CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Advancement of BEs in Microbes
2.1. Constructs and Mechanisms of Developed BEs
2.1.1. Latest Development of CBE and ABE in Microbes
2.1.2. Latest Development of PEs in Microbes
2.1.3. Latest Development of GBE in Microbes
BE type | Year | Fusing Enzyme | Cas9 Protein | gRNA | Construct | Improved Editing Activity | Applications | Refs |
---|---|---|---|---|---|---|---|---|
To narrow the editing window | ||||||||
CBE | 2019 | PmCDA1 with a series of C-terminal truncations | nCas9D10A | 20 nt | PmCDA1 variants-nCas9-UGI | Prefer to edit at positions −17 to −18 while retaining editing efficiency | Edit polyC motifs and Can1 to test narrow editing windows of C-terminal truncations such as CDA1Δ190, Δ192, Δ194 in S. cerevisiae | [34] |
CBE | 2020 | APOBEC3A with a series of C-terminal truncations and mutations | nCas9D10A | 20 nt | APOBEC3A variants-nCas9-UGI | Prefer to edit at positions −15 to −16 with decreased off-target RNA editing | Edit Can1 to test editing activity of APOBEC3A truncations such as Δ182, Δ186 and Δ190 in S. cerevisiae | [35] |
To expand the editing range | ||||||||
CBE | 2019 | PmCDA1 | nVQRD10A, nVRERD10A, nxCas9D10A, nCas9-NGD10A | 20 nt | nCas9 variants-PmCDA1 | Recognize the targets at non-NGG PAM with high editing efficiency | Introduce an amino acid transition T311I of LysC to obtain the mutant strain with 1.7 g/L lysine production in C. glutamicum | [40] |
nCas9D10A | 18–30 nt | nCas9-PmCDA1 | Increase editing efficiency at positions −14 and −15 by using 18 nt gRNA; increase efficiency at position −21 by using 22 and 24 nt gRNA | Edit poly C motifs in the plasmids and chromosomes of C. glutamicum to test the editing window shift by using truncated or extended gRNAs | ||||
CBE | 2020 | PmCDA1 | nVQRD10A, nVRERD10A, nxCas9D10A, nCas9-NGD10A | 20 nt | PmCDA1 variants-nCas9 variants-UGI | Recognize the targets at non-NGG PAM with a relatively narrow editing window from −17 to −18 | Edit polyC motifs to test the availability of Cas9 variants, editing efficiency, and window in S. cerevisiae | [35] |
CBE | 2021 | PmCDA1 | dCas9 | 20 nt | dCas9-PmCDA1-UGI | Broaden the editing window from −16 to −20 with 100% efficiency and increase the multiplex gene editing efficiency to 75.5% for quintuple targets by adding UGI | Test five different constructs of CBE in B.subtilis by inactivating GFP and multiple genes | [56] |
CBE | 2021 | PmCDA1 | nCas9D10A | 20 nt | PmCDA1-nCas9-UGI (integrated into genome) | Broaden the editing window at position −15 to −20 with 97–100% efficiency | In situ mutate Sec-translocase and BceB protein to obtain mutant strains with 3.6-fold transportation efficiency and different sensitivity to bacitracin, respectively, in B. subtilis | [57] |
21–26 nt | Increase editing efficiency by using 21 and 22 nt gRNA; expand editing window from −15 to −22 by using 23–26 nt gRNA; | |||||||
20 nt with a stem loop at 3‘ end of gRNA | increase the editing efficiency at position −15 from 70% to 87% | |||||||
To decrease the off-target effect | ||||||||
CBE | 2020 | rAPOBEC1 variants | dCas9 | 20 nt | rAPOBEC1 variants-dCas9-UGI | Balance efficient, on-target editing with greatly decreased gRNA-independent editing | Develop multiple rapid, cost-effective methods to screen the propensity of different deaminase variants and engineer the YE1 variants that retain high editing activity with minimal gRNA-independent off-target editing | [68] |
CBE | 2021 | tCDA1EQ (PmCDA1Δ30-150, W122E, W133Q) tCDA1EQ | nCas9D10A | 20 nt | tCDA1EQ-nCas9 | Significant decrease (5–79 fold) gRNA-independent off-target effects with comparable editing efficiency to original CBE | Edit Can1 to test editing activity in S. cerevisiae, evaluate the editing efficiency and window in mammalian cells, and compare them with existing improved CBEs | [53] |
nCas9 1054aa-tCDA1EQ-1055aa (inlaid architecture) | ||||||||
CBE | 2021 | rAPOBEC1 | nCas9D10A | 20nt with H12-B3-P5 (a 3 nt bubble positioned from positions 5 to 7 into a 12 nt hairpin) | rAPOBEC1-nCas9-UGI | Significantly decrease off-target editing without sacrificing on-target editing efficiency | Test editing efficiency and gRNA-dependent off-targets in E. coli | [54] |
ABE | ecTadA-TadA* | 20 nt with H12-B3-P4 | ecTadA-TadA*-nCas9 | |||||
To achieve DNA base transversion | ||||||||
PE | 2021 | M-MLV (reverse transcriptase) | nCas9H840A | 20 nt with 13–17 nt PBS and 13 nt RTT | nCas9-M-MLV2 | Substitutions, insertions, and deletions with 6.8%, 12.2% and 26% efficiency, respectively, in chromosome with few bystanders and off-targets | Achieve gene substitutions, deletions (up to 97 bp), insertions (up to 33 bp), and multiplex editing in E. coli | [58] |
GBE | 2021 | PmCDA1 | nCas9D10A | 20 nt | UNG-nCas9-PmCDA1 | Convert C to A with an average editing efficiency of 87.2% ± 6.9% with no detectable gRNA-dependent off-target | Convert C to A at four loci in lacZ and develop the NBE (any base editing) strategy in E. coli by combining CBE, ABE, and GBE | [62] |
2.2. Recent Applications of BEs in Nonmodel Microbes
Species | Major Function | Type | Year | gRNA Promoter | Construct of Fusion Protein | PAM | Editing Window | Editing Efficiency | Multiplex Gene Editing | Applications of BEs | Off-Targets | Refs |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Industrially Important Microbes | ||||||||||||
Kluyveromyces marxianus | Industrial production of various enzymes, chemicals, and macromolecules, as well as the utilization of cell biomass | CBE | 2017 | PSNR52 | PTSNR52 | NGG | −17 to −18 | 12.5–25% | nr | Inactivate Nej1 and Dnl4 to build NHEJ null mutants with an increased efficiency of homologous recombination and to facilitate multiple integration mediated by CRISPR/Cas9 | nr | [69] |
Psedomonas spp. | An excellent bacterial host to produce polymers, bulk chemicals, drugs, and high-price specialties | CBE | 2018 | Ptrc | PrpsL-rAPOBEC1-nCas9D10A | NGG | −13 to −18 | 100% | nr | Inactivate genes in P. aeruginosa PAO1, P. putida KT2440, P. fluorescens GcM5-1A, and P. syringae DC3000 to test editing window and efficiency | nd in the six similar spacers of the rhlR and rhlB genes | [41] |
CBE | 2020 | Pj23119 | Pbs/ParaBAD-rAPOBEC1-nCas9D10A | na, none of the selected colonies achieved C-to-T mutations | [70] | |||||||
CBE | 2020 | Pj23119 | Pbs-rAPOBEC1-eSpCas9ppD10A | |||||||||
CBE | 2020 | Pj23119 | ParaBAD-rAPOBEC1-eSpCas9ppD10A | NGG | nr | 20% | nr | Edit ttgA to test editing efficiency | nr | |||
CBE | 2020 | Pj23119 | Pm-rAPOBEC1-eSpCas9ppD10A-UGI | NGG | −13 to −18 | 40–60% | nr | nr | ||||
