Cranial-Vertebral-Maxillary Morphological Integration in Down Syndrome
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participant Selection
2.2. Radiological Measurements
2.3. Statistical Methodology
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Roizen, N.J.; Patterson, D. Down’s syndrome. Lancet 2003, 361, 1281–1289. [Google Scholar] [CrossRef]
- Al-Biltagi, M.; Kamal, A.; Meakkara, J.J.; Raj, V. Dental problems in Down syndrome children. In Down Syndrome Children—An Update; Bentham Science Publishers: Sharjah, United Arab Emirates, 2015; Volume 1, pp. 419–466. [Google Scholar]
- Roper, R.J.; Reeves, R.H. Understanding the Basis for Down Syndrome Phenotypes. PLoS Genet. 2006, 2, e50. [Google Scholar] [CrossRef] [Green Version]
- Hallgrímsson, B.; Willmore, K.; Hall, B.K. Canalization, developmental stability, and morphological integration in primate limbs. Am. J. Phys. Anthr. 2002, 119, 131–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Polak, M. Developmental Instability: Causes and Consequences; Oxford University Press: New York, NY, USA, 2003. [Google Scholar]
- Willmore, K.E.; Klingenberg, C.P.; Hallgrímsson, B. The relationship between fluctuating asymmetry and environmental variance in Rhesus macaque skulls. Evolution 2005, 59, 898–909. [Google Scholar] [CrossRef] [PubMed]
- Palmer, A.; Strobeck, C. Fluctuating asymmetry: Measurement, analysis, patterns. Annu. Rev. Ecol. Evol. Syst. 1986, 17, 391–421. [Google Scholar] [CrossRef]
- Van Dongen, S. Fluctuating asymmetry and developmental instability in evolutionary biology: Past, present and future. J. Evol. Biol. 2006, 19, 1727–1743. [Google Scholar] [CrossRef] [PubMed]
- Klingenberg, C.P. Morphometric integration and modularity in configurations of landmarks: Tools for evaluating a priori hypotheses. Evol. Dev. 2009, 11, 405–421. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olson, E.C.; Miller, R.L. Morphological Integration; University of Chicago Press: Chicago, IL, USA, 1958. [Google Scholar]
- Willmore, K.E.; Young, N.M.; Richtsmeier, J.T. Phenotypic variability: Its components, measurements and underlying devel-opmental processes. Evol. Biol. 2007, 34, 99–120. [Google Scholar] [CrossRef]
- Waddington, C.H. Canalization of development and the inheritance of acquired characters. Nature 1942, 150, 563–565. [Google Scholar] [CrossRef]
- Debat, V.; Alibert, P.; David, P. Independence between developmental stability and canalisation in the skull of the house mouse. Proc. R. Soc. Lond. B 2000, 267, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Kucera, J.; Dolezalova, V. Prenatal development of malformed fetuses at 28–42 weeks of gestational age (anencephalus, hy-drocephalus, Down’s syndrome, cleft lip and palate and hypospadias). Biol. Neonate 1973, 22, 319–324. [Google Scholar] [CrossRef]
- Jesuino, F.A.S.; Valladares-Neto, J. Craniofacial morphological differences between Down syndrome and maxillary deficiency children. Eur. J. Orthod. 2013, 35, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Dedlow, E.R.; Siddiqi, S.; Fillipps, D.J.; Kelly, M.N.; Nackashi, J.A.; Tuli, S.Y. Symptomatic atlanto-axial instability in an ado-lescent with trisomy 21 (Down’s syndrome). Clin. Pediatr. 2013, 52, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Down Syndrome Medical Interest Group. Cervical Spine Disorders: Craniovertebral Instability. One of a Set Guidelines Drawn up by the Down Syndrome Medical Interest Group (DSMIG UK). 2012. Available online: www.dsmig.org.uk (accessed on 5 October 2021).
