Transcriptome Profiling Reveals Differential Gene Expression of Laccase Genes in Aspergillus terreus KC462061 during Biodegradation of Crude Oil
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fungal Isolate, Culturing Conditions, and Sample Preparation
2.2. Lcc Activity Assay
2.3. Crude Oil Biodegradation
2.3.1. Extraction of Crude Oil
2.3.2. GC–MS Analysis of Crude Oil
2.4. Separation of A. terreus KC462061 Protein by SDS-PAGE
2.5. RNA Extraction and cDNA Synthesis
2.6. Specific Primers of Laccase Genes
2.7. Transcription of Laccase Genes Using qRT-PCR
3. Results
3.1. Effects of Five Inducers on Laccase Production
3.2. Biodegradation of Aliphatic Hydrocarbons of Heavy Oil
3.3. Biodegradation of the Aromatic Hydrocarbons of Crude Oil
3.4. SDS-PAGE of A. terreus KC462061 Protein Patterns
3.5. RT-PCR
3.6. Transcription Profiling of A. terreusKC46206 eight Laccase Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bao, M.T.; Wang, L.N.; Sun, P.Y.; Cao, L.X.; Zou, J.; Li, Y.M. Biodegradation of crude oil using an efficient microbial consortium in a simulated marine environment. Mar. Pollut. Bull. 2012, 64, 1177–1185. [Google Scholar] [CrossRef] [PubMed]
- Kozhukhova, E.; Litvinova, M.; Makarevich, E.; Malaeva, A. Biodegradation of petroleum hydrocarbons by bioflocculant-producing microorganisms of the aquatic ecosystems in the Arctic region. IOP Conf. Ser. Earth Environ. Sci. 2020, 539, 012192–012199. [Google Scholar] [CrossRef]
- Spini, G.; Spina, F.; Poli, A.; Blieux, A.-L.; Regnier, T.; Gramellini, C.; Varese, G.C.; Puglisi, E. Molecular and microbiological insights on the enrichment procedures for the isolation of petroleum degrading bacteria and fungi. Front. Microbiol. 2018, 9, 2543. [Google Scholar] [PubMed] [Green Version]
- Obi, L.U.; Atagana, H.I.; Adeleke, R.A. Isolation and characterisation of crude oil sludge degrading bacteria. SpringerPlus 2016, 5, 1946. [Google Scholar] [PubMed] [Green Version]
- Hara, E.; Kurihara, M.; Nomura, N.; Nakajima, T.; Uchiyama, H. Bioremediation field trial of oil-contaminated soil with food-waste compost. J. JSCE 2013, 1, 125–132. [Google Scholar]
- Kuttiyathil, M.S.; Mohamed, M.M.; AlZuhair, S. Using microalgae for remediation of crude petroleum oil–water emulsions. Biotechnol. Progress 2020, 37, e3098. [Google Scholar] [CrossRef]
- Khandelwal, A.; Sugavanam, R.; Ramakrishnan, B.; Dutta, A.; Varghese, E.; Nain, L.; Banerjee, T.; Singh, N. Free and immobilized microbial culture–mediated crude oil degradation and microbial diversity changes through taxonomic and functional markers in a sandy loam soil. Front. Environ. Sci. 2022, 9, 794303. [Google Scholar] [CrossRef]
- El-Aziz, A.R.M.; Al-Othman, M.R.; Hisham, S.M.; Shehata, S.M. Evaluation of crude oil biodegradation using mixed fungal cultures. PLoS ONE 2021, 16, e0256376. [Google Scholar]