CBE | 2020 | Pj23119 | ParaBAD-rAPOBEC1-eSpCas9ppD10A-UGI | NGG | −13 to −18 | 80–100% | 100% for double targets and 35% for triple targets | Inactivate genes in P. putida, P. aeruginosa, P. fluorescens, and P. entomophila to prove CBE general availability; simultaneously edit genes by one-plasmid and two-plasmid system | nd by Sanger sequencing the potential sites predicted by CasOT | |||
CBE | 2020 | Pj23119 | ParaBAD-rAPOBEC1-eSpCas9ppD10A-NG-UGI | NG | −13 to −18 | 100% | 100% for double targets recognized by eSpCas9pp and eSpCas9-NG in a two-plasmid system | Inactivate pykA and pcaH in one step; mutate G136 in AroF-2 to select a mutant strain with increased PCA titer up to 264.87 mg/L | nr | |||
CBE | 2020 | Pj23119 | ParaBAD-YE1-eSpCas9ppD10A-UGI | NGG | −14 to −17 | 62.5% | nr | Precisely edit ttgA, which contains multiple cytidines with enhanced editing efficiency from 25% to 62.5% | nr | |||
Yarrowia lipolytica | GRAS and industrial production of lipase and organic acids | CBE | 2019 | PSCR1’-tRNAGly | PUAS1B8-TEF(136)-nCas9D10A-PmCDA1-UGI | NGG | −14 to −20 | 28% | 6.7% for double targets | Inactivate TRP1, PEX10, HIS3 in ku70Δ strain to test editing efficiency | nr | [26] |
CBE | 2019 | PSCR1’-tRNAGly | PTEFin-nCas9D10A-PmCDA1-UGI | NGG | −14 to −20 | 94.3 ± 5% | 31% for double targets | nr | ||||
Streptomyces spp. | Industrial production of bioactive secondary metabolites, such as antifungals, antivirals, antitumorals, anti-hypertensives, and mainly antibiotics, etc. | CBE | 2019 | PermE* | PtipA-rAPOBEC1-nCas9D10A-UGI | NGG | −11 to −17 | 30–100% | 33.3% for triple targets | Substitute amino acids in SCO5087 and SCO5092; inactivate genes of BGCs in nonmodel strain S. griseofuscus; efficiently and simultaneously inactivate two identical copies of kirN | 38–56 by WGS (24–34 meaningful amino acid changes); whereas 29 SNVs in wild-type strain (18 amino acid changes); | [44] |
ABE | 2019 | PermE* | PtipA-TadA-TadA*-nCas9D10A-UGI | NGG | −12 to −17 | 0–100% | nr | Target SCO5087 and a designed matrix containing NA motifs to test efficiency and preference | 27–33 by WGS (20–21 meaningful amino acid changes) | |||
CBE | 2019 | PkasO* | PrpsL-rAPOBEC1-dCas9-UGI | NGG | −13 to −17 | 43–70% | 43% for double targets | Edit redD and actl to test C-to-T efficiency with a few C-to-G and C-to-A mutations | nr | [45] | ||
CBE | 2019 | PkasO* | PrpsL-rAPOBEC1-nCas9D10A-UGI | NGG | −13 to −17 | 100% | 100% for double targets; 60% for quintuple targets | Simultaneously disrupt the genes of polyketide synthase clusters to increase production of avermectin | 3 by Sanger sequencing the sites predicted by CasOT; | |||
CBE | 2019 | PkasO* | PrpsL-rAPOBEC1-HF-nCas9D10A-UGI | NGG | −13 to −17 | 80% | nr | Edit olm to test off-target events, which was decreased to an undetectable level | nd by Sanger sequencing the sites mentioned above | |||
ABE | 2019 | PkasO* | PrpsL-TadA-TadA*-dCas9 | na, all selected colonies showed the A/G overlapping peak in sanger sequencing | ||||||||
ABE | 2019 | PkasO* | PrpsL-TadA-TadA*-nCas9D10A | NGG | −14 to −17 | 100% | nr | Disrupt the initiation of actVB translation by converting ATG start codon to ACG to accumulate actinoperylone | nr | |||
CBE | 2019 | Pj23119 | PermEp*-dCas9-PmCDA1-UL | na, growth of cells is severely delayed when CBE was overexpressed by the strong constitutive promoter | [46] | |||||||
CBE | 2019 | Pj23119 | PtipAp-dCas9-PmCDA1-UL | NGG | −16 to 20 | 10–100% | 60% for double targets; 20% for triple targets | Inactivate genes in S. coelicolor and S.rapamycinicus to test editing efficiency and general availability to other strains | 1 by Sanger sequencing the potential sites predicted by Cas-OFFinder | |||
CBE | 2019 | Pj23119 | PtipAp-nCas9D10A-PmCDA1-UL | NGG | −16 to 20 | 15% | nr | Edit redW with low efficiency from C to T but 85% efficiency for C-to-G mutation | nr | |||
CBE | 2021 | Pgapdh (EL) | PrpsL(XC)-rAPOBEC1-dCas9-UGI | NGG | −13 to −18 | 1–20% | nr | Edit redN, redD, and act_β-ketoacyl to test editing efficiency | 16.50 ± 8.35 by WGS | [71] | ||
CBE | 2021 | Pgapdh (EL) | PrpsL(XC)-rAPOBEC1-nCas9D10A-UGI | NGG | −13 to −18 | 3–25% | nr | nr | ||||
CBE | 2021 | Pgapdh (EL) | PrpsL(XC)-rAPOBEC1-dCas9-UGI with asRNA | NGG | −13 to −18 | 21.2–65.8% | nr | 13.50 ± 3.32 by WGS | ||||
CBE | 2021 | Pgapdh (EL) | PrpsL(XC)-rAPOBEC1-nCas9D10A-UGI with asRNA | NGG | −13 to −18 | 26.2–79.4% | nr | nr | ||||
Clostridium beijerinckii | Production of acetone, n-butanol, isopropanol etc. | CBE | 2019 | Pj23119 | Pthl-rAPOBEC1-nCas9D10A-UGI | NGG | −13 to −17 | 20–100% | nr | Edit pyrE, xylR, spo0A, and araR to test efficiency of codon-optimized CBE; inactivate xylR to enhance the xylose fermentation | nr | [47] |
Clostridium ljungdahlii | Production of acetic acid and ethanol from waste gas | CBE | 2020 | Pj23119 | P2TetO1-dCas9-PmCDA1-UL | NGG | −11 to −19 | 2–55.6% | nr | Inactivate adhE1 and aor2 separately to increase acetate yield as well as lower ethanol production under either heterotrophic or autotrophic conditions | nr | [72] |
Rhodobacter sphaeroides | Industrial production of CoQ10, isoprenoids, poly-β-hydroxybutyrate, hydrogen | CBE | 2020 | Pj23119 | PLac-dCas9-PmCDA1-UL | NGG | −14 to 20 | 16.7% | nr | Inactivate appA and ppsR to test efficiency with pure C-to-T conversion | nr | [48] |
CBE | 2020 | Pj23119 | PLac-nCas9D10A-PmCDA1-UL | NGG | 14 to 20 | 10–96.7% | 43% for double targets; 46.7% for triple targets | Inactivate appA, etc., to test C-to-T efficiency with C-to-G and C-to-A byproducts; disrupt ubiF, ubiA, ubiG, and ubiX to reveal their importance in the CoQ10 biosynthetic pathway | nr | |||
ABE | 2020 | Pj23119 | PLac-TadA-TadA*-dCas9 | NGG | −14 to −16 | 0–5% | nr | Edit appA, ppsR, crtB, and bchG to alter translation level or block translation initiation | nr | |||
ABE | 2020 | Pj23119 | PLac-TadA-TadA*-nCas9D10A | NGG | −14 to −16 | 0–30% | nr | Edit appA, etc to alter translation level or block translation initiation | nr | |||
Shewanella oneidensis | Bioelectricity production from biomass wastes | CBE | 2020 | Ptac | PrpsL-rAPOBEC1-nCas9D10A | NGG | −13 to −18 | 33.3–100% | 87.5% for double targets | Target NC motifs to test editing preference; inactivate gfp, blaA, and dmsE to test editing activity; identify key genes in GlcNAc or glucose metabolism to obtain a mutant strain with enhanced degradation efficiencies for organic pollutants | nr | [49] |