- Suri, S.; Tompson, B.D.; Cornfoot, L. Cranial base, maxillary and mandibular morphology in Down syndrome. Angle Orthod. 2010, 80, 861–869. [Google Scholar] [CrossRef] [PubMed]
- Alió, J.; Lorenzo, J.; Iglesias, M.C.; Manso, F.J.; Ramírez, E.M. Longitudinal maxillary growth in Down syndrome patients. Angle Orthod. 2011, 81, 253–259. [Google Scholar] [CrossRef]
- Allareddy, V.; Ching, N.; Macklin, E.A.; Voelz, L.; Weintraub, G.; Davidson, E.; Prock, L.A.; Rosen, D.; Brunn, R.; Skotko, B.G. Craniofacial features as assessed by lateral cephalometric measurements in children with Down syndrome. Prog. Orthod. 2016, 17, 35. [Google Scholar] [CrossRef] [Green Version]
- Moss, M.L.; Young, R.W. A functional approach to craniology. Am. J. Phys. Anthr. 1960, 18, 281–292. [Google Scholar] [CrossRef]
- Moss, M.L. The functional matrix hypothesis revisited. 1. The role of mechanotransduction. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 8–11. [Google Scholar] [CrossRef]
- Moss, M.L. The functional matrix hypothesis revisited. 2. The role of an osseous connected cellular network. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 221–226. [Google Scholar] [CrossRef]
- Moss, M.L. The functional matrix hypothesis revisited. 3. The genomic thesis. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 338–342. [Google Scholar] [CrossRef]
- Moss, M.L. The functional matrix hypothesis revisited. 4. The epigenetic antithesis and the resolving synthesis. Am. J. Orthod. Dentofac. Orthop. 1997, 112, 410–417. [Google Scholar] [CrossRef]
- Pritchard, M.A.; Kola, I. The “gene dosage effect” hypothesis versus the “amplified developmental instability” hypothesis in Down syndrome. J. Neural. Transm. Suppl. 1999, 57, 293–303. [Google Scholar] [PubMed]
- Starbuck, J.M.; Cole, T.M., 3rd; Reeves, R.H.; Richtsmeier, J.T. Trisomy 21 and facial developmental instability. Am. J. Phys. Anthropol. 2013, 151, 49–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, B. Amplified developmental instability in Down’s syndrome. Ann. Hum. Genet. 1975, 38, 429–437. [Google Scholar] [CrossRef]
- Barden, H.S. Fluctuating dental asymmetry: A measure of developmental instability in Down syndrome. Am. J. Phys. Anthr. 1980, 52, 169–173. [Google Scholar] [CrossRef]
- Blum-Hoffmann, E.; Rehder, H.; Langenbeck, U.; Optiz, J.M.; Reynolds, J.F. Skeletal anomalies in trisomy 21 as an example of amplified developmental instability in chromosome disorders: Histological study of the feet of 21 mid-trimester fetuses with trisomy 21. Am. J. Med. Genet. 1988, 29, 155–160. [Google Scholar] [CrossRef]
- Shapiro, B.; Gorlin, R.; Redman, R.; Bruhl, H. The palate and Down´s syndrome. N. Engl. J. Med. 1967, 276, 1460–1463. [Google Scholar] [CrossRef]
