Default-Mode Network Connectivity Changes Correlate with Attention Deficits in ALL Long-Term Survivors Treated with Radio- and/or Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Clinical and Neurocognitive Evaluation
- The Wechsler Adult Intelligence Scale Revised (WAIS-R) for patients older than 16 years and the Wechsler Intelligence Scale for Children (WISC-IV) for patients below 16 years of age, for cognitive evaluation [23,24]. We considered only the scores common to both scales: total intelligence quotient (TIQ; mean = 100, SD = 15); digit span, digit symbol/coding, block design, vocabulary, comprehension, similarities (mean = 10, SD = 3 for all). Standard scores < 1 SD are considered at the low limits of the norm.
- D2-R Test of Attention (d2-R) [25]. It assesses selective and sustained attention and visual scanning speed through three parameters: processing speed, processing accuracy, and error rate. Standard scores ≤ 94 are considered at the low limits of the norm.
- Wisconsin Card Sorting Test (WCST) [26]. It measures working memory, problem-solving strategies, and frontal lobe damage. We considered total errors, perseverative answers, perseverative errors, and non-perseverative errors. T-Scores ≤ 44 are considered at the low limits of the norm.
2.3. MRI Data Acquisition
2.4. MRI Data Analysis
2.5. Statistical Analysis
3. Results
3.1. Neuropsychological Scores
3.1.1. Wechsler Scale
3.1.2. D2-R Test of Attention
3.1.3. Wisconsin Card Sorting Test
3.2. VBM
3.3. RS-fMRI
3.3.1. Between-Group FC Differences
3.3.2. Correlations between FC and Neurocognitive Tests
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yi, M.; Zhou, L.; Li, A.; Luo, S.; Wu, K. Global burden and trend of acute lymphoblastic leukemia from 1990 to 2017. Aging (Albany NY) 2020, 12, 22869. [Google Scholar] [CrossRef] [PubMed]
- Paul, S.; Kantarjian, H.; Jabbour, E.J. Adult Acute Lymphoblastic Leukemia. Mayo Clin. Proc. 2016, 91, 1645–1666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clarke, M.; Gaynon, P.; Hann, I.; Harrison, G.; Masera, G.; Peto, R.; Richards, S. CNS-directed therapy for childhood acute lymphoblastic leukemia: Childhood ALL Collaborative Group overview of 43 randomized trials. J. Clin. Oncol. 2003, 21, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wen, Y.; Jin, R.; Chen, H. New attempts for central nervous infiltration of pediatric acute lymphoblastic leukemia. Cancer Metastasis Rev. 2019, 38, 657–671. [Google Scholar] [CrossRef] [PubMed]
- Hudson, M.M.; Mertens, A.C.; Yasui, Y.; Hobbie, W.; Chen, H.; Gurney, J.G.; Yeazel, M.; Recklitis, C.J.; Marina, N.; Robison, L.R.; et al. Health Status of Adult Long-term Survivors of Childhood Cancer: A Report from the Childhood Cancer Survivor Study. J. Am. Med. Assoc. 2003, 290, 1583–1592. [Google Scholar] [CrossRef] [Green Version]
- Mertens, A.C.; Yasui, Y.; Neglia, J.P.; Potter, J.D.; Nesbit, J.; Ruccione, K.; Smithson, W.A.; Robison, L.L. Late mortality experience in five-year survivors of childhood and adolescent cancer: The Childhood Cancer Survivor Study. J. Clin. Oncol. 2001, 19, 3163–3172. [Google Scholar] [CrossRef]