- Daccò, C.; Girometta, C.; Asemoloye, M.D.; Carpani, G.; Picco, A.M.; Tosi, S. Key fungal degradation patterns, enzymes and their applications for the removal of aliphatic hydrocarbons in polluted soils: A review. Int. Biodeterior. Biodegrad. 2020, 147, 104866. [Google Scholar] [CrossRef]
- Asemoloye, M.D.; Tosi, S.; Daccò, C.; Xiao, W.; Shihan, X.; Marchisio, M.A.; Wenyuan, G.; Jonathan, S.G.; Pecoraro, L. Hydrocarbon degradation and enzyme activities of Aspergillus oryzae and Mucor irregularis isolated from Nigerian crude oil-polluted sites. Microorganisms 2020, 30, 1912. [Google Scholar]
- Becarelli, S.; Siracusa, G.; Chicca, I.; Bernabei, G.; Di Gregorio, S. Ascomycetes versus spent mushroom substrate in mycoremediation of dredged sediments contaminated by total petroleum hydrocarbons: The involvement of the bacterial metabolism. Water 2021, 13, 3040. [Google Scholar] [CrossRef]
- Arora, D.S.; Sharma, R.K. Ligninolytic fungal laccases and their biotechnological applications. Appl. Biochem. Biotechnol. 2010, 160, 1760–1788. [Google Scholar]
- Gomaa, O.M.; Momtaz, O.A. Copper induction and differential expression of laccase in Aspergillus flavus. Braz. J. Microbiol. 2015, 46, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sugareva, V.; Hartl, A.; Brock, M.; Hubner, K.; Rohde, M.; Heinekamp, T.; Brakhage, A.A. Characterisation of the laccase-encoding gene abr2 of the dihydroxynaphthalene-like melanin gene cluster of Aspergillus fumigatus. Arch. Microbiol. 2006, 186, 345–355. [Google Scholar] [CrossRef] [Green Version]
- Mander, G.J.; Wang, H.; Bodie, E.; Wagner, J.; Vienken, K.; Vinuesa, C.; Foster, C.; Leeder, A.C.; Allen, G.; Hamill, V.; et al. Use of laccase as a novel, versatile reporter system in filamentous fungi. Appl. Environ. Microbiol. 2006, 72, 5020–5026. [Google Scholar] [CrossRef] [Green Version]
- Tamayo-Ramos, J.; van Berkel, W.J.; de Graaff, L.H. Biocatalytic potential of laccase-like multicopper oxidases from Aspergillus niger. Microb. Cell Fact. 2012, 11, 165. [Google Scholar] [CrossRef] [Green Version]
- Al-Zaban, M.I.; AlHarbi, M.A.; Mahmoud, M.A. Hydrocarbon biodegradation and transcriptome responses of cellulase, peroxidase, and laccase encoding genes inhabiting rhizospheric fungal isolates. Saudi J. Biol. Sci. 2021, 28, 2083–2090. [Google Scholar] [CrossRef]
- Wu, Y.C.; Teng, Y.; Li, Z.G.; Liao, X.W.; Luo, Y.M. Potential role of polycyclic aromatic hydrocarbons (PAHs) oxidation by fungal laccase in the remediation of an aged contaminated soil. Soil Biol. Biochem. 2008, 40, 789–796. [Google Scholar] [CrossRef]
- Kucharzyk, K.H.; Benotti, M.; Darlington, R.; Lalgudi, R. Enhanced biodegradation of sediment-bound heavily weathered crude oil with ligninolytic enzymes encapsulated in calcium-alginate beads. J. Hazard. Mater. 2018, 357, 498–505. [Google Scholar] [CrossRef]