- Brugmann, S.; Kim, J.; Helms, J. Looking different: Understanding diversity in facial form. Am. J. Med. Genet. Part A 2006, 140A, 2521–2529. [Google Scholar] [CrossRef]
- Chai, Y.; Maxson, R.E., Jr. Recent advances in craniofacial morphogenesis. Dev. Dyn. 2006, 235, 2353–2375. [Google Scholar] [CrossRef]
- Young, N.M.; Hu, D.; Lainoff, A.J.; Smith, F.; Diaz, R.; Tucker, A.; Trainor, P.; Schneider, R.; Hallgrímsson, B.; Marcucio, R. Embryonic bauplans and the developmental origins of facial diversity and constraint. Development 2014, 141, 1059–1063. [Google Scholar] [CrossRef] [Green Version]
- Roper, R.J.; VanHorn, J.F.; Cain, C.C.; Reeves, R.H. A neural crest deficit in Down syndrome mice is associated with deficient mitotic response to Sonic hedgehog. Mech. Dev. 2009, 126, 212–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, B. Down syndrome—A disruption of homeostasis. Am. J. Med. Genet. 1983, 14, 241–269. [Google Scholar] [CrossRef] [PubMed]
- Cronk, C.E.; Reed, R.B. Canalization of growth in Down syndrome children three months to six years. Hum. Biol. 1981, 53, 383–398. [Google Scholar] [PubMed]
- Dunlap, S.S.; Aziz, M.A.; Rosenbaum, K.N. Comparative anatomical analysis of human trisomies 13, 18, and 21: I. The forelimb. Teratology 1986, 33, 159–186. [Google Scholar] [CrossRef] [PubMed]
- Shapiro, B.L. Development of human autosomal aneuploid phenotypes (with an emphasis on Down syndrome). Acta Zool. Fenn. 1992, 191, 97–105. [Google Scholar]
- Starbuck, J.M.; Cole, T.M., 3rd; Reeves, R.H.; Richtsmeier, J.T. The Influence of trisomy 21 on facial form and variability. Am. J. Med. Genet. A 2017, 173, 2861–2872. [Google Scholar] [CrossRef] [PubMed]
- Matabuena, M.; Diz, P.; Cadarso-Suárez, C.; Diniz-Freitas, M.; Outumuro, M.; Abeleira, M.T.; Limeres, J. Reassessment of fluctuating dental asymmetry in Down syndrome. Sci. Rep. 2017, 7, 16679. [Google Scholar] [CrossRef] [Green Version]
- Starbuck, J.; Reeves, R.H.; Richtsmeier, J. Morphological integration of soft-tissue facial morphology in down syndrome and siblings. Am. J. Phys. Anthr. 2011, 146, 560–568. [Google Scholar] [CrossRef] [Green Version]
- Schulze, R.K. CBCT special issue. Dentomaxillofac. Radiol. 2015, 44, 20140380. [Google Scholar] [CrossRef] [Green Version]
- The American Dental Association Council on Scientific Affairs. The use of cone-beam computed tomography in dentistry: An advisory statement from the American Dental Association Council on Scientific Affairs. J. Am. Dent. Assoc. 2012, 143, 899–902. [Google Scholar]
- Rojas, C.A.; Hayes, A.; Bertozzi, J.C.; Guidi, C.; Martinez, C.R. Evaluation of the C1–C2 Articulation on MDCT in Healthy Children and Young Adults. Am. J. Roentgenol. 2009, 193, 1388–1392. [Google Scholar] [CrossRef] [PubMed]
