Time-Dependent Degradation of Naphthoquinones and Phenolic Compounds in Walnut Husks
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Sampling and Extraction of Individual Phenolic Compounds
2.3. Identification and Quantification of the Phenolic Compounds Using HPLC and Mass Spectrometry
2.4. Chemicals
2.5. Statistical Analysis
3. Results and Discussion
3.1. Identification of Individual Phenolic Compounds
3.2. Degradation of the Individual Phenolic Compounds over Time
3.3. Degradation of Different Phenolic Groups over Time
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Robards, K.; Prenzler, P.D.; Tucker, G.; Swatsitang, P.; Glover, W. Phenolic compounds and their role in oxidative processes in fruits. Food Chem. 1999, 66, 401–436. [Google Scholar] [CrossRef]
- Naczk, M.; Shahidi, F. Extraction and analysis of phenolics in food. J. Chromatogr. A 2004, 1054, 95–111. [Google Scholar] [CrossRef]
- Haminiuk, C.W.I.; Maciel, G.M.; Plata-Oviedo, M.S.V.; Peralta, R.M. Phenolic compounds in fruits—An overview. Int. J. Food Sci. 2012, 47, 2023–2044. [Google Scholar] [CrossRef]
- Lemos, T.L.G.; Monte, F.J.Q.; Santos, A.K.L.; Fonseca, A.M.; Santos, H.S.; Oliveira, M.F.; Costa, S.M.O.; Pessoa, O.D.L.; Braz-Filho, R. Quinones from plants of northeastern Brazil: Structural diversity, chemical transformations, NMR data and biological activities. Nat. Prod. Res. 2007, 21, 529–550. [Google Scholar] [CrossRef] [PubMed]
- Futuro, D.O.; Ferreira, P.G.; Nicoletti, C.D.; Borba-Santos, L.P.; Silva, F.C.D.; Rozental, S.; Ferreira, V.F. The antifungal activity of naphthoquinones: An integrative review. Anais da Academia Brasileira de Ciências 2018, 90, 1187–1214. [Google Scholar] [CrossRef] [Green Version]
- Kumagai, Y.; Shinkai, Y.; Miura, T.; Cho, A.K. The chemical biology of naphthoquinones and its environmental implications. Annu. Rev. Pharmacol. Toxicol. 2012, 52, 221–247. [Google Scholar] [CrossRef]
- Medic, A.; Zamljen, T.; Slatnar, A.; Hudina, M.; Veberic, R. Is juglone the only naphthoquinone in Juglans regia L. with allelopathic effects? Agriculture 2021, 11, 784. [Google Scholar] [CrossRef]
- Duroux, L.; Delmotte, F.M.; Lancelin, J.-M.; Kéravis, G.; Jay-Allemand, C. Insight into naphthoquinone metabolism: β-glucosidase-catalysed hydrolysis of hydrojuglone β-d-glucopyranoside. Biochem. J. 1998, 333, 275–283. [Google Scholar] [CrossRef]
- Tsao, R. Chemistry and biochemistry of dietary polyphenols. Nutrients 2010, 2, 1231–1246. [Google Scholar] [CrossRef]
- Kaur, C.; Kapoor, H.C. Antioxidants in fruits and vegetables—The millennium’s health. Int. J. Food Sci. 2001, 36, 703–725. [Google Scholar] [CrossRef]
- Rice-Evans, C.A.; Packer, L. Flavonoids in Health and Disease, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- Gonçalves, E.M.; Pinheiro, J.; Abreu, M.; Brandão, T.R.S.; Silva, C.L.M. Carrot (Daucus carota L.) peroxidase inactivation, phenolic content and physical changes kinetics due to blanching. J. Food Eng. 2010, 97, 574–581. [Google Scholar] [CrossRef]
- Turkmen, N.; Sari, F.; Velioglu, Y.S. The effect of cooking methods on total phenolics and antioxidant activity of selected green vegetables. Food Chem. 2005, 93, 713–718. [Google Scholar] [CrossRef]