- Krull, K.R.; Zhang, N.; Santucci, A.; Srivastava, D.K.; Krasin, M.J.; Kun, L.E.; Pui, C.H.; Robison, L.L.; Hudson, M.M.; Armstrong, G.T. Long-term decline in intelligence among adult survivors of childhood acute lymphoblastic leukemia treated with cranial radiation. Blood 2013, 122, 550–553. [Google Scholar] [CrossRef] [Green Version]
- Mitby, P.A.; Robison, L.L.; Whitton, J.A.; Zevon, M.A.; Gibbs, I.C.; Tersak, J.M.; Meadows, A.T.; Stovall, M.; Zeltzer, L.K.; Mertens, A.C. Utilization of special education services and educational attainment among long-term survivors of childhood cancer: A report from the childhood cancer survivor study. Cancer 2003, 97, 1115–1126. [Google Scholar] [CrossRef] [PubMed]
- Krull, K.R.; Hardy, K.K.; Kahalley, L.S.; Schuitema, I.; Kesler, S.R. Neurocognitive outcomes and interventions in long-term survivors of childhood cancer. J. Clin. Oncol. 2018, 36, 2181–2189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reddick, W.E.; Taghipour, D.J.; Glass, J.O.; Ashford, J.; Xiong, X.; Wu, S.; Bonner, M.; Khan, R.B.; Conklin, H.M. Prognostic factors that increase the risk for reduced white matter volumes and deficits in attention and learning for survivors of childhood cancers. Pediatr. Blood Cancer 2014, 61, 1074–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahles, T.A.; Saykin, A.J. Candidate mechanisms for chemotherapy-induced cognitive changes. Nat. Rev. Cancer 2007, 7, 192–201. [Google Scholar] [CrossRef] [PubMed]
- Van Der Plas, E.; Qiu, W.; Nieman, B.J.; Yasui, Y.; Liu, Q.; DIxon, S.B.; Kadan-Lottick, N.S.; Weldon, C.B.; Weil, B.R.; Jacola, L.M.; et al. Sex-Specific Associations between Chemotherapy, Chronic Conditions, and Neurocognitive Impairment in Acute Lymphoblastic Leukemia Survivors: A Report from the Childhood Cancer Survivor Study. J. Natl. Cancer Inst. 2021, 113, 588–596. [Google Scholar] [CrossRef] [PubMed]
- Peterson, C.C.; Johnson, C.E.; Ramirez, L.Y.; Huestis, S.; Pai, A.L.H.; Demaree, H.A.; Drotar, D. A meta-analysis of the neuropsychological sequelae of chemotherapy-only treatment for pediatric acute lymphoblastic leukemia. Pediatr. Blood Cancer 2008, 51, 99–104. [Google Scholar] [CrossRef] [PubMed]
- Simó, M.; Rifà-Ros, X.; Rodriguez-Fornells, A.; Bruna, J. Chemobrain: A systematic review of structural and functional neuroimaging studies. Neurosci. Biobehav. Rev. 2013, 37, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Nathan, P.C.; Patel, S.K.; Dilley, K.; Goldsby, R.; Harvey, J.; Jacobsen, C.; Kadan-Lottick, N.; McKinley, K.; Millham, A.K.; Moore, I.; et al. Guidelines for identification of, advocacy for, and intervention in neurocognitive problems in survivors of childhood cancer: A report from the Children’s Oncology Group. Arch. Pediatr. Adolesc. Med. 2007, 161, 798–806. [Google Scholar] [CrossRef] [PubMed]
- van den Heuvel, M.P.; Hulshoff Pol, H.E. Exploring the brain network: A review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 2010, 20, 519–534. [Google Scholar]
- Barkhof, F.; Haller, S.; Rombouts, S.A.R.B. Resting-state functional MR imaging: A new window to the brain. Radiology 2014, 272, 29–49. [Google Scholar] [PubMed]