- Janusz, G.; Katarzyna, H.; Kucharzykb, A.P.; Magdalena, S.A.; Paszczynski, J. Fungal laccase, manganese peroxidase and lignin peroxidase: Gene expression and regulation. Enzym. Microb. Technol. 2013, 52, 1–12. [Google Scholar]
- Yang, J.; Wang, G.; Ng, T.B.; Lin, J.; Ye, X. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients. Front. Microbiol. 2016, 6, 1558. [Google Scholar] [CrossRef] [PubMed]
- Ahlawat, A.; Mishra, S. Structural, phylogenetic and expression analysis of genes producing lignin degrading enzymes in the basidiomycete Cyathus bulleri and their effect on the release of reducing sugars from agro-residues. Fuel 2021, 314, 122716. [Google Scholar] [CrossRef]
- Elhusseiny, S.M.; Amin, H.M.; Shebl, R.I. Modulation of laccase transcriptome during biodegradation of naphthalene by white rot fungus Pleurotus ostreatus. Int. Microbiol. 2019, 22, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, S.; Torres, G.; Lin, X. Laccases involved in 1,8-dihydroxynaphthalene melanin biosynthesis in Aspergillus fumigatus are regulated by developmental factors and copper homeostasis. Eukaryot. Cell. 2013, 12, 1641–1652. [Google Scholar] [CrossRef] [Green Version]
- Dritsa, V.; Rigas, F.; Natsis, K.; Marchant, R. Characterization of a fungal strain isolated from a polyphenol polluted site. Bioresour. Technol. 2007, 98, 1741–1747. [Google Scholar] [CrossRef]
- Hidayat, A.; Tachibana, S. Degradation of 2,4,8 trichlorodibenzofuran by a new isolate of Cerrena sp. F0607. Int Biodeterior. Biodegrad. 2013, 77, 51–55. [Google Scholar] [CrossRef]
- Olajuyigbe, F.M.; Ehiosun, K.I. Assessment of crude oil degradation efficiency of newly isolated Actinobacteria reveals untapped bioremediation potentials. Bioremdiat. J. 2016, 20, 133–143. [Google Scholar] [CrossRef]
- Cai, B.; Ma, J.; Yan, G.; Dai, X.; Li, M.; Guo, S. Comparison of phytoremediation, bioaugmentation and natural attenuation for remediating saline soil contaminated by heavy crude oil. Biochem. Eng. J. 2016, 112, 170–177. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef]
- Walker, J.M. The Protein Protocols Handbook, 3rd ed.; Humana Press: New York, NY, USA, 2009; p. 1991. [Google Scholar]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the Comparative CT method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef] [PubMed]
- Bhamare, H.M.; Jadhav, H.P.; Sayyed, R.Z. Statistical optimization for enhanced production of extracellular laccase from Aspergillus sp. HB_RZ4 isolated from bark scrapping. Environ. Sustain. 2018, 1, 159–166. [Google Scholar] [CrossRef]
- Pezzella, C.; Lettera, V.; Piscitelli, A.; Giardina, P.; Sannia, G. Transcriptional analysis of Pleurotus ostreatus laccase genes. Appl. Microbiol. Biotechnol. 2013, 97, 705–717. [Google Scholar] [CrossRef] [PubMed]