- Radcliff, K.E.; Ben-Galim, P.; Dreiangel, N.; Martin, S.B.; Reitman, C.A.; Lin, J.N.; Hipp, J.A. Comprehensive computed tomography assessment of the upper cervical anatomy: What is normal? Spine J. 2010, 10, 219–229. [Google Scholar]
- Hinck, V.C.; Hopkins, C.E. Measurement of the atlanto-dental interval in the adult. Am. J. Roentgenol. Radium. Ther. Nucl. Med. 1960, 84, 945–951. [Google Scholar]
- Wackenheim, A. Roentgen Diagnosis of the Craniovertebral Region; Springer: New York, NY, USA, 1974. [Google Scholar]
- McRae, D.L.; Barnum, A.S. Occipitalization of the atlas. Am. J. Roentgenol. Radium. Ther. Nucl. Med. 1953, 70, 23–46. [Google Scholar]
- Chamberlain, W.E. Basilar Impression (Platybasia): A Bizarre De¬velopmental Anomaly of the Occipital Bone and Upper Cervical Spine with Striking and Misleading Neurologic Manifestations. Yale J. Biol. Med. 1939, 11, 487–496. [Google Scholar]
- McGregor, M. The significance of certain measurements of the skull in the diagnosis of basilar impression. Br. J. Radiol. 1948, 21, 171–181. [Google Scholar]
- Redlund-Johnell, I.; Pettersson, H. Radiographic measurements of the cranio-vertebral region, designed for evaluation of abnormalities in rheumatoid arthritis. Acta Radiol. Diagn. 1984, 25, 23–28. [Google Scholar]
- Ranawat, C.S.; O’Leary, P.; Pellicci, P.; Tsairis, P.; Marchisello, P.; Dorr, L. Cervical spine fusion in rheumatoid arthritis. J. Bone Joint Surg. Am. 1979, 61, 1003–1010. [Google Scholar]
- Kwong, Y.; Rao, N.; Latief, K. Craniometric measurements in the assessment of craniovertebral settling: Are they still relevant in the age of cross-sectional imaging? AJR Am. J. Roentgenol. 2011, 196, W421–W425. [Google Scholar]
- Ohnmeiß, M.; Kinzinger, G.; Wesselbaum, J.; Korbmacher-Steiner, H.M. Therapeutic effects of functional orthodontic appliances on cervical spine posture: A retrospective cephalometric study. Head Face Med. 2014, 10, 7–16. [Google Scholar]
- Riolo, M.L. An Atlas of Craniofacial Growth; University of Michigan Center for Human Growth and Development: Ann Arbor, Michigan, 1974. [Google Scholar]
- Proffit, W.R.; White, R.P.; Sarver, D.M. Contemporary Treatment of Dentofacial Deformity; Mosby: St. Louis, MO, USA, 2003. [Google Scholar]
- Burstone, C.J.; James, R.B.; Legan, H.; Murphy, G.A.; Norton, L.A. Cephalometrics for orthognathic surgery. J. Oral Surg. 1978, 36, 269–277. [Google Scholar]
- McNamara, J.A., Jr. A method of cephalometric evaluation. Am. J. Orthod. 1984, 86, 449–469. [Google Scholar]
- Coben, S.E. Basion Horizontal coordinate tracing films. J. Clin. Orthod. 1979, 13, 598–605. [Google Scholar]