Companilactobacillus crustorum | Production of bacteriocin and 3-phenyllactic acid | CBE | 2021 | P3 | PsppA-rAPOBEC1-nCas9D10A | NGG | −14 to −18 | 75–100% | nr | Edit seven C-rich spacer sequences in a plasmid to test editing window and efficiency | nr | [73] |
Agriculturally Important Microbes | ||||||||||||
Paenibacillus polymyxa | Nitrogen fixation, plant growth promotion, soil phosphorus solubilization and production of cxopolysaccharides, hydrolytic enzymes, antibiotics, and cytokinin | CBE | 2021 | Para | Pgrac-nCas9D10A-PmCDA1 | na, no transformant was obtained due to the toxicity of the fusion protein | [56] | |||||
CBE | 2021 | Para | Pspac-dCas9-PmCDA1-UGI | NGG | −16 to 20 | 100% | 100% for double and triple targets; 83.3% for quadruple targets; 75.5% for quintuple targets | Disrupt genes of five known BGCs to reveal the antimicrobial spectrum of the novel antibiotics in the sixth unknown BGCs | 8.5 SNVs including 4.2 amino acid changes by WGS | |||
Agrobacterium spp. | Nature’s genetic engineer for diverse species including crops | CBE | 2021 | Pj23119 | PaadA-dCas9-PmCDA1-UGI-LVA | na, no correct clones were obtained in E. coli probably due to the toxicity | [74] | |||||
CBE | 2021 | Pj23119 | PvirB-dCas9-PmCDA1-UL | NGG | −15 to −19 | 91% | 80% for double targets | Inactivate recA to maintain stability for plant transformation; separately inactivate rolB, rolC, and orf13 to confirm their importance in hair root construction | nr | |||
Sinorhizobium meliloti | Perform symbiotic nitrogen fixation within leguminous host plants such as alfalfa, an important forage crop | ABE | 2021 | PSigA/PRpoN/Ptyr | PHemA-TadA-TadA*-nCas9D10A | na, failed to mediate the A-to-G transition when gRNA is expressed by promoter SigA, RpoN or tyr | [75] | |||||
ABE | 2021 | PRpsT | PHemA-TadA-TadA*-nCas9D10A | NGG | −11 to −17 | 60% | nr | Edit nodA to test the editing efficiency | nr | |||
ABE | 2021 | PRpmJ | PHemA-TadA-TadA*-nCas9D10A | NGG | −11 to −17 | 100% | 90% for triple targets | Edit nodA, nodB, nodC, nifD, nifH, and nifK to test if the promoters can drive the expression of the fusion protein to perform efficient editing | nd by Sanger sequencing the potential sites predicted by Cas-OFFinder | |||
ABE | 2021 | PRpmJ | PNeo-TadA-TadA*-nCas9D10A | NGG | −11 to −17 | 100% | ||||||
ABE | 2021 | PRpmJ | PTau-TadA-TadA*-nCas9D10A | NGG | −11 to −17 | 80% | ||||||
CBE | 2021 | PRpmJ | PHemA-rAPOBEC1-nCas9D10A-UGI | NGG | −13 to −17 | 75% | nr | Inactivate nodA (W7*) to test if the growth of plants inoculated with the mutant strain was retarded | ||||
CBE | 2021 | PRpmJ | PTau-rAPOBEC1-nCas9D10A-UGI | NGG | −13 to −17 | 100% | nr | |||||
CBE | 2021 | PRpmJ | PHemA-nCas9D10A-PmCDA1-UGI | NGG | −13 to −20 | 100% | 80% for double targets; 50–70% for triple targets | Edit nodA, etc to test editing efficiency | ||||
GBE | 2021 | PRpmJ | PHemA-nCas9D10A-PmCDA1-UNG | NGG | −14 to −18 | 33–80% | nr | nr | ||||
Clinically Important Microbes | ||||||||||||
Brucella melitensis | The most important agent of human brucellosis | CBE | 2018 | PLlacO-1 | Ptrc-rAPOBEC1-nCas9D10A-UGI-NLS | NGG | −15 | 100% | nr | Inactivate virB10 by targeting three sites with 100% editing efficiency at only one site | nr | [37] |
Klebsiella pneumoniae | Cause pneumonia, bloodstream infections, wound, or surgical site infections and meningitis; biosynthesize 1,3-propanediol and 2,3-butanediol | CBE | 2018 | Pj23119 | PrpsL-rAPOBEC1-nCas9D10A | NGG | −13 to −18 | 100% | nr | Edit fosA and dhaK to test editing efficiency with a few C-to-A byproducts; inactivate the blaKPC-2 and blaCTX-M-65 to dissect drug-resistance mechanisms | nr | [60] |
Staphylococcus aureus | Cause infections ranging from skin infections to severe systemic infections | CBE | 2018 | Pcap 1A | PrpsL-rAPOBEC1-nCas9D10A | NGG | −13 to −17 | 100% | nr | Inactivate agrA and cntA to test efficiency | nr | [76] |
ABE | 2020 | Pcap 1A | PrpsL-ecTadA-TadA*-nCas9D10A | NGG | −13 to −17 | 50–100% | 100% for double targets | Screen key residues of cntBC targeted by 38 gRNAs to obtain 42 mutant strains | nd gRNA-dependent off-target by WGS | [77] | ||
Acinetobacter baumannii | causing ventilator-associated pneumonia and bloodstream infections, and mortality rates can reach 35% | CBE | 2019 | Pj23119 | Ptac-rAPOBEC1-nCas9D10A | NGG | −13 to −18 | 20–100% | nr | Edit tynA, acel, adeB, cpdA, entE, and oxyR to test editing efficiency and preference of TC motifs; disrupt drug-resistance relevant genes blaOXA-23, blaTEM-1D, and blaADC-25 to dissect drug-resistance mechanisms | nr | [78] |
Mycobacterium spp. | Causes tuberculosis, getting 10 million infections and 1.45 million deaths in 2018 worldwide | CBE | 2021 | Pj23119 | PtetR-rAPOBEC1-dSt1Cas9 | NNRGAA | nr | 4–15% | nr | Test availability of dSt1Cas9-BE in Mycobacterium with low efficiency for C-to-T but 18–70% efficiency for C-to-G | nr | [79] |
CBE | 2021 | Pj23119 | PtetR-rAPOBEC1-dSt1Cas9-UGI-UGI | NNRGAA | nr | 12–95% | nr | Inactivate katG to obtain mutant strain with increasing resistance to Isoniazid treatment | nr | |||
CBE | 2021 | Pj23119 | PtetR-rAPOBEC1-dSt1Cas9evolve-UGI-UGI | NNNNAA | −10 to −14 | 20–95% | 87.5% for both double and triple targets | Inactivate the essential L-leucine biosynthesis genes leuB and lueC; inactivate ctpE to increase bacterium aggregation in the presence of EGTA | nd gRNA-dependent off-target by WGS | |||
GBE | 2021 | Pj23119 | PtetR-rAPOBEC1-dSt1Cas9-UNG | NNRGAA | nr | 100% | nr | Edit five different loci to test editing efficiency | nr | |||
GBE | 2021 | Pj23119 | PtetR-rAPOBEC1-dSt1Cas9evolve-UNG | NNNNAA | −13 to −16 | 20–65% | 75% for triple targets | Edit 29 endogenous genomics sites to find only TC motif is available for editing | nr | |||
CBE | 2021 | Pj23119 | PtetO-rAPOBEC1-dSt1Cas9-UGI | NNAGGAC | nr | 1.2% | nr | Inactivate gfp to test editing efficiency | nr | [80] | ||
CBE | 2021 | Pj23119 | PtetO-rAPOBEC1-nSt1Cas9-UGI | NNAGGAC | nr | 10.3% | nr | nr | ||||
CBE | 2021 | Pj23119 | PtetO-rAPOBEC1-nSt1Cas9-UGI with assistant plasmid expressing recX | NNAGGAC | −12 to −18 | 37.5–100% | nr | nr | ||||
CBE | 2021 | Pj23119 | PtetO-rAPOBEC1-nSt1Cas9-UGI with assistant plasmid expressing recX and nucSE107A | NNAGGAC | nr | 12.5–75% | nr | Inavtivate Rv0582, Rv0627 and Rv2530 to test efficiency; Inactivate katG to build a mutant stain with higher 50% minimum inhibitory concentration than the wild-type strain | nr |
2.2.1. Industrially Important Nonmodel Microbes
Kluyveromyces marxianus
Psedomonas putida
Streptomyces lividans 66
Clostridium ljungdahlii
Companilactobacillus crustorum
2.2.2. Agriculturally Important Nonmodel Microbes
Paenibacillus polymyxa
Agrobacterium spp.