- Al-Zaban, M.I.; Mahmoud, M.A.; AlHarbi, M.A.; Bahatheq, A.M. Bioremediation of crude oil by rhizosphere fungal isolates in the presence of silver nanoparticles. Int. J. Environ. Res. Public Health 2020, 17, 6564. [Google Scholar] [CrossRef] [PubMed]
- Junghanns, C.; Moeder, M.; Krauss, G.; Martin, C.; Schlosser, D. Degradation of the xenoestrogen nonylphenol by aquatic fungi and their laccases. Microbiology 2005, 151, 45–57. [Google Scholar] [CrossRef] [Green Version]
- Hidayat, A.; Tachibana, S. Biodegradation of aliphatic hydrocarbon in three types of crude oil by Fusarium sp. F092 under stress with artificial sea water. J. Environ. Sci. Technol. 2012, 5, 64–73. [Google Scholar] [CrossRef] [Green Version]
- EL-Hanafy, A.A.E.; Anwar, Y.; Sabir, J.S.M.; Mohamed, S.A.; Al-Garni, S.M.S.; Zinadah, O.A.H.A.; Ahmed, M.M. Characterization of native fungi responsible for degrading crude oil from the coastal area of Yanbu, Saudi Arabia. Biotechnol. Biotechnol. Equip. 2017, 31, 105–111. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.S.; Yin, H.; Qiang, J.; Peng, H.; Qin, H.M.; Zhang, N.; He, B.Y. Biodegradation of anthracene by Aspergillus fumigatus. J. Hazard. Mater. 2011, 185, 174–181. [Google Scholar] [CrossRef]
- Ali, M.I.A.; Khalil, N.M.; El-Ghany, M.N.A. Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr. J. Microbiol. Res. 2012, 6, 3783–3790. [Google Scholar]
- Baniasadi, M.; Mousavi, S.M.; Zilouei, H.; Shojaosadati, S.A.; Rastegar, S.O. Statistical evaluation and process optimization of bioremediation of polycyclic aromatic hydrocarbon in a bioreactor. Environ. Eng. Manag. J. 2018, 17, 1782–1790. [Google Scholar]
- Benguenab, A.; Chibani, A. Biodegradation of petroleum hydrocarbons by filamentous fungi (Aspergillus ustus and Purpureocillium lilacinum) isolated from used engine oil contaminated soil. Acta Ecol. Sin. 2021, 41, 416–423. [Google Scholar] [CrossRef]
- Moghimi, H.; Heidary Tabar, R.; Hamedi, J. Assessing the biodegradation of polycyclic aromatic hydrocarbons and laccase production by new fungus Trematophoma sp. UTMC 5003. World J. Microbiol. Biotechnol. 2017, 33, 136–146. [Google Scholar] [CrossRef] [PubMed]
- Lombard, V.; Golaconda, R.H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Hazmi, N.A.; Kamel, E.A. Ecosystem impact on fungal identification using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) technique. Afr. J. Microbiol. Res. 2012, 6, 3492–3500. [Google Scholar] [CrossRef]
- Gomaa, E.Z.; Housseiny, M.M.; Omran, A.A. Fungicidal efficiency of silver and copper nanoparticles produced by Pseudomonas fluorescens ATCC 17397 against four Aspergillus Species: A molecular study. J. Clust. Sci. 2019, 30, 181–196. [Google Scholar] [CrossRef]
- Pawlik, A.; Ciołek, B.; Sulej, J.; Mazur, A.; Grela, P.; Staszczak, M.; Niscior, M.; Jaszek, M.; Matuszewska, A.; Janusz, G.; et al. Cerrena unicolor laccases, genes expression and regulation of activity. Biomolecules 2021, 11, 468. [Google Scholar] [CrossRef]