- González-Gómez, D.; Cardoso, V.; Bohoyo, D.; Ayuso, M.; Delgado-Adamez, J. Application of experimental design and response surface methodology to optimize the procedure to obtain a bactericide and highly antioxidant aqueous extract from orange peels. Food Control 2014, 35, 252–259. [Google Scholar] [CrossRef]
- Conidi, C.; Rodriguez-Lopez, A.D.; Garcia-Castello, E.M.; Cassano, A. Purification of artichoke polyphenols by using membrane filtration and polymeric resins. Sep. Purif. Technol. 2015, 144, 153–161. [Google Scholar] [CrossRef]
- Alfeo, V.; Bravi, E.; Ceccaroni, D.; Sileoni, V.; Perretti, G.; Marconi, O. Effect of baking time and temperature on nutrients and phenolic compounds content of fresh sprouts breadlike product. Foods 2020, 9, 1447. [Google Scholar] [CrossRef]
- Crozier, A.; Lean, M.E.J.; McDonald, M.S.; Black, C. Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J. Agric. Food Chem. 1997, 45, 590–595. [Google Scholar] [CrossRef]
- Stewart, A.J.; Bozonnet, S.; Mullen, W.; Jenkins, G.I.; Lean, M.E.J.; Crozier, A. Occurrence of flavonols in tomatoes and tomato-based products. J. Agric. Food Chem. 2000, 48, 2663–2669. [Google Scholar] [CrossRef]
- Young, L.Y.; Rivera, M.D. Methanogenic degradation of four phenolic compounds. Water Res. 1985, 19, 1325–1332. [Google Scholar] [CrossRef]
- Barz, W.H.; Hoesel, W. Metabolism and Degradation of Phenolic Compounds in Plants. In Biochemistry of Plant Phenolics. Recent Advances in Phytochemistry; Swain, T., Harbone, J.B., van Sumere, C.F., Eds.; Springer: Boston, MA, USA, 1979; Volume 12. [Google Scholar] [CrossRef]
- Cho, D.-H.; Lim, S.-T. Changes in phenolic acid composition and associated enzyme activity in shoot and kernel fractions of brown rice during germination. Food Chem. 2018, 256, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.; Nogueira, J. Efeito do calor na atividade da polifenol oxidase e peroxidase em algumas frutas e hortaliças. Anais da Escola Superior de Agricultura Luiz de Queiroz 1983, 40, 137–161. [Google Scholar] [CrossRef] [Green Version]
- McCoy, R.M.; Utturkar, S.M.; Crook, J.W.; Thimmapuram, J.; Widhalm, J.R. The origin and biosynthesis of the naphthalenoid moiety of juglone in black walnut. Hortic. Res. 2018, 5, 67. [Google Scholar] [CrossRef] [Green Version]
- Strack, D. 10—Phenolic metabolism. In Plant Biochemistry; Dey, P.M., Harborne, J.B., Eds.; Academic Press: London, UK, 1997; pp. 387–416. [Google Scholar]
- Strugstad, M.; Despotovski, S. A summary of extraction, synthesis, properties, and potential uses of juglone: A literature review. J. Ecosyst. Manag. 2013, 13, 1–16. [Google Scholar]
- Gries, G.A. Juglone, the active agent in walnut toxicity. North. Nut Grow. Assoc. Annu. Rep. 1943, 34, 52–55. [Google Scholar]
- Daglish, C. The determination and occurrence of a hydrojuglone glucoside in the walnut. Biochem. J. 1950, 47, 458–462. [Google Scholar] [CrossRef] [Green Version]
- Medic, A.; Jakopic, J.; Hudina, M.; Solar, A.; Veberic, R. Identification and quantification of the major phenolic constituents in Juglans regia L. peeled kernels and pellicles, using HPLC–MS/MS. Food Chem. 2021, 352, 129404. [Google Scholar] [CrossRef]