- Coben, S.E. Basion Horizontal: An Integrated Concept of Craniofacial Growth and Cephalometric Analysis; Computer Cephalometric Associated: Jenkintown, PA, USA, 1986. [Google Scholar]
- Karlsen, A.T. Craniofacial morphology in children with Angle Class II-1 malocclusion with and without deepbite. Angle Orthod. 1994, 64, 437–446. [Google Scholar]
- Karlsen, A.T. Longitudinal changes in Class I subjects with moderate mandibular skeletal protrusion. Angle Orthod. 1998, 68, 431–438. [Google Scholar]
- Karlsen, A.T.; Krogstad, O. Morphology and growth in convex profile facial patterns: A longitudinal study. Angle Orthod. 1999, 69, 334–344. [Google Scholar]
- Ricketts, R.M. A foundation for cephalometric communication. Am. J. Orthod. 1960, 46, 330–357. [Google Scholar]
- Ricketts, R.M. An overview of computerized cephalometrics. Am. J. Orthod. 1972, 61, 1–28. [Google Scholar]
- Ricketts, R.M. Perspectives in the clinical application of cephalometrics: The first fifty years. Angle Orthod. 1981, 51, 115–150. [Google Scholar]
- Tweed, C.H. The diagnostic facial triangle in the control of treatment objectives. Am. J. Orthod. 1969, 55, 651–657. [Google Scholar]
Measurement * | Mean | SD | Median | Minimum | Maximum |
---|---|---|---|---|---|
Study Group (Down Syndrome) | |||||
ADI | 0.189 | 0.097 | 0.149 | 0.056 | 0.409 |
AA1. L | 0.165 | 0.077 | 0.164 | 0.034 | 0.346 |
AA2. L | 0.203 | 0.088 | 0.208 | 0.035 | 0.371 |
AA3. L | 0.151 | 0.065 | 0.143 | 0.054 | 0.318 |
AA1. R | 0.186 | 0.074 | 0.180 | 0.074 | 0.361 |
AA2. R | 0.224 | 0.073 | 0.225 | 0.113 | 0.469 |
AA3. R | 0.153 | 0.070 | 0.143 | 0.059 | 0.345 |
ADL. L | 0.431 | 0.135 | 0.417 | 0.153 | 0.719 |
ADL. R | 0.439 | 0.176 | 0.435 | 0.140 | 1.020 |
Control Group | |||||
ADI | 0.181 | 0.052 | 0.167 | 0.120 | 0.412 |
AA1.L | 0.209 | 0.068 | 0.186 | 0.091 | 0.381 |
AA2.L | 0.262 | 0.055 | 0.262 | 0.184 | 0.415 |
AA3.L | 0.196 | 0.058 | 0.206 | 0.104 | 0.338 |
AA1.R | 0.206 | 0.094 | 0.177 | 0.056 | 0.474 |
AA2.R | 0.262 | 0.078 | 0.250 | 0.149 | 0.585 |
AA3.R | 0.190 | 0.075 | 0.185 | 0.115 | 0.458 |
ADL.L | 0.567 | 0.847 | 0.368 | 0.245 | 4.190 |
ADL.R | 0.565 | 0.674 | 0.420 | 0.293 | 3.440 |
Measurement * | Mean | SD | Median | Minimum | Maximum |
---|---|---|---|---|---|
Study Group (Down Syndrome) | |||||
Wackenheim | 0.212 | 0.207 | 0.198 | −0.170 | 0.831 |
McRae | 0.503 | 0.174 | 0.529 | 0.162 | 0.837 |
Chamberlain | 0.332 | 0.307 | 0.349 | −0.280 | 1.000 |
McGregor | 0.255 | 0.297 | 0.270 | −0.390 | 0.929 |
Redlund-Johnell | 3.589 | 0.442 | 3.556 | 2.670 | 4.436 |
Ranawat | 2.696 | 0.306 | 2.741 | 2.000 | 3.459 |
L. odontoids | 3.358 | 0.346 | 3.385 | 2.742 | 4.000 |
Control Group | |||||
Wackenheim | 0.142 | 0.152 | 0.140 | −0.160 | 0.375 |
McRae | 0.263 | 0.148 | 0.200 | 0.107 | 0.642 |