Sinorhizobium meliloti
2.3. Clinically Important Nonmodel Microbes
3. Current Obstacles of BEs in Microbes
3.1. Limitation of Editing Activity
3.2. Variability of Base Editing Activity
3.3. Unavailability of Some BEs in Microbes
4. Future Scope of BEs in Other Microbes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalsoom, M.; Rehman, F.U.; Shafique, T.; Junaid, S.; Khalid, N.; Adnan, M.; Zafar, I.; Abdullah Tariq, M.; Raza, M.A.; Zahra, A.; et al. Biological Importance of Microbes in Agriculture, Food and Pharmaceutical Industry: A Review. Innovare J. Life Sci. 2020, 8, 1–4. [Google Scholar] [CrossRef]
- Peralta-Yahya, P.P.; Keasling, J.D. Advanced Biofuel Production in Microbes. Biotechnol. J. 2010, 5, 147–162. [Google Scholar] [CrossRef] [PubMed]
- da Silva, T.L.; Gouveia, L.; Reis, A. Integrated Microbial Processes for Biofuels and High Value-Added Products: The Way to Improve the Cost Effectiveness of Biofuel Production. Appl. Microbiol. Biotechnol. 2014, 98, 1043–1053. [Google Scholar] [CrossRef] [PubMed]
- Gronchi, N.; Favaro, L.; Cagnin, L.; Brojanigo, S.; Pizzocchero, V.; Basaglia, M.; Casella, S. Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol. Energies 2019, 12, 714. [Google Scholar] [CrossRef] [Green Version]
- Alonso, S.; Rendueles, M.; Díaz, M. Microbial Production of Specialty Organic Acids from Renewable and Waste Materials. Crit. Rev. Biotechnol. 2015, 35, 497–513. [Google Scholar] [CrossRef]
- Michael, S.; Diethard, M. Construction of Microbial Cell Factories for Industrial Bioprocesses. J. Chem. Technol. Biotechnol. 2012, 87, 445–450. [Google Scholar] [CrossRef]
- Ko, Y.S.; Kim, J.W.; Lee, J.A.; Han, T.; Kim, G.B.; Park, J.E.; Lee, S.Y. Tools and Strategies of Systems Metabolic Engineering for the Development of Microbial Cell Factories for Chemical Production. Chem. Soc. Rev. 2020, 49, 4615–4636. [Google Scholar] [CrossRef]
- Riley, L.A.; Guss, A.M. Approaches to Genetic Tool Development for Rapid Domestication of Non-Model Microorganisms. Biotechnol. Biofuels 2021, 14, 1–17. [Google Scholar] [CrossRef]
- Fatma, Z.; Schultz, J.C.; Zhao, H. Recent Advances in Domesticating Non-Model Microorganisms. Biotechnol. Prog. 2020, 36, e3008. [Google Scholar] [CrossRef]
- Moore, S.J.; MacDonald, J.T.; Wienecke, S.; Ishwarbhai, A.; Tsipa, A.; Aw, R.; Kylilis, N.; Bell, D.J.; McClymont, D.W.; Jensen, K.; et al. Rapid Acquisition and Model-Based Analysis of Cell-Free Transcription–Translation Reactions from Non-Model Bacteria. Proc. Natl. Acad. Sci. USA 2018, 115, E4340–E4349. [Google Scholar] [CrossRef] [Green Version]
- Yan, Q.; Fong, S.S. Challenges and Advances for Genetic Engineering of Non-Model Bacteria and Uses in Consolidated Bioprocessing. Front. Microbiol. 2017, 8, 2060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnamurthy, M.; Moore, R.T.; Rajamani, S.; Rekha, G.P. Bacterial Genome Engineering and Synthetic Biology: Combating Pathogens. BMC Microbiol. 2016, 16, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cobb, R.E.; Wang, Y.; Zhao, H. High-Efficiency Multiplex Genome Editing of Streptomyces Species Using an Engineered CRISPR/Cas System. ACS Synth. Biol. 2015, 4, 723–728. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhang, Z.T.; Seo, S.O.; Lynn, P.; Lu, T.; Jin, Y.S.; Blaschek, H.P. Bacterial Genome Editing with CRISPR-Cas9: Deletion, Integration, Single Nucleotide Modification, and Desirable “Clean” Mutant Selection in Clostridium Beijerinckii as an Example. ACS Synth. Biol. 2016, 5, 721–732. [Google Scholar] [CrossRef] [PubMed]
- Yang, P.; Wang, J.; Qi, Q. Prophage Recombinases-Mediated Genome Engineering in Lactobacillus Plantarum. Microb. Cell Factories 2015, 14, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muras, A.; Romero, M.; Mayer, C.; Otero, A. Biotechnological Applications of Bacillus Licheniformis. Crit. Rev. Biotechnol. 2021, 41, 609–627. [Google Scholar] [CrossRef]
- Shi, T.; Gao, J.; Wang, W.; Wang, K.; Xu, G.; Huang, H.; Ji, X. CRISPR/Cas9-Based Genome-Editing in the Filamentous Fungus Fusarium Fujikuroi and Its Application in Strain Engineering for Gibberellic Acid Production. ACS Synth. Biol. 2019, 8, 445–454. [Google Scholar] [CrossRef]
- Rico, E.; Jeacock, L.; Kovářová, J.; Horn, D. Inducible High-Efficiency CRISPR-Cas9-Targeted Gene Editing and Precision Base Editing in African Trypanosomes. Sci Rep. 2018, 8, 7960. [Google Scholar] [CrossRef] [Green Version]
- Vergnes, B.; Gazanion, E.; Mariac, C.; Du Manoir, M.; Sollelis, L.; Lopez-Rubio, J.J.; Sterkers, Y.; Bañuls, A.L. A Single Amino Acid Substitution (H451Y) In Leishmania Calcium-Dependent Kinase SCAMK Confers High Tolerance and Resistance to Antimony. J. Antimicrob. Chemother. 2019, 74, 3231–3239. [Google Scholar] [CrossRef]
- LaFountaine, J.S.; Fathe, K.; Smyth, H.D. Delivery and Therapeutic Applications of Gene Editing Technologies ZFNs, TALENs, and CRISPR/Cas9. Int. J. Pharm. 2015, 494, 180–194. [Google Scholar] [CrossRef]
- Xu, T.; Li, Y.; Shi, Z.; Hemme, C.L.; Li, Y.; Zhu, Y.; van Nostrand, J.D.; He, Z.; Zhou, J. Efficient Genome Editing in Clostridium Cellulolyticum via CRISPR-Cas9 Nickase. Appl. Environ. Microbiol. 2015, 81, 4423–4431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cui, L.; Bikard, D. Consequences of Cas9 Cleavage in the Chromosome of Escherichia Coli. Nucleic Acids Res. 2016, 44, 4243–4251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Symington, L.S.; Gautier, J. Double-Strand Break End Resection and Repair Pathway Choice. Annu. Rev. Genet. 2011, 45, 247–271. [Google Scholar] [CrossRef] [PubMed]
- Hsu, P.D.; Lander, E.S.; Zhang, F. Development and Applications of CRISPR-Cas9 for Genome Engineering. Cell 2014, 157, 1262–1278. [Google Scholar] [CrossRef] [Green Version]