- Buckner, R.L.; Andrews-Hanna, J.R.; Schacter, D.L. The brain’s default network: Anatomy, function, and relevance to disease. Ann. N. Y. Acad. Sci. 2008, 1124, 1–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fox, M.D.; Snyder, A.Z.; Vincent, J.L.; Corbetta, M.; Van Essen, D.C.; Raichle, M.E. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl. Acad. Sci. USA 2005, 102, 9673–9678. [Google Scholar] [CrossRef] [Green Version]
- Mohan, A.; Roberto, A.J.; Mohan, A.; Lorenzo, A.; Jones, K.; Carney, M.J.; Liogier-Weyback, L.; Hwang, S.; Lapidus, K.A.B. The significance of the Default Mode Network (DMN) in neurological and neuropsychiatric disorders: A review. Yale J. Biol. Med. 2016, 89, 49–57. [Google Scholar] [PubMed]
- Billiet, T.; Elens, I.; Sleurs, C.; Uyttebroeck, A.; D’Hooge, R.; Lemiere, J.; Deprez, S. Brain connectivity and cognitive flexibility in nonirradiated adult survivors of childhood leukemia. J. Natl. Cancer Inst. 2018, 110, 905–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kesler, S.R.; Ogg, R.; Reddick, W.E.; Phillips, N.; Scoggins, M.; Glass, J.O.; Cheung, Y.T.; Pui, C.-H.H.; Robison, L.L.; Hudson, M.M.; et al. Brain Network Connectivity and Executive Function in Long-Term Survivors of Childhood Acute Lymphoblastic Leukemia. Brain Connect. 2018, 8, 333–342. [Google Scholar] [CrossRef] [PubMed]
- Wechsler, D. Wechsler Adult Intelligence Scale–Revised; Psychological Corporation: San Antonio, TX, USA, 1981; Volume 22, 156p. [Google Scholar]
- Wechsler, D. Wechsler Intelligence Scale for Children, Fourth Edition; The Psychological Corporation: San Antonio, TX, USA, 2003. [Google Scholar]
- Brickenkamp, R.; Schmidt-Atzert, L.; Liepmann, D. d2-R: Test d2-Revision: Aufmerksamkeits-und Konzentrationstest; Hogrefe: Göttingen, Germany, 2010. [Google Scholar]
- Heaton, R.K.; Chelune, G.J.; Talley, J.L.; Kay, G.G.; Curtiss, G. Wisconsin Card Sorting Test Manual: Revised and Expanded; Psychological Assessment Resources Inc.: Odessa, FL, USA, 1993. [Google Scholar]
- SPM12. Available online: http://www.fil.ion.ucl.ac.uk/spm/software/spm12 (accessed on 20 December 2020).
- Mazziotta, J.; Toga, A.; Evans, A.; Fox, P.; Lancaster, J.; Zilles, K.; Woods, R.; Paus, T.; Simpson, G.; Pike, B.; et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos. Trans. R. Soc. B Biol. Sci. 2001, 356, 1293–1322. [Google Scholar] [CrossRef]
- Ashburner, J. A fast diffeomorphic image registration algorithm. Neuroimage 2007, 38, 95–113. [Google Scholar] [CrossRef]
- Smith, S.M.; Nichols, T.E. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. Neuroimage 2009, 44, 83–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- CONN. Available online: http://www.nitrc.org/projects/conn (accessed on 17 March 2016).
- van Dijk, K.R.A.; Sabuncu, M.R.; Buckner, R.L. The influence of head motion on intrinsic functional connectivity MRI. Neuroimage 2012, 59, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Power, J.D.; Barnes, K.A.; Snyder, A.Z.; Schlaggar, B.L.; Petersen, S.E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012, 59, 2142–2154. [Google Scholar] [CrossRef] [Green Version]
- Human Connectome Project. Available online: http://www.humanconnectomeproject.org (accessed on 17 January 2020).