- Castanera, R.; López-Varas, L.; Pisabarro, A.G.; Ramírez, L. Validation of reference genes for transcriptional analyses in Pleurotus ostreatus by using reverse transcription-quantitative PCR. Appl. Environ. Microbiol. 2015, 81, 4120–4129. [Google Scholar] [CrossRef] [Green Version]
- Christopher, L.P.; Yao, B.; Ji, Y. Lignin biodegradation with laccase-mediator systems. Front. Energy Res. 2014, 2, 12. [Google Scholar] [CrossRef]
- Yang, Y.; Wei, F.; Zhuo, R.; Fan, F.; Liu, H.; Zhang, C.; Ma, L.; Jiang, M.; Zhang, X. Enhancing the laccase production and laccase gene expression in the white-rot fungus Trametes velutina 5930 with great potential for biotechnological applications by different metal ions and aromatic compounds. PLoS ONE 2013, 8, e79307. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.J.; Dobson, A.D.W. Regulation of laccase gene transcription in Trametes versicolor. Appl. Environ. Microbiol. 1997, 63, 3444–3450. [Google Scholar] [CrossRef] [Green Version]
- Si, J.; Cui, B.-K. Study of the physiological characteristics of the medicinal mushroom Trametes pubescens (higher Basidiomycetes) during the laccase-producing process. Int. J. Med. Mushrooms 2013, 15, 199–210. [Google Scholar] [CrossRef] [PubMed]
Genes | Primer Sequence | Amplicon Length (bp) | |
---|---|---|---|
Forward Primer (5′–3′) | Reverse Primer (5′–3′) | ||
Lcc1 | ATGGTTGAGACCGATTTGCAC | AAGAAGGACGGGAACATTAGGG | 159 |
Lcc3 | TTGCGATCTTGCCTGTTCTC | CATCAGGTGCCAGAGCTTGA | 199 |
Lcc5 | GGCAGGAGGTGCTGACTACAA | ACGACCTTATTGCGGGCTAAC | 195 |
Lcc6 | GCAGCTTTACTCGCTATTCCA | TCAAAGCCATCAGGGCTAAC | 104 |
Lcc8 | TCAAATTCCACTTCCCCTACCA | GGACCAAAATAAGAGAGCCAGG | 199 |
Lcc10 | ATGGGGTCTACCAGAAGGGTA | TGGGAGTGATACCAATATGTGC | 136 |
Lcc11 | GGACAATGCATTCAACGAAG | AGAAAGTGCCGGTCTGGTC | 107 |
Lcc12 | GAAGTCCACGCCTATGATGAA | CAGGGTTGGCAATACTAACGA | 103 |
GAPDH | GTTCAAGTACGATTCCGTCCA | TTCTCAGCGAAGACGGTGAC | 102 |
n-Alkanes | A. terreus KC462061 Biodegradation | A. terreus KC462061 + Cu-ABTS Biodegradation | ||||
---|---|---|---|---|---|---|
Initial Abundance * | Residual Abundance | Degradation Efficiency (%) | Initial Abundance | Residual Abundance | Degradation Efficiency (%) | |
C12 | 16.4 ± 0.46 | 7.3± 0.33 | 55.4 ± 0.10 | 14.2 ± 0.41 | 2.8 ± 0.09 | 83.1 ± 0.51 |
C13 | 15.6 ± 0.91 | 7.4 ± 0.78 | 52.5 ± 0.12 | 11.6 ± 0.37 | 2.1 ± 0.13 | 81.8 ± 0.14 |
i-C15 | 20.7 ± 0.73 | 9.4 ± 0.29 | 54.5 ± 0.48 | 15.1 ± 0.40 | 2.6 ± 0.45 | 82.7 ± 0.66 |
C14 | 22.8 ± 0.28 | 11.6 ± 0.23 | 49.1 ± 0.64 | 18.7 ± 0.82 | 3.4 ± 0.63 | 81.8 ± 0.28 |
i-C16 | 32.8 ± 0.69 | 14.9 ± 0.12 | 54.7 ± 0.31 | 25.6 ± 0.57 | 4.9 ± 0.98 | 80.9 ± 0.36 |
C15 | 36.9 ± 0.42 | 17.1 ± 0.28 | 53.6 ± 0.19 | 30.9 ± 0.14 | 5.9 ± 0.92 | 80.8 ± 0.47 |
C16 | 26.8 ± 0.76 | 13.2 ± 0.69 | 50.7 ± 0.89 | 21.3 ± 0.17 | 4.1 ± 0.84 | 80.2 ± 0.86 |