- van Kessel, J.C.; Hatfull, G.F. Recombineering in Mycobacterium Tuberculosis. Nat. Methods 2007, 4, 147–152. [Google Scholar] [CrossRef]
- Bae, S.J.; Park, B.G.; Kim, B.G.; Hahn, J.S. Multiplex Gene Disruption by Targeted Base Editing of Yarrowia Lipolytica Genome Using Cytidine Deaminase Combined with the CRISPR/Cas9 System. Biotechnol. J. 2020, 15, e1900238. [Google Scholar] [CrossRef]
- Anzalone, A.V.; Koblan, L.W.; Liu, D.R. Genome Editing with CRISPR–Cas Nucleases, Base Editors, Transposases and Prime Editors. Nat. Biotechnol. 2020, 38, 824–844. [Google Scholar] [CrossRef]
- Chen, X.; Janssen, J.M.; Liu, J.; Maggio, I.; ‘t Jong, A.E.; Mikkers, H.M.; Gonçalves, M.A. In Trans Paired Nicking Triggers Seamless Genome Editing without Double-Stranded DNA Cutting. Nat. Commun. 2017, 8, 1–15. [Google Scholar] [CrossRef]
- Jiang, F.; Doudna, J.A. CRISPR–Cas9 Structures and Mechanisms. Annu. Rev. Biophys. 2017, 46, 505–529. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Liu, Y.; Zheng, P.; Sun, J.; Wang, M. Microbial Base Editing: A Powerful Emerging Technology for Microbial Genome Engineering. Trends Biotechnol. 2021, 39, 165–180. [Google Scholar] [CrossRef]
- Jiang, Z.; Hong, X.; Zhang, S.; Yao, R.; Xiao, Y.I. CRISPR Base Editing and Prime Editing: DSB and Template-Free Editing Systems for Bacteria and Plants. Synth. Syst. Biotechnol. 2020, 5, 277–292. [Google Scholar] [CrossRef]
- Arazoe, T.; Kondo, A.; Nishida, K. Targeted Nucleotide Editing Technologies for Microbial Metabolic Engineering. Biotechnol. J. 2018, 13, e1700596. [Google Scholar] [CrossRef] [PubMed]
- Nishida, K.; Arazoe, T.; Yachie, N.; Banno, S.; Kakimoto, M.; Tabata, M.; Mochizuki, M.; Miyabe, A.; Araki, M.; Hara, K.Y.; et al. Targeted Nucleotide Editing Using Hybrid Prokaryotic and Vertebrate Adaptive Immune Systems. Science 2016, 353, aaf8729. [Google Scholar] [CrossRef] [PubMed]
- Tan, J.; Zhang, F.; Karcher, D.; Bock, R. Engineering of High-Precision Base Editors for Site-Specific Single Nucleotide Replacement. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef]
- Tan, J.; Zhang, F.; Karcher, D.; Bock, R. Expanding the Genome-Targeting Scope and the Site Selectivity of High-Precision Base Editors. Nat. Commun. 2020, 11, 1–11. [Google Scholar] [CrossRef]
- Banno, S.; Nishida, K.; Arazoe, T.; Mitsunobu, H.; Kondo, A. Deaminase-Mediated Multiplex Genome Editing in Escherichia Coli. Nat. Microbiol. 2018, 3, 423–429. [Google Scholar] [CrossRef]
- Zheng, K.; Wang, Y.; Li, N.; Jiang, F.; Wu, C.; Liu, F.; Chen, H.; Liu, Z. Highly Efficient Base Editing in Bacteria Using a Cas9-Cytidine Deaminase Fusion. Commun. Biol. 2018, 1, 32. [Google Scholar] [CrossRef]
- Xin, X.; Li, J.; Zhao, D.; Li, S.; Xie, Q.; Li, Z.; Fan, F.; Bi, C.; Zhang, X. Double-Check Base Editing for Efficient A to G Conversions. ACS Synth. Biol. 2019, 8, 2629–2634. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Liu, J.; Guo, Y.; Fan, L.; Ni, X.; Zheng, X.; Wang, M.; Zheng, P.; Sun, J.; et al. MACBETH: Multiplex Automated Corynebacterium Glutamicum Base Editing Method. Metab. Eng. 2018, 47, 200–210. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Li, J.; Yang, Y.; Ni, X.; Cheng, H.; Huang, T.; Guo, Y.; Ma, H.; Zheng, P.; et al. Expanding Targeting Scope, Editing Window, and Base Transition Capability of Base Editing in Corynebbacterium Glutamicum. Biotechnol. Bioeng. 2019, 116, 3016–3029. [Google Scholar] [CrossRef]
- Huang, H.; Bai, L.; Liu, Y.; Li, J.; Wang, M.; Hua, E. Development and Application of BE3 Cytidine Base Editor in Corynebacterium Glutamicum. Biotechnol. Bull. 2020, 36, 95–101. [Google Scholar] [CrossRef]
- Huang, L.; Dong, H.; Zheng, J.; Wang, B.; Pan, L. Highly Efficient Single Base Editing in Aspergillus Niger with CRISPR/Cas9 Cytidine Deaminase Fusion. Microbiol. Res. 2019, 223, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, Y.; Zhang, Y.; Pi, Y.; Gu, T.; Song, L.; Wang, Y.; Ji, Q. CRISPR/Cas9-Based Genome Editing in Pseudomonas Aeruginosa and Cytidine Deaminase-Mediated Base Editing in Pseudomonas Species. IScience 2018, 6, 222–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, Y.; Whitford, C.M.; Robertsen, H.L.; Blin, K.; Jørgensen, T.S.; Klitgaard, A.K.; Gren, T.; Jiang, X.; Weber, T.; Lee, S.Y. Highly Efficient DSB-Free Base Editing for Streptomycetes with CRISPR-BEST. Proc. Natl. Acad. Sci. USA 2019, 116, 20366–20375. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Z.; Guo, J.; Deng, L.; Chen, L.; Wang, J.; Li, S.; Xu, W.; Deng, Z.; Sun, Y. Base Editing in Streptomyces with Cas9-Deaminase Fusions. BioRxiv 2019, 630137. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Tian, J.; Zheng, G.; Chen, J.; Sun, C.; Yang, Z.; Zimin, A.A.; Jiang, W.; Deng, Z.; Wang, Z.; et al. Multiplex Genome Editing Using a dCas9-Cytidine Deaminase Fusion in Streptomyces. Sci. China Life Sci. 2020, 63, 1053–1062. [Google Scholar] [CrossRef]
- Li, Q.; Seys, F.M.; Minton, N.P.; Yang, J.; Jiang, Y.; Jiang, W.; Yang, S. CRISPR–Cas9D10A Nickase-Assisted Base Editing in the Solvent Producer Clostridium Beijerinckii. Biotechnol. Bioeng. 2019, 116, 1475–1483. [Google Scholar] [CrossRef]
- Luo, Y.; Ge, M.; Wang, B.; Sun, C.; Wang, J.; Dong, Y.; Xi, J.J. CRISPR/Cas9-Deaminase Enables Robust Base Editing in Rhodobacter Sphaeroides 2.4.1. Microb. Cell Factories 2020, 19, 1–14. [Google Scholar] [CrossRef]
- Cheng, L.; Min, D.; He, R.L.; Cheng, Z.H.; Liu, D.F.; Yu, H.Q. Developing a Base-Editing System to Expand the Carbon Source Utilization Spectra of Shewanella Oneidensis MR-1 for Enhanced Pollutant Degradation. Biotechnol. Bioeng. 2020, 117, 2389–2400. [Google Scholar] [CrossRef]
