11, 1950. [Google Scholar] [CrossRef]
- Huang, Y.-T.; Tang, Y.-Y.; Cheng, J.-F.; Wu, Z.-Y.; Mao, Y.-C.; Liu, P.-Y. Genome analysis of multidrug-resistant Shewanella algae isolated from human soft tissue sample. Front. Pharmacol. 2018, 9, 419. [Google Scholar] [CrossRef]
- Zhang, X.; Ruan, Y.; Liu, W.; Chen, Q.; Gu, L.; Guo, A. Whole genome sequencing and genome annotation of Dermacoccus abyssi strain HZAU 226 isolated from spoiled eggs. Genomics 2021, 113, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
- Fujii, S.; Nakasone, K.; Horikoshi, K. Cloning of two cold shock genes, cspA and cspG, from the deep-sea psychrophilic bacterium Shewanella violacea strain DSS12. FEMS Microbiol. Lett. 1999, 178, 123–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dai, J.; Wei, H.; Tian, C.; Damron, F.H.; Zhou, J.; Qiu, D. An extracytoplasmic function sigma factor-dependent periplasmic glutathione peroxidase is involved in oxidative stress response of Shewanella oneidensis. BMC Microbiol. 2015, 15, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, J.; Wei, B.; Shi, M.; Gao, H. Functional assessment of EnvZ/OmpR two-component system in Shewanella oneidensis. PLoS ONE 2011, 6, e23701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, X.; Wang, D.; Yin, X.; Du, P.; Kan, B. Time course transcriptome changes in Shewanella algae in response to salt stress. PLoS ONE 2014, 9, e96001. [Google Scholar] [CrossRef]
- Leaphart, A.B.; Thompson, D.K.; Huang, K.; Alm, E.; Wan, X.-F.; Arkin, A.; Brown, S.D.; Wu, L.; Yan, T.; Liu, X. Transcriptome profiling of Shewanella oneidensis gene expression following exposure to acidic and alkaline pH. J. Bacteriol. 2006, 188, 1633–1642. [Google Scholar] [CrossRef] [Green Version]
- Toes, A.-C.M.; Daleke, M.H.; Kuenen, J.G.; Muyzer, G. Expression of copA and cusA in Shewanella during copper stress. Microbiology 2008, 154, 2709–2718. [Google Scholar] [CrossRef] [Green Version]
- Li, X.-G.; Zhang, W.-J.; Xiao, X.; Jian, H.-H.; Jiang, T.; Tang, H.-Z.; Qi, X.-Q.; Wu, L.-F. Pressure-regulated gene expression and enzymatic activity of the two periplasmic nitrate reductases in the deep-sea bacterium Shewanella piezotolerans WP3. Front. Microbiol. 2018, 9, 3173. [Google Scholar] [CrossRef] [Green Version]
- Li, D.-B.; Cheng, Y.-Y.; Wu, C.; Li, W.-W.; Li, N.; Yang, Z.-C.; Tong, Z.-H.; Yu, H.-Q. Selenite reduction by Shewanella oneidensis MR-1 is mediated by fumarate reductase in periplasm. Sci. Rep. 2014, 4, 3735. [Google Scholar] [CrossRef]
- Shi, L.; Chen, B.; Wang, Z.; Elias, D.A.; Mayer, M.U.; Gorby, Y.A.; Ni, S.; Lower, B.H.; Kennedy, D.W.; Wunschel, D.S. Isolation of a high-affinity functional protein complex between OmcA and MtrC: Two outer membrane decaheme c-type cytochromes of Shewanella oneidensis MR-1. J. Bacteriol. 2006, 188, 4705–4714. [Google Scholar] [CrossRef] [Green Version]
- Coursolle, D.; Gralnick, J.A. Reconstruction of extracellular respiratory pathways for iron (III) reduction in Shewanella oneidensis strain MR-1. Front. Microbiol. 2012, 3, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Chen, J.; Qiu, D.; Zhou, J. Roles of UndA and MtrC of Shewanella putrefaciens W3-18-1 in iron reduction. BMC Microbiol. 2013, 13, 267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, Z.; Guo, S.; Fu, H.; Gao, H. Investigation of a spontaneous mutant reveals novel features of iron uptake in Shewanella oneidensis. Sci. Rep. 2017, 7, 11788. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, L.; Li, S.; Wang, S.; Dong, Z.; Gao, H. Complex iron uptake by the putrebactin-mediated and Feo systems in Shewanella oneidensis. Appl. Environ. Microbiol. 2018, 84, e01752-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.-W.; He, Y.; Xu, J.; Xiao, X.; Wang, F.-P. The regulatory role of ferric uptake regulator (Fur) during anaerobic respiration of Shewanella piezotolerans WP3. PLoS ONE 2013, 8, e75588. [Google Scholar] [CrossRef] [Green Version]
- Aldea, M.; Hernandez-Chico, C.; De la Campa, A.; Kushner, S.; Vicente, M. Identification, cloning, and expression of bolA, an ftsZ-dependent morphogene of Escherichia coli. J. Bacteriol. 1988, 170, 5169–5176. [Google Scholar] [CrossRef] [Green Version]