- Uddin, L.Q.; Kelly, A.M.C.; Biswal, B.B.; Castellanos, F.X.; Milham, M.P. Functional Connectivity of Default Mode Network Components: Correlation, Anticorrelation, and Causality. Hum. Brain Mapp. 2008, 30, 625–637. [Google Scholar] [CrossRef] [Green Version]
- Fox, M.D.; Corbetta, M.; Snyder, A.Z.; Vincent, J.L.; Raichle, M.E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. USA 2006, 103, 10046–10051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cools, J. Improvements in the survival of children and adolescents with acute lymphoblastic leukemia. Haematologica 2012, 97, 635. [Google Scholar] [CrossRef] [Green Version]
- Inaba, H.; Greaves, M.; Mullighan, C.G. Acute lymphoblastic leukaemia. Lancet 2013, 381, 1943–1955. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; Zhuang, Y.; Lin, X.; Michelson, A.D.; Zhang, A. Changes in neurocognitive function and central nervous system structure in childhood acute lymphoblastic leukaemia survivors after treatment: A meta-analysis. Br. J. Haematol. 2020, 188, 945–961. [Google Scholar] [CrossRef] [PubMed]
- Krull, K.R.; Cheung, Y.T.; Liu, W.; Fellah, S.; Reddick, W.E.; Brinkman, T.M.; Kimberg, C.; Ogg, R.; Srivastava, D.; Pui, C.H.; et al. Chemotherapy pharmacodynamics and neuroimaging and neurocognitive outcomes in long-term survivors of childhood acute lymphoblastic leukemia. J. Clin. Oncol. 2016, 34, 2644–2653. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Genschaft, M.; Huebner, T.; Plessow, F.; Ikonomidou, V.N.; Abolmaali, N.; Krone, F.; Hoffmann, A.; Holfeld, E.; Vorwerk, P.; Kramm, C.; et al. Impact of chemotherapy for childhood leukemia on brain morphology and function. PLoS ONE 2013, 8, e78599. [Google Scholar] [CrossRef] [Green Version]
- van der Plas, E.; Schachar, R.J.; Hitzler, J.; Crosbie, J.; Guger, S.L.; Spiegler, B.J.; Ito, S.; Nieman, B.J. Brain structure, working memory and response inhibition in childhood leukemia survivors. Brain Behav. 2017, 7, e00621. [Google Scholar] [CrossRef] [PubMed]
- Zając-Spychała, O.; Pawlak, M.A.; Karmelita-Katulska, K.; Pilarczyk, J.; Derwich, K.; Wachowiak, J. Long-term brain structural magnetic resonance imaging and cognitive functioning in children treated for acute lymphoblastic leukemia with high-dose methotrexate chemotherapy alone or combined with CNS radiotherapy at reduced total dose to 12 Gy. Neuroradiology 2017, 59, 147–156. [Google Scholar] [CrossRef] [Green Version]
- Phillips, N.S.; Cheung, Y.T.; Glass, J.O.; Scoggins, M.A.; Liu, W.; Ogg, R.J.; Mulrooney, D.A.; Pui, C.H.; Robison, L.L.; Reddick, W.E.; et al. Neuroanatomical abnormalities related to dexamethasone exposure in survivors of childhood acute lymphoblastic leukemia. Pediatr. Blood Cancer 2020, 67, e27968. [Google Scholar] [CrossRef] [PubMed]
- Reddick, W.E.; Shan, Z.Y.; Glass, J.O.; Helton, S.; Xiong, X.; Wu, S.; Bonner, M.J.; Howard, S.C.; Christensen, R.; Khan, R.B.; et al. Smaller white-matter volumes are associated with larger deficits in attention and learning among long-term survivors of acute lymphoblastic leukemia. Cancer 2006, 106, 941–949. [Google Scholar] [CrossRef] [PubMed]