- Yang, B.; Yang, L.; Chen, J. Development and Application of Base Editors. CRISPR J. 2019, 2, 91–104. [Google Scholar] [CrossRef]
- Park, S.; Beal, P.A. Off-Target Editing by CRISPR-Guided DNA Base Editors. Biochemistry 2019, 58, 3727–3734. [Google Scholar] [CrossRef] [PubMed]
- Eid, A.; Alshareef, S.; Mahfouz, M.M. CRISPR Base Editors: Genome Editing without Double-Stranded Breaks. Biochem. J. 2018, 475, 1955–1964. [Google Scholar] [CrossRef] [PubMed]
- Li, A.; Mitsunobu, H.; Yoshioka, S.; Takahisa, S.; Kondo, A.; Nishida, K. Cytosine Base Editing Systems with Minimized Off-Target Effect and Molecular Size. Res. Sq. 2021. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y.; Liu, Q.; Qiu, Y.; Zhong, Z.; Li, K.; Li, W.; Deng, Z.; Sun, Y. Improving the Precision of Base Editing by Bubble Hairpin Single Guide RNA. Mbio 2021, 12, e00342–e00421. [Google Scholar] [CrossRef]
- Yu, S.; Price, M.A.; Wang, Y.; Liu, Y.; Guo, Y.; Ni, X.; Rosser, S.J.; Bi, C.; Wang, M. CRISPR-dCas9 Mediated Cytosine Deaminase Base Editing in Bacillus Subtilis. ACS Synth. Biol. 2020, 9, 1781–1789. [Google Scholar] [CrossRef]
- Kim, M.S.; Kim, H.R.; Jeong, D.E.; Choi, S.K. Cytosine Base Editor-Mediated Multiplex Genome Editing to Accelerate Discovery of Novel Antibiotics in Bacillus Subtilis and Paenibacillus Polymyxa. Front. Microbiol. 2021, 12, 691839. [Google Scholar] [CrossRef]
- Hao, W.; Cui, W.; Cheng, Z.; Han, L.; Suo, F.; Liu, Z.; Zhou, L.; Zhou, Z. Development of a Base Editor for Protein Evolution via in Situ Mutation in Vivo. Nucleic Acids Res. 2021, 49, 9594–9605. [Google Scholar] [CrossRef]
- Tong, Y.; Jørgensen, T.S.; Whitford, C.M.; Weber, T.; Lee, S.Y. A Versatile Genetic Engineering Toolkit for E. Coli Based on CRISPR-Prime Editing. Nat. Commun. 2021, 12, 1–11. [Google Scholar] [CrossRef]
- Habib, O.; Habib, G.; Hwang, G.H.; Bae, S. Comprehensive Analysis of Prime Editing Outcomes in Human Embryonic Stem Cells. BioRxiv 2021, 50, 1187–1197. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, S.; Chen, W.; Song, L.; Zhang, Y.; Shen, Z.; Yu, F.; Li, M.; Ji, Q. CRISPR-Cas9 and CRISPR-Assisted Cytidine Deaminase Enable Precise and Efficient Genome Editing in Klebsiella Pneumoniae. Appl. Environ. Microbiol. 2018, 84, e01834-18. [Google Scholar] [CrossRef] [Green Version]
- Koblan, L.W.; Doman, J.L.; Wilson, C.; Levy, J.M.; Tay, T.; Newby, G.A.; Maianti, J.P.; Raguram, A.; Liu, D.R. Improving Cytidine and Adenine Base Editors by Expression Optimization and Ancestral Reconstruction. Nat. Biotechnol. 2018, 36, 843–846. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Li, J.; Li, S.; Xin, X.; Hu, M.; Price, M.A.; Rosser, S.J.; Bi, C.; Zhang, X. Glycosylase Base Editors Enable C-to-A and C-to-G Base Changes. Nat. Biotechnol. 2021, 39, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Jiang, G.; Wang, J.; Zhao, D.; Chen, X.; Pu, S.; Zhang, C.; Li, J.; Li, Y.; Yang, J.; Li, S.; et al. Molecular Mechanism of the Cytosine CRISPR Base Editing Process and the Roles of Translesion DNA Polymerases. ACS Synth. Biol. 2021, 10, 3353–3358. [Google Scholar] [CrossRef]
- Sale, J.E. Translesion DNA Synthesis and Mutagenesis in Eukaryotes. Cold Spring Harb. Perspect. Biol. 2013, 5, a012708. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Park, J.E.; Paa, P.; Rajakumar, P.D.; Prekop, H.T.; Chew, Y.T.; Manivannan, S.N.; Chew, W.L. Programmable C: G to G: C Genome Editing with CRISPR-Cas9-Directed Base Excision Repair Proteins. Nat. Commun. 2021, 12, 1–7. [Google Scholar] [CrossRef]
- Koblan, L.W.; Arbab, M.; Shen, M.W.; Hussmann, J.A.; Anzalone, A.V.; Doman, J.L.; Newby, G.A.; Yang, D.; Mok, B.; Replogle, J.M.; et al. Efficient C•G-to-G•C Base Editors Developed Using CRISPRi Screens, Target-Library Analysis, and Machine Learning. Nat. Biotechnol 2021, 39, 1414–1425. [Google Scholar] [CrossRef]
- Chen, S.; Liu, Z.; Lai, L.; Li, Z. Efficient C-to-G Base Editing with Improved Target Compatibility Using Engineered Deaminase-nCas9 Fusions. CRISPR J. 2022. [Google Scholar] [CrossRef]
- Doman, J.L.; Raguram, A.; Newby, G.A.; Liu, D.R. Evaluation and Minimization of Cas9-Independent Off-Target DNA Editing by Cytosine Base Editors. Nat. Biotechnol. 2020, 38, 620–628. [Google Scholar] [CrossRef]
- Nambu-Nishida, Y.; Nishida, K.; Hasunuma, T.; Kondo, A. Development of a Comprehensive Set of Tools for Genome Engineering in a Cold- And Thermo-Tolerant Kluyveromyces Marxianus Yeast Strain. Sci Rep. 2017, 7, 8993. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Lu, L.B.; Liang, T.X.; Yang, L.R.; Wu, J.P. CRISPR-Assisted Multiplex Base Editing System in Pseudomonas Putida KT2440. Front. Bioeng. Biotechnol. 2020, 8, 905. [Google Scholar] [CrossRef]
- Zhang, Y.; Yun, K.; Huang, H.; Tu, R.; Hua, E.; Wang, M. Antisense RNA Interference-Enhanced CRISPR/Cas9 Base Editing Method for Improving Base Editing Efficiency in Streptomyces lividans 66. ACS Synth. Biol. 2021, 10, 1053–1063. [Google Scholar] [CrossRef] [PubMed]
- Xia, P.F.; Casini, I.; Schulz, S.; Klask, C.M.; Angenent, L.T.; Molitor, B. Reprogramming Acetogenic Bacteria with CRISPR-Targeted Base Editing via Deamination. ACS Synth. Biol. 2020, 9, 2162–2171. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yi, Y.; Lü, X. CRISPR/Cas9-Based Genome Editing Platform for Companilactobacillus Crustorum to Reveal the Molecular Mechanism of Its Probiotic Properties. J. Agric. Food Chem. 2021, 69, 15279–15289. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, S.D.; Karimi, M.; Impens, L.; van Lerberge, E.; Coussens, G.; Aesaert, S.; Rombaut, D.; Holtappels, D.; Ibrahim, H.M.M.; Montagu, M.V.; et al. Efficient CRISPR-Mediated Base Editing in Agrobacterium Spp. Proc. Natl. Acad. Sci. USA 2021, 118, e2013338118. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Xiao, Y.; Wei, X.; Pan, J.; Duanmu, D. Highly Efficient CRISPR-Mediated Base Editing in Sinorhizobium meliloti. Front. Microbiol. 2021, 12, 686008. [Google Scholar] [CrossRef] [PubMed]