- Dressaire, C.; Moreira, R.N.; Barahona, S.; Alves de Matos, A.P.; Arraiano, C.M. BolA is a transcriptional switch that turns off motility and turns on biofilm development. MBio 2015, 6, e02352-14. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.V.; Edel, M.; Gescher, J.; Paquete, C.M. Exploring the effects of bolA in biofilm formation and current generation by Shewanella oneidensis MR-1. Front. Microbiol. 2020, 11, 815. [Google Scholar] [CrossRef]
- Okuyama, H.; Orikasa, Y.; Nishida, T.; Watanabe, K.; Morita, N. Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Appl. Environ. Microbiol. 2007, 73, 665–670. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H.; Zirkle, R.; Metz, J.G.; Braun, L.; Richter, L.; Van Lanen, S.G.; Shen, B. The role of tandem acyl carrier protein domains in polyunsaturated fatty acid biosynthesis. J. Am. Chem. Soc. 2008, 130, 6336–6337. [Google Scholar] [CrossRef]
- Hayashi, S.; Satoh, Y.; Ujihara, T.; Takata, Y.; Dairi, T. Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci. Rep. 2016, 6, 35441. [Google Scholar] [CrossRef] [PubMed]
- Shulse, C.N.; Allen, E.E. Widespread occurrence of secondary lipid biosynthesis potential in microbial lineages. PLoS ONE 2011, 6, e20146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orikasa, Y.; Tanaka, M.; Sugihara, S.; Hori, R.; Nishida, T.; Ueno, A.; Morita, N.; Yano, Y.; Yamamoto, K.; Shibahara, A. pfaB products determine the molecular species produced in bacterial polyunsaturated fatty acid biosynthesis. FEMS Microbiol. Lett. 2009, 295, 170–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Meng, T.; Ling, X.; Li, J.; Zheng, C.; Shi, Y.; Chen, Z.; Li, Z.; Li, Q.; Lu, Y. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J. Agric. Food Chem. 2018, 66, 5382–5391. [Google Scholar] [CrossRef] [PubMed]
- Pasta, S.; Witkowski, A.; Joshi, A.K.; Smith, S. Catalytic residues are shared between two pseudosubunits of the dehydratase domain of the animal fatty acid synthase. Chem. Biol. 2007, 14, 1377–1385. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Lan, C.; Wang, Z.; Wan, W.; Cui, Q.; Song, X. PUFA-synthase-specific PPTase enhanced the polyunsaturated fatty acid biosynthesis via the polyketide synthase pathway in Aurantiochytrium. Biotechnol. Biofuels 2020, 13, 152. [Google Scholar] [CrossRef]
- Nanson, J.D.; Himiari, Z.; Swarbrick, C.; Forwood, J.K. Structural characterisation of the beta-ketoacyl-acyl carrier protein synthases, FabF and FabH, of Yersinia pestis. Sci. Rep. 2015, 5, 14797. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.K.; Kim, K.H.; Park, J.K.; Jeong, K.-W.; Kim, Y.; Kim, E.E. New design platform for malonyl-CoA-acyl carrier protein transacylase. FEBS Lett. 2010, 584, 1240–1244. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.C.; Liu, G.; Zhang, Y.-M.; Rock, C.O.; Zheng, J. The solution structure of acyl carrier protein from Mycobacterium tuberculosis. J. Biol. Chem. 2002, 277, 15874–15880. [Google Scholar] [CrossRef] [Green Version]
- Santín, O.; Moncalián, G. Loading of malonyl-CoA onto tandem acyl carrier protein domains of polyunsaturated fatty acid synthases. J. Biol. Chem. 2018, 293, 12491–12501. [Google Scholar] [CrossRef] [Green Version]
- Dillon, S.C.; Bateman, A. The Hotdog fold: Wrapping up a superfamily of thioesterases and dehydratases. BMC Bioinform. 2004, 5, 109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Secondary Metabolite | Total Length (ntd.) | Location | Core Biosynthetic Gene Cluster |
---|---|---|---|
PUFA | 56,306 | ctg1_236 ctg1_238 | PUFAKS hgIE |
Betalactone | 29,577 | ctg3_15 ctg3_21 | AMP binding HMGL-like |
RiPP like | 10,900 | ctg33_14 | DUF692 |
Siderophore | 11,926 | ctg15_37 | lucA_lucC |
Arylpolyene | 28,285 | ctg16_6 ctg16_9 | APE_KS1 APE_KS2 |
Antibiotic Class | Gene/Protein | Identity (%) | Resistance Mechanism | Function | Location |
---|---|---|---|---|---|
Fluoroquinolone, Tetracycline | adeF | 65.03 | Antibiotic efflux | AdeF, a membrane fusion protein of multuidrug efflux system AdeFGH | NODE_8_length_146061_cov_52.115607_51718_48584 |
Fluoroquinolone, Tetracycline | adeF | 42.43 | Antibiotic efflux | AdeF, a membrane fusion protein of multuidrug efflux system AdeFGH | NODE_2_length_334757_cov_47.438374_143168_146326 |
Elfamycin | EF-Tu mutants | 87.53 | Antibiotic target alteration | Escherichia coli elongation factor Tu that confer resistance to drug class elfamycin | NODE_40_length_41192_cov_51.690807_25364_24180 |