NPr (C18) | 32.9 ± 0.15 | 14.3 ± 0.39 | 56.5 ± 0.56 | 26.4 ± 0.49 | 5.7 ± 0.61 | 78.4 ± 0.40 |
C17 | 35.4 ± 0.59 | 16.3 ± 0.17 | 53.9 ± 0.24 | 29.2 ± 0.13 | 6.7 ± 0.23 | 77.1 ± 0.58 |
Pr (C19) | 23.9 ± 0.81 | 12.1 ± 0.33 | 49.3 ± 0.91 | 18.6 ± 0.64 | 4.1 ± 0.49 | 77.9 ± 0.38 |
C18 | 28.3 ± 0.71 | 15.3 ± 0.24 | 46.6 ± 0.59 | 22.1 ± 0.19 | 5.6 ± 0.02 | 74.6 ± 0.74 |
Ph (C20) | 22.1 ± 0.29 | 10.7 ± 0.27 | 51.5 ± 0.36 | 16.3 ± 0.34 | 4.7 ± 0.71 | 71.1 ± 0.59 |
PAHs | A. terreus KC462061 Biodegradation | A. terreus KC462061 + Cu-ABTS Biodegradation | ||||
---|---|---|---|---|---|---|
Initial Abundance * | Residual Abundance | Degradation Efficiency (%) | Initial Abundance | Residual Abundance | Degradation Efficiency (%) | |
F (C13) | 5.1 ± 0.42 | 2.1 ± 0.17 | 58.8 ± 0.98 | 4.7 ± 0.13 | 0.9 ± 0.18 | 82.9 ± 0.47 |
MF (C14) | 4.2 ± 0.75 | 1.9 ± 0.21 | 54.7 ± 0.52 | 3.9 ± 0.48 | 0.7 ± 0.56 | 82.1 ± 0.69 |
P (C14) | 6.2 ± 0.62 | 2.9 ± 0.09 | 53.2 ± 0.73 | 5.7 ± 0.66 | 1.1 ± 0.58 | 80.7 ± 0.25 |
Anthracene (C14) | 7.4 ± 0.85 | 3.4 ± 0.39 | 54.1 ± 0.26 | 6.7 ± 0.89 | 1.4 ± 0.31 | 79.1 ± 0.49 |
MP (C15) | 5.7 ± 0.15 | 2.7 ± 0.11 | 52.6 ± 0.56 | 5.4 ± 0.55 | 1.2 ± 0.54 | 77.7 ± 0.58 |
DMP (C16) | 5.3 ± 0.11 | 2.6 ± 0.26 | 50.9 ± 0.43 | 4.9 ± 0.42 | 1.1 ± 0.27 | 77.5 ± 0.89 |
Py (C16) | 4.2 ± 0.59 | 2.1 ± 0.17 | 50.0 ± 0.17 | 3.9 ± 0.79 | 0.8 ± 0.11 | 79.4 ± 0.33 |
TMP (C17) | 4.3 ± 0.71 | 2.1 ± 0.25 | 51.1 ± 0.15 | 3.9 ± 0.33 | 0.9 ± 0.09 | 76.9 ± 0.94 |
C (C18) | 4.1 ± 0.36 | 2.1 ± 0.19 | 48.7 ± 0.90 | 3.7 ± 0.21 | 0.9 ± 0.09 | 75.6 ± 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, N.K.; Alzaban, M.I.; Albarakaty, F.M.; Abd El-Aziz, A.R.M.; AlRokban, A.H.; Mahmoud, M.A. Transcriptome Profiling Reveals Differential Gene Expression of Laccase Genes in Aspergillus terreus KC462061 during Biodegradation of Crude Oil. Biology 2022, 11, 564. https://doi.org/10.3390/biology11040564
Alharbi NK, Alzaban MI, Albarakaty FM, Abd El-Aziz ARM, AlRokban AH, Mahmoud MA. Transcriptome Profiling Reveals Differential Gene Expression of Laccase Genes in Aspergillus terreus KC462061 during Biodegradation of Crude Oil. Biology. 2022; 11(4):564. https://doi.org/10.3390/biology11040564
Chicago/Turabian StyleAlharbi, Nada K., Mayasar I. Alzaban, Fawziah M. Albarakaty, Abeer R. M. Abd El-Aziz, Ahlam H. AlRokban, and Mohamed A. Mahmoud. 2022. "Transcriptome Profiling Reveals Differential Gene Expression of Laccase Genes in Aspergillus terreus KC462061 during Biodegradation of Crude Oil" Biology 11, no. 4: 564. https://doi.org/10.3390/biology11040564
APA StyleAlharbi, N. K., Alzaban, M. I., Albarakaty, F. M., Abd El-Aziz, A. R. M., AlRokban, A. H., & Mahmoud, M. A. (2022). Transcriptome Profiling Reveals Differential Gene Expression of Laccase Genes in Aspergillus terreus KC462061 during Biodegradation of Crude Oil. Biology, 11(4), 564. https://doi.org/10.3390/biology11040564