- Gu, T.; Zhao, S.; Pi, Y.; Chen, W.; Chen, C.; Liu, Q.; Li, M.; Han, D.; Ji, Q. Highly Efficient Base Editing in Staphylococcus Aureus Using an Engineered CRISPR RNA-Guided Cytidine Deaminase. Chem Sci 2018, 9, 3248–3253. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, H.; Wang, Z.; Wu, Z.; Wang, Y.; Tang, N.; Xu, X.; Zhao, S.; Chen, W.; Ji, Q. Programmable Adenine Deamination in Bacteria Using a Cas9–Adenine-Deaminase Fusion. Chem. Sci. 2020, 11, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, Z.; Chen, Y.; Hua, X.; Yu, Y.; Ji, Q. A highly Efficient CRISPR-Cas9-Based Genome Engineering Platform in Acinetobacter Baumannii to Understand the H2O2-Sensing Mechanism of OxyR. Cell Chem. Biol. 2019, 26, 1732–1742. [Google Scholar] [CrossRef] [Green Version]
- Ji, Q.; Zhang, H.; Zhang, Y.; Wang, W.; Chen, W.; Zhang, X.; Huang, X.; Chen, W. PAM-Expanded Streptococcus Thermophilus Cas9 C-to-T and C-to-G Base Editors for Programmable Base Editing in Mycobacteria. ChemRxiv 2021. Available online: https://chemrxiv.org/engage/chemrxiv/article-details/6170f1308acf7e6647c5caaa (accessed on 23 March 2022).
- Ding, X.Y.; Li, S.S.; Geng, Y.M.; Yan, M.Y.; Li, G.B.; Zhang, G.L.; Sun, Y.C. Programmable Base Editing in Mycobacterium tuberculosis Using an Engineered CRISPR RNA-Guided Cytidine Deaminase. Front. Genome Ed. 2021, 3, 734436. [Google Scholar] [CrossRef]
- Nurcholis, M.; Lertwattanasakul, N.; Rodrussamee, N.; Kosaka, T.; Murata, M.; Yamada, M. Integration of Comprehensive Data and Biotechnological Tools for Industrial Applications of Kluyveromyces Marxianus. Appl. Microbiol. Biotechnol. 2020, 104, 475–488. [Google Scholar] [CrossRef]
- Wasi, S.; Tabrez, S.; Ahmad, M. Use of Pseudomonas Spp. for the Bioremediation of Environmental Pollutants: A Review. Environ. Monit. Assess. 2013, 185, 8147–8155. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cui, J.; Bilal, M.; Hu, H.; Wang, W.; Zhang, X. Pseudomonas spp. as cell factories (MCFs) for value-added products: From rational design to industrial applications. Crit. Rev. Biotechnol. 2020, 40, 1232–1249. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.K. Synthetic Biology Tools for Novel Secondary Metabolite Discovery in Streptomyces. J. Microbiol. Biotechnol. 2019, 29, 667–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Y.; Li, G.; Chen, Y.; Lu, Y. Challenges and Advances in Genome Editing Technologies in Streptomyces. Biomolecules 2020, 10, 734. [Google Scholar] [CrossRef] [PubMed]
- Charubin, K.; Bennett, R.K.; Fast, A.G.; Papoutsakis, E.T. Engineering Clostridium Organisms as Microbial Cell-Factories: Challenges & Opportunities. Metab. Eng. 2018, 50, 173–191. [Google Scholar] [CrossRef]
- Huang, H.; Chai, C.; Li, N.; Rowe, P.; Minton, N.P.; Yang, S.; Jiang, W.; Gu, Y. CRISPR/Cas9-Based Efficient Genome Editing in Clostridium Ljungdahlii, an Autotrophic Gas-Fermenting Bacterium. ACS Synth. Biol. 2016, 5, 1355–1361. [Google Scholar] [CrossRef]
- Joseph, R.C.; Kim, N.M.; Sandoval, N.R. Recent Developments of the Synthetic Biology Toolkit for Clostridium. Front. Microbiol. 2018, 9, 154. [Google Scholar] [CrossRef]
- Humphreys, C.M.; Minton, N.P. Advances in Metabolic Engineering in the Microbial Production of Fuels and Chemicals from C1 Gas. Curr. Opin. Biotechnol. 2018, 50, 174–181. [Google Scholar] [CrossRef]
- Molitor, B.; Kirchner, K.; Henrich, A.W.; Schmitz, S.; Rosenbaum, M.A. Expanding the Molecular Toolkit for the Homoacetogen Clostridium Ljungdahlii. Sci. Rep. 2016, 6, 1–10. [Google Scholar] [CrossRef]
- Yi, L.; Luo, L.; Lü, X. Efficient Exploitation of Multiple Novel Bacteriocins by Combination of Complete Genome and Peptidome. Front. Microbiol. 2018, 9, 1567. [Google Scholar] [CrossRef] [Green Version]
- Chaudhari, S.S.; Gokhale, D.V. Phenyllactic Acid: A Potential Antimicrobial Compound in Lactic Acid Bacteria. J. Bacteriol. Mycol. Open Access 2016, 2, 121–125. [Google Scholar] [CrossRef] [Green Version]
- Grady, E.N.; MacDonald, J.; Liu, L.; Richman, A.; Yuan, Z. Current Knowledge and Perspectives of Paenibacillus: A Review. Microb Cell Fact. 2016, 15, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeong, H.; Choi, S.K.; Ryu, C.M.; Park, S.H. Chronicle of a Soil Bacterium: Paenibacillus polymyxa E681 as a Tiny Guardian of Plant and Human Health. Front. Microbiol 2019, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Hwang, H.H.; Yu, M.; Lai, E.M. Agrobacterium-Mediated Plant Transformation: Biology and Applications. Arab. Book 2017, 15. [Google Scholar] [CrossRef] [Green Version]
- Bharat, S.S.; Li, S.; Li, J.; Yan, L.; Xia, L. Base Editing in Plants: Current Status and Challenges. Crop. J. 2020, 8, 384–395. [Google Scholar] [CrossRef]
- Danilo, B.; Perrot, L.; Mara, K.; Botton, E.; Nogué, F.; Mazier, M. Efficient and Transgene-Free Gene Targeting Using Agrobacterium-Mediated Delivery of the CRISPR/Cas9 System in Tomato. Plant Cell Rep. 2019, 38, 459–462. [Google Scholar] [CrossRef] [PubMed]
- Thompson, M.G.; Moore, W.M.; Hummel, N.F.; Pearson, A.N.; Barnum, C.R.; Scheller, H.V.; Shih, P.M. Agrobacterium tumefaciens: A Bacterium Primed for Synthetic Biology. BioDesign Res. 2020, 2020, 1–16. [Google Scholar] [CrossRef]