Fluoroquinolone, Diaminopyrimidine, phenicol Carbapenem, Cephalosporin, Penam | RsmA OXA-551 | 86.67 97.97 | Antibiotic efflux Antibiotic inactivation | RsmA confer resistance by negatively regulating MexEF-OprN overexpression and thus virulence of P. aeruginosa. OXA enzymes confer resistance to Carbapenem particularly in Acinetobacter baumannii | NODE_2_length_334757_cov_47.438374_217007_217204 NODE_32_length_54861_cov_49.238334_7238_6351 |
Class | Gene/Protein Name | Function |
---|---|---|
Temperature stress | rpoE | Encodes RNA polymerase sigma factor σ24 necessary for growth at high and low temperature |
degQ | A RpoE dependant periplasmic serine protease required for bacterial growth at high temperature | |
Csp family proteins (4No.) | Serve as RNA chaperone to regulate transcription, translation and degradation of mRNA | |
Hsp family proteins (6No.) | Heat shock proteins have key role in protein folding, assembly, degradation and their transport across membranes | |
Oxidative stress | chrR | Transcription activator which is a part of repE2 operon and senses ROS |
Glutathione peroxidase | A RpoE dependant Glutathione peroxidase cope with oxidative stress | |
Thioredoxin reductase | Essential protein for regulating redox balance in cell | |
Glutathione reductase | Role in cellular control of Reactive oxygen species thus maintaining balance in cell | |
katG, katE | Genes involved in antioxidant defence against H2O2 induced stress | |
Heavy metal stress | ||
Iron | mtrBAC, mtrFED | Encoding outer membrane cytochrome C responsible for iron reduction |
feoA, feoB | A direct iron transport complex for uptake of soluble form of iron- Fe2+ | |
Ton B receptor proteins | A chelator for transport of insoluble form of iron-Fe3+ using TonB receptor present on outer membrane. | |
fur | A ferric uptake regulation protein required for Iron homeostasis | |
Selenite | fccA | Periplasmic fumarate reductase |
cymA | Membrane bound Type C Cytochrome assist FccA for reduction of selenite. | |
Copper | cusA | A heavy metal efflux RND transporter protein for transport of copper/silver across membranes. |
copA | Copper sensory histidine kinase for its role in copper stress resistance. | |
Nitrate | nar(narQ, narP) | A membrane bound two component system for regulation of Nap operon |
nap(napDEF) | Periplasmic nitrate reductase gene for reduction and excretion of nitrate reducing end products out of cell. | |
Iodine | mtrAB | Periplasmic cytochrome c protein mtrAand Outer membrane anchored mtrB required for iodate reduction |
Arsenic | acr3, acrR | Arsenic resistant proteins |
Salt stress | kdpD, kdpE trkH | A transporter for potassium uptake helps bacteria in adaptation to salt stress |
rpoS | A sigma factor regulatory protein | |
betA, betB | Betaine aldehyde dehydrogenase and Choline dehydrogenase are required for betaine and choline uptake by cell | |
- | Encoding Glutamate-5 kinase enzyme for proline biosynthesis | |
pH stress | ||
Acid stress | rpoS | A sigma factor σ38 or a global regulatory protein |
csgB, csgEFG | Genes encodes for cell envelope structure or curli assembly | |
pstA, pstB | Phosphate ABC transporter permease protein in response to acid stress | |
phoB, phoU | Phosphate transport regulatory protein | |
Alkaline stress | nhaA, nhaR | A membrane bound Na+/H+ antiporter system responsible for adaptation to alkaline stress |
cysP, cysT, cysW, cysA, cysB | Sulfate ABC transporter proteins | |
Osmotic stress | Two component envZ/ompR system | Osmolarity sensory histidine kinase to mediate osmotic stress response in bacteria |
lysR | LysR family transcription regulator |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, A.; Ketkar, O.A.; Irfan, S.; Rana, V.; Rahi, P.; Deshmukh, R.; Kaur, J.; Dhar, H. Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. Biology 2022, 11, 632. https://doi.org/10.3390/biology11050632
Chaudhary A, Ketkar OA, Irfan S, Rana V, Rahi P, Deshmukh R, Kaur J, Dhar H. Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. Biology. 2022; 11(5):632. https://doi.org/10.3390/biology11050632
Chicago/Turabian StyleChaudhary, Anchal, Omkar Avinash Ketkar, Sayed Irfan, Varnika Rana, Praveen Rahi, Rupesh Deshmukh, Jagdeep Kaur, and Hena Dhar. 2022. "Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut" Biology 11, no. 5: 632. https://doi.org/10.3390/biology11050632
APA StyleChaudhary, A., Ketkar, O. A., Irfan, S., Rana, V., Rahi, P., Deshmukh, R., Kaur, J., & Dhar, H. (2022). Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. Biology, 11(5), 632. https://doi.org/10.3390/biology11050632