Chamberlain | 0.042 | 0.350 | 0.121 | −0.420 | 0.762 |
McGregor | −0.060 | 0.372 | 0.047 | −0.580 | 0.653 |
Redlund-Johnell | 3.430 | 0.261 | 3.412 | 2.950 | 4.020 |
Ranawat | 2.854 | 0.232 | 3.000 | 2.190 | 3.202 |
L. odontoids | 3.577 | 0.274 | 3.520 | 2.950 | 3.930 |
Measurement * | Mean | SD | Median | Minimum | Maximum |
---|---|---|---|---|---|
Study Group (Down Syndrome) | |||||
McRae-Wac | 54.089 | 7.437 | 53.468 | 40.890 | 71.767 |
ENA-ENP | 4.285 | 0.501 | 4.202 | 3.420 | 5.540 |
A-P-McRae | 8.644 | 0.600 | 8.456 | 7.590 | 9.880 |
A-McRae | 1.001 | 1.111 | 0.775 | −0.580 | 5.160 |
McRae-PP | 5.382 | 3.732 | 4.722 | 0.000 | 14.780 |
ICS-PP Axis | 69.069 | 15.578 | 66.455 | 51.100 | 119.000 |
Co-Go | 5.375 | 0.654 | 5.465 | 3.818 | 6.700 |
Go-Po | 6.609 | 0.575 | 6.620 | 5.470 | 7.720 |
B-P-McRae | 8.626 | 0.844 | 8.500 | 7.390 | 10.600 |
McR-BaGn | 36.959 | 6.828 | 35.770 | 25.981 | 53.500 |
Branch-Body | 119.766 | 7.709 | 120.564 | 102.569 | 134.561 |
II-GoMe Axis | 89.670 | 22.027 | 94.169 | −8.582 | 111.580 |
A-B | 0.293 | 0.463 | 0.230 | −0.852 | 1.750 |
Control Group | |||||
McRae-Wac | 60.403 | 5.194 | 60.590 | 53.472 | 73.819 |
ENA-ENP | 5.110 | 0.588 | 5.205 | 3.673 | 5.820 |
A-P-McRae | 8.334 | 1.026 | 8.401 | 6.980 | 10.180 |
A-McRae | 0.915 | 1.005 | 0.796 | −1.093 | 2.160 |
McRae-PP | 4.799 | 4.683 | 3.230 | 1.570 | 20.265 |
ICS-PP Axis | 68.245 | 8.592 | 68.230 | 56.160 | 85.247 |
Co-Go | 5.516 | 0.492 | 5.531 | 4.790 | 6.300 |
Go-Po | 7.615 | 0.926 | 7.314 | 5.770 | 8.880 |
B-P-McRae | 8.336 | 0.802 | 7.896 | 7.500 | 9.860 |
McR-BaGn | 37.775 | 4.776 | 39.270 | 22.441 | 44.980 |
Branch-Body | 126.610 | 11.697 | 126.808 | 108.680 | 140.580 |
II-GoMe Axis | 84.509 | 12.898 | 81.460 | 64.740 | 104.800 |
A-B | 0.713 | 0.291 | 0.844 | 0.178 | 1.190 |
Block A versus Block B | ||||||
---|---|---|---|---|---|---|
Dimension | Can. Corr. | Pillai’s trace | F approx | DF1 | DF2 | p value |
1 | 0.831 | 1.282 | 1.087 | 36 | 144 | 0.356 |
2 | 0.550 | 0.590 | 0.681 | 25 | 156 | 0.870 |
3 | 0.438 | 0.288 | 0.529 | 16 | 168 | 0.929 |
4 | 0.273 | 0.096 | 0.324 | 9 | 180 | 0.966 |
5 | 0.137 | 0.021 | 0.171 | 4 | 192 | 0.953 |
6 | 0.051 | 0.003 | 0.088 | 1 | 204 | 0.766 |
Block A versus Block C | ||||||
Dimension | Can. Corr. | Pillai’s trace | F approx | DF1 | DF2 | p value |
1 | 0.665 | 1.205 | 0.838 | 36 | 120 | 0.725 |
2 | 0.634 | 0.763 | 0.769 | 25 | 132 | 0.774 |
3 | 0.436 | 0.361 | 0.575 | 16 | 144 | 0.898 |
4 | 0.374 | 0.170 | 0.507 | 9 | 156 | 0.868 |
5 | 0.175 | 0.031 | 0.217 | 4 | 168 | 0.929 |
6 | 0.011 | 0.000 | 0.003 | 1 | 180 | 0.953 |
Block B versus Block C | ||||||
Dimension | Can. Corr. | Pillai’s trace | F approx | DF1 | DF2 | p value |