- Tie, W.; Zhou, F.; Wang, L.; Xie, W.; Chen, H.; Li, X.; Lin, Y. Reasons for Lower Transformation Efficiency in Indica Rice Using Agrobacterium Tumefaciens-Mediated Transformation: Lessons from Transformation Assays and Genome-Wide Expression Profiling. Plant Mol. Biol. 2012, 78, 1–18. [Google Scholar] [CrossRef]
- Opabode, J.T. Agrobacterium-Mediated Transformation of Plants: Emerging Factors That Influence Efficiency. Biotechnol. Mol. Biol. Rev. 2006, 1, 12–20. [Google Scholar] [CrossRef]
- Galardini, M.; Mengoni, A.; Brilli, M.; Pini, F.; Fioravanti, A.; Lucas, S.; Lapidus, A.; Cheng, J.; Goodwin, L.; Pitluck, S.; et al. Exploring the Symbiotic Pangenome of the Nitrogen-Fixing Bacterium Sinorhizobium Meliloti. BMC Genom. 2011, 12, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rouissi, T.; Mahmoudi, A.; Tyagi, R.D.; Brar, S.K.; Prèvost, D.; Surampalli, R.Y. Optimisation of Spray Drying by Response Surface Methodology for the Production of Sinorhizobium Meliloti Powder Formulation by Using Starch Industry Wastewater. Biosyst. Eng. 2013, 114, 334–343. [Google Scholar] [CrossRef]
- Buntić, A.V.; Milić, M.D.; Stajković-Srbinović, O.S.; Rasulić, N.V.; Delić, D.I.; Mihajlovski, K.R. Cellulase Production by Sinorhizobium Meliloti Strain 224 Using Waste Tobacco as Substrate. Int. J. Environ. Sci. Technol. 2019, 16, 5881–5890. [Google Scholar] [CrossRef]
- Cai, Y.; Xia, M.; Dong, H.; Qian, Y.; Zhang, T.; Zhu, B.; Wu, J.; Zhang, D. Engineering a vitamin B 12 High-Throughput Screening System by Riboswitch Sensor in Sinorhizobium Meliloti. BMC Biotechnol. 2018, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Döhlemann, J.; Brennecke, M.; Becker, A. Cloning-Free Genome Engineering in Sinorhizobium Meliloti Advances Applications of Cre/loxP Site-Specific Recombination. J. Biotechnol. 2016, 233, 160–170. [Google Scholar] [CrossRef]
- Nguyen, L. Antibiotic Resistance Mechanisms in M. Tuberculosis: An Update. Arch. Toxicol. 2016, 90, 1585–1604. [Google Scholar] [CrossRef] [Green Version]
- McCarty, N.S.; Graham, A.E.; Studená, L.; Ladesma-Amaro, R. Multiplexed CRISPR Technologies for Gene Editing and Transcriptional Regulation. Nat. Commun 2020, 11, 1281. [Google Scholar] [CrossRef]
- Naeem, M.; Majeed, S.; Hoque, M.Z.; Ahmad, I. Latest Developed Strategies to Minimize the Off-Target Effects in CRISPR-Cas-Mediated Genome Editing. Cells 2020, 9, 1608. [Google Scholar] [CrossRef]
- Pallaseni, A.; Peets, E.M.; Koeppel, J.; Weller, J.; Crepaldi, L.; Allen, F.; Parts, L. Predicting Base Editing Outcomes Using Position-Specific Sequence Determinants. BioRxiv 2021. [Google Scholar] [CrossRef]
- Arbab, M.; Shen, M.W.; Mok, B.; Wilson, C.; Matuszek, Ż.; Cassa, C.A.; Liu, D.R. Determinants of Base Editing Outcomes from Target Library Analysis and Machine Learning. Cell 2020, 182, 463–480. [Google Scholar] [CrossRef]
- Marquart, K.F.; Allam, A.; Janjuha, S.; Sintsova, A.; Villiger, L.; Frey, N.; Krauthammer, M.; Schwank, G. Predicting Base Editing Outcomes with an Attention-Based Deep Learning Algorithm Trained on High-Throughput Target Library Screens. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Misra, C.S.; Bindal, G.; Sodani, M.; Wadhawan, S.; Kulkarni, S.; Gautam, S.; Mukhopadhyaya, R.; Rath, D. Determination of Cas9/dCas9 Associated Toxicity in Microbes. BioRxiv 2019, 848135. [Google Scholar] [CrossRef] [Green Version]
- Ye, S.; Enghiad, B.; Zhao, H.; Takano, E. Fine-Tuning the Regulation of Cas9 Expression Levels for Efficient CRISPR-Cas9 Mediated Recombination in Streptomyces. J. Ind. Microbiol. Biotechnol. 2020, 47, 413–423. [Google Scholar] [CrossRef] [PubMed]
- Shelake, R.M.; Pramanik, D.; Kim, J.Y. In Vivo Rapid Investigation of CRISPR-Based Base Editing Components in Escherichia coli (IRI-CCE): A Platform for Evaluating Base Editing Tools and Their Components. Int. J. Mol. Sci. 2022, 23, 1145. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Cheng, H.; Liu, Y.; Liu, Y.; Wen, X.; Zhang, K.; Ni, X.; Gao, N.; Fan, L.; Zhang, Z.; et al. In-Situ Generation of Large Numbers of Genetic Combinations for Metabolic Reprogramming via CRISPR-Guided Base Editing. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lin, Y.; Guo, Y.; Wu, F.; Zhang, Y.; Qi, X.; Wang, Z.; Wang, Q. Stress Tolerance Enhancement via SPT15 Base Editing in Saccharomyces cerevisiae. Biotechnol. Biofuels 2021, 14, 1–18. [Google Scholar] [CrossRef]
- Álvarez, B.; Mencía, M.; de Lorenzo, V.; Fernández, L.Á. In Vivo Diversification of Target Genomic Sites Using Processive Base Deaminase Fusions Blocked by dCas9. Nat. Commun. 2020, 11, 1–14. [Google Scholar] [CrossRef]
- Cravens, A.; Jamil, O.K.; Kong, D.; Sockolosky, J.T.; Smolke, C.D. Polymerase-Guided Base Editing Enables In Vivo Mutagenesis and Rapid Protein Engineering. Nat. Commun. 2021, 12, 1–12. [Google Scholar] [CrossRef]
- Pan, Y.; Xia, S.; Dong, C.; Pan, H.; Cai, J.; Huang, L.; Xu, Z.; Lian, J. Random Base Editing for Genome Evolution in Saccharomyces Cerevisiae. ACS Synth. Biol. 2021, 10, 2440–2446. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Huo, Y.-X.; Guo, S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. Biology 2022, 11, 571. https://doi.org/10.3390/biology11040571
Li M, Huo Y-X, Guo S. CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. Biology. 2022; 11(4):571. https://doi.org/10.3390/biology11040571
Chicago/Turabian StyleLi, Mengyuan, Yi-Xin Huo, and Shuyuan Guo. 2022. "CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes" Biology 11, no. 4: 571. https://doi.org/10.3390/biology11040571
APA StyleLi, M., Huo, Y. -X., & Guo, S. (2022). CRISPR-Mediated Base Editing: From Precise Point Mutation to Genome-Wide Engineering in Nonmodel Microbes. Biology, 11(4), 571. https://doi.org/10.3390/biology11040571