- Gandy, K.; Scoggins, M.A.; Jacola, L.M.; Litten, M.; Reddick, W.E.; Krull, K.R. Structural and Functional Brain Imaging in Long-Term Survivors of Childhood Acute Lymphoblastic Leukemia Treated With Chemotherapy: A Systematic Review. JNCI Cancer Spectr. 2021, 5, pkab069. [Google Scholar] [CrossRef]
- Tamnes, C.K.; Zeller, B.; Amlien, I.K.; Kanellopoulos, A.; Andersson, S.; Due-Tønnessen, P.; Ruud, E.; Walhovd, K.B.; Fjell, A.M. Cortical surface area and thickness in adult survivors of pediatric acute lymphoblastic leukemia. Pediatr. Blood Cancer 2015, 62, 1027–1034. [Google Scholar] [CrossRef] [PubMed]
- Gläscher, J.; Tranel, D.; Paul, L.K.; Rudrauf, D.; Rorden, C.; Hornaday, A.; Grabowski, T.; Damasio, H.; Adolphs, R. Lesion Mapping of Cognitive Abilities Linked to Intelligence. Neuron 2009, 61, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Monje, M.; Thomason, M.E.; Rigolo, L.; Wang, Y.; Waber, D.P.; Sallan, S.E.; Golby, A.J. Functional and structural differences in the hippocampus associated with memory deficits in adult survivors of acute lymphoblastic leukemia. Pediatr. Blood Cancer 2013, 60, 293–300. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leclerc, C.; Saint-Amour, D.; Lavoie, M.E.; Lassonde, M.; Lepore, F. Brain functional reorganization in early blind humans revealed by auditory event-related potentials. Neuroreport 2000, 11, 545–550. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Z.; Zou, D.; Mai, H.; Yuan, X.; Wang, L.; Li, Y.; Liao, J.; Liu, L.; Liu, G.; Zeng, H.; et al. Altered brain function in new onset childhood acute lymphoblastic leukemia before chemotherapy: A resting-state fMRI study. Brain Dev. 2017, 39, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Zou, D.; Wen, F.; Zeng, H.; Mai, H.; Yuan, X.; Wang, L.; Li, Y.; Liu, L.; Liu, S.; Liu, G. Improving brain function of pediatric acute lymphoblastic leukemia patients after induction chemotherapy, a pilot self-contrast study by fractional amplitude of low-frequency fluctuation. J. Clin. Neurosci. 2019, 66, 149–155. [Google Scholar] [CrossRef]
- Eklund, A.; Nichols, T.E.; Knutsson, H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. Proc. Natl. Acad. Sci. USA 2016, 113, 7900–7905. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.J.; Roberson, P.K.; Schell, M.J. The false discovery rate: A key concept in large-scale genetic studies. Cancer Control 2010, 17, 58–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aricò, M.; Valsecchi, M.G.; Rizzari, C.; Barisone, E.; Biondi, A.; Casale, F.; Locatelli, F.; Lo Nigro, L.; Luciani, M.; Messina, C.; et al. Long-term results of the AIEOP-ALL-95 Trial for Childhood Acute Lymphoblastic Leukemia: Insight on the prognostic value of DNA index in the framework of Berlin-Frankfurt-Muenster based chemotherapy. J. Clin. Oncol. 2008, 26, 283–289. [Google Scholar] [CrossRef]
- Möricke, A.; Zimmermann, M.; Valsecchi, M.G.; Stanulla, M.; Biondi, A.; Mann, G.; Locatelli, F.; Cazzaniga, G.; Niggli, F.; Aricò, M.; et al. Dexamethasone vs prednisone in induction treatment of pediatric ALL: Results of the randomized trial AIEOP-BFM ALL 2000. Blood 2016, 127, 2101–2112. [Google Scholar] [CrossRef]
TOT | Group A | Group B | p-Value | |
---|---|---|---|---|
Number | 26 | 13 | 13 | |
Age (years, mean ± SD) | 17.66 ± 3.72 | 17.87 ± 4 04 | 17.44 ± 3.51 | 0.47 # |
Schooling (years, mean ± SD) | 11.66 ± 3.72 | 11.87 ± 4.04 | 11.44 ± 3.51 | 0.49 # |