1 | 0.905 | 1.765 | 1.319 | 36 | 114 | 0.137 |
2 | 0.601 | 0.945 | 0.942 | 25 | 126 | 0.548 |
3 | 0.562 | 0.583 | 0.929 | 16 | 138 | 0.538 |
4 | 0.445 | 0.268 | 0.779 | 9 | 150 | 0.636 |
5 | 0.260 | 0.070 | 0.475 | 4 | 162 | 0.754 |
6 | 0.045 | 0.002 | 0.060 | 1 | 174 | 0.807 |
Block A versus Block B | ||||||
---|---|---|---|---|---|---|
Dimension | Can. Corr. | Pillai’s trace | F approx | DF1 | DF2 | p value |
1 | 0.998 | 2.467 | 1.746 | 36 | 90 | 0.018 |
2 | 0.896 | 1.471 | 1.325 | 25 | 102 | 0.165 |
3 | 0.669 | 0.667 | 0.892 | 16 | 114 | 0.580 |
4 | 0.379 | 0.220 | 0.534 | 9 | 126 | 0.848 |
5 | 0.271 | 0.077 | 0.448 | 4 | 138 | 0.774 |
6 | 0.059 | 0.003 | 0.086 | 1 | 150 | 0.769 |
Block A versus Block C | ||||||
Dimension | Can. Corr. | Pillai’s trace | F approx | DF1 | DF2 | p value |
1 | 0.990 | 3.985 | 3.956 | 36 | 72 | <0.001 |
2 | 0.990 | 2.985 | 3.327 | 25 | 84 | <0.001 |
3 | 0.990 | 1.985 | 2.967 | 16 | 96 | <0.001 |
4 | 0.875 | 0.985 | 2.358 | 9 | 108 | 0.017 |
5 | 0.461 | 0.220 | 1.140 | 4 | 120 | 0.340 |
6 | 0.086 | 0.007 | 0.162 | 1 | 132 | 0.680 |
Block B versus Block C | ||||||
Dimension | Can. Corr. | Pillai’s trace | F approx | df1 | df2 | p value |
1 | 0.990 | 4.560 | 5.806 | 36 | 66 | <0.001 |
2 | 0.990 | 3.560 | 4.552 | 25 | 78 | <0.001 |
3 | 0.990 | 2.560 | 4.186 | 16 | 90 | <0.001 |
4 | 0.990 | 1.560 | 3.982 | 9 | 102 | <0.001 |
5 | 0.740 | 0.560 | 2.934 | 4 | 114 | 0.020 |
6 | 0.110 | 0.012 | 0.254 | 1 | 126 | 0.610 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-García, M.T.; Diz-Dios, P.; Abeleira-Pazos, M.T.; Limeres-Posse, J.; García-Mato, E.; Varela-Aneiros, I.; Outumuro-Rial, M.; Diniz-Freitas, M. Cranial-Vertebral-Maxillary Morphological Integration in Down Syndrome. Biology 2022, 11, 496. https://doi.org/10.3390/biology11040496
García-García MT, Diz-Dios P, Abeleira-Pazos MT, Limeres-Posse J, García-Mato E, Varela-Aneiros I, Outumuro-Rial M, Diniz-Freitas M. Cranial-Vertebral-Maxillary Morphological Integration in Down Syndrome. Biology. 2022; 11(4):496. https://doi.org/10.3390/biology11040496
Chicago/Turabian StyleGarcía-García, Marta Teresa, Pedro Diz-Dios, María Teresa Abeleira-Pazos, Jacobo Limeres-Posse, Eliane García-Mato, Iván Varela-Aneiros, Mercedes Outumuro-Rial, and Márcio Diniz-Freitas. 2022. "Cranial-Vertebral-Maxillary Morphological Integration in Down Syndrome" Biology 11, no. 4: 496. https://doi.org/10.3390/biology11040496
APA StyleGarcía-García, M. T., Diz-Dios, P., Abeleira-Pazos, M. T., Limeres-Posse, J., García-Mato, E., Varela-Aneiros, I., Outumuro-Rial, M., & Diniz-Freitas, M. (2022). Cranial-Vertebral-Maxillary Morphological Integration in Down Syndrome. Biology, 11(4), 496. https://doi.org/10.3390/biology11040496