Sex | 18 M/8 F | 9 M/4 F | 9 M/4 F | 1.00 § |
Hand dominance (right/left) | 25/1 | 13/0 | 12/1 | 1.00 § |
Glasses (yes/no) | 19/7 | 10/3 | 9/4 | 1.00 § |
Age at diagnosis (years, mean ± SD) | 5.02 ± 4.12 | 5.29 ± 4.53 | 4.75 ± 3.83 | 0.15 # |
Off therapy (years, mean ± SD) | 10.67 ± 4.18 | 10.62 ± 4.33 | 10.73 ± 4.20 | 0.67 # |
Therapy protocol (AIEOP 95/AIEOP 00) | 10/16 | 5/8 | 5/8 | 1.00 § |
TOT | Group A | Group B | p-Value | ||
---|---|---|---|---|---|
Total intelligence quotient | mean | 95.23 | 90.62 | 99.85 | 0.097 |
SD | 15.36 | 13.39 | 16.31 | ||
Digit span | mean | 6.31 | 5.08 | 7.54 | 0.023 |
SD | 2.59 | 3.14 | 2.47 | ||
Digit symbol | mean | 7.38 | 5.92 | 8.85 | 0.013 |
SD | 2.94 | 2.22 | 2.91 | ||
Block design | mean | 10.46 | 9.46 | 11.46 | 0.164 |
SD | 3.28 | 3.13 | 3.23 | ||
Vocabulary | mean | 9.85 | 9.69 | 9.85 | 0.874 |
SD | 2.77 | 2.53 | 3.02 | ||
Comprehension | mean | 11.19 | 11.15 | 11.15 | 1.000 |
SD | 2.06 | 2.41 | 1.68 | ||
Similarities | mean | 10.54 | 10.23 | 10.69 | 0.475 |
SD | 2.02 | 1.69 | 2.39 |
TOT | Group A | Group B | p-Value | ||
---|---|---|---|---|---|
Speed of processing | mean | 88.30 | 85.30 | 91.31 | 0.35 |
SD | 13.70 | 13.00 | 14.20 | ||
Processing accuracy | mean | 93.10 | 90.85 | 95.31 | 0.39 |
SD | 12.80 | 13.35 | 12.40 | ||
Error rate (%) | Mean | 99.80 | 98.62 | 101.08 | 0.52 |
SD | 10.60 | 13.19 | 7.47 |
Tot | Group A | Group B | p-Value | ||
---|---|---|---|---|---|
Total number of errors | mean | 51.00 | 49.23 | 52.77 | 0.58 |
SD | 15.20 | 13.10 | 17.40 | ||
Perseverative errors | mean | 53.70 | 51.39 | 56.00 | 0.84 |
SD | 12.60 | 13.37 | 11.10 | ||
Non-perseverative errors | mean | 52.00 | 53.23 | 50.69 | 0.66 |
SD | 18.00 | 18.59 | 18.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazio, F.; Aloj, G.; Pastorino, G.M.G.; Perillo, T.; Russo, C.; Riccio, M.P.; Covelli, E.M.; Parasole, R.; Tedeschi, E.; Ugga, L.; et al. Default-Mode Network Connectivity Changes Correlate with Attention Deficits in ALL Long-Term Survivors Treated with Radio- and/or Chemotherapy. Biology 2022, 11, 499. https://doi.org/10.3390/biology11040499
Mazio F, Aloj G, Pastorino GMG, Perillo T, Russo C, Riccio MP, Covelli EM, Parasole R, Tedeschi E, Ugga L, et al. Default-Mode Network Connectivity Changes Correlate with Attention Deficits in ALL Long-Term Survivors Treated with Radio- and/or Chemotherapy. Biology. 2022; 11(4):499. https://doi.org/10.3390/biology11040499
Chicago/Turabian StyleMazio, Federica, Giuseppina Aloj, Grazia Maria Giovanna Pastorino, Teresa Perillo, Carmela Russo, Maria Pia Riccio, Eugenio Maria Covelli, Rosanna Parasole, Enrico Tedeschi, Lorenzo Ugga, and et al. 2022. "Default-Mode Network Connectivity Changes Correlate with Attention Deficits in ALL Long-Term Survivors Treated with Radio- and/or Chemotherapy" Biology 11, no. 4: 499. https://doi.org/10.3390/biology11040499
APA StyleMazio, F., Aloj, G., Pastorino, G. M. G., Perillo, T., Russo, C., Riccio, M. P., Covelli, E. M., Parasole, R., Tedeschi, E., Ugga, L., D’Amico, A., & Quarantelli, M. (2022). Default-Mode Network Connectivity Changes Correlate with Attention Deficits in ALL Long-Term Survivors Treated with Radio- and/or Chemotherapy. Biology, 11(4), 499. https://doi.org/10.3390/biology11040499