- Medic, A.; Solar, A.; Hudina, M.; Veberic, R. Phenolic response to walnut anthracnose (Ophiognomonia leptostyla) infection in different parts of Juglans regia husks, using HPLC-MS/MS. Agriculture 2021, 11, 659. [Google Scholar] [CrossRef]
- Medic, A.; Jakopic, J.; Solar, A.; Hudina, M.; Veberic, R. Walnut (J. regia) agro-residues as a rich source of phenolic compounds. Biology 2021, 10, 535. [Google Scholar] [CrossRef] [PubMed]
- Ellendorff, T.; Brun, R.; Kaiser, M.; Sendker, J.; Schmidt, T.J. PLS-prediction and confirmation of hydrojuglone glucoside as the antitrypanosomal constituent of Juglans spp. Molecules 2015, 20, 10082–10094. [Google Scholar] [CrossRef] [Green Version]
- Medic, A.; Zamljen, T.; Hudina, M.; Veberic, R. Identification and quantification of naphthoquinones and other phenolic compounds in leaves, petioles, bark, roots, and buds of Juglans regia L., Using HPLC-MS/MS. Horticulturae 2021, 7, 326. [Google Scholar] [CrossRef]
- Cianciosi, D.; Forbes-Hernández, T.Y.; Afrin, S.; Gasparrini, M.; Reboredo-Rodriguez, P.; Manna, P.P.; Zhang, J.; Bravo Lamas, L.; Martínez Flórez, S.; Agudo Toyos, P.; et al. Phenolic compounds in honey and their associated health benefits: A review. Molecules 2018, 23, 2322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic compounds in agri-food by-products, their bioavailability and health effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef] [Green Version]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Functional Properties, Impact of Processing and Bioavailability. In Phenolic Compounds. Biological Activity; IntechOpen: London, UK, 2017; Volume 8, pp. 1–24. [Google Scholar] [CrossRef] [Green Version]
Phenolic | Retention Time (min) | (M − H)− (m/z) | MS2 (m/z) | Quantification Standard |
---|---|---|---|---|
Naphthoquinones | ||||
Dihydroxytetralone hexoside | 13.04 | 339 | 159, 177 | Juglone |
Hydrojuglone glucoside | 16.26 | 337 | 175 | Juglone |
Hydrojuglone derivative pentoside 1 | 17.98 | 435 | 303, 285 | Juglone |
Hydrojuglone derivative pentoside 2 | 18.26 | 435 | 303, 285 | Juglone |
Trihydroxytetralone derivative | 19.06 | 491 | 271, 331 | Juglone |
Hydrojuglone rhamnoside | 20.64 | 321 | 175 | Juglone |
Trihydroxytetralone galloyl hexoside | 20.76 | 507 | 331, 271 | Juglone |
Hydrojuglone derivative pentoside 3 | 21.27 | 435 | 303, 285 | Juglone |
α-Hydrojuglone | 28.21 | 175 | 131, 147, 157 | Juglone |
Juglone (5-hydroxy-1,4-naphthoquinone) | 29.99 | 173 | 155, 145, 129, 111 | Juglone |
Juglanin B | 31.37 | 327 | 312, 253 | Juglone |
Flavanols | ||||
Procyanidin dimer 1 | 10.38 | 577 | 425, 407, 289 | Procyanidin B1 |
Procyanidin dimer 2 | 11.47 | 577 | 425, 407, 289 | Procyanidin B1 |
(+) Catechin | 12.22 | 289 | 245, 205, 179 | (+) Catechin |
(−) Epicatechin | 14.53 | 289 | 245, 205, 179 | (−) Epicatechin |
Procyanidin dimer 3 | 15.53 | 577 | 425, 407, 289 | Procyanidin B1 |
Procyanidin dimer 4 | 16.89 | 577 | 425, 407, 289 | Procyanidin B1 |
(epi) Catechin derivative | 20.17 | 441 | 289 | (+) Catechin |
Flavonols | ||||
Quercetin-3-galactoside | 20.53 | 463 | 301 | Quercetin-3-galactoside |
Quercetin-3-xyloside | 21.56 | 433 | 301 | Quercetin-3-xyloside |
Quercetin-3-arabinopyranoside | 21.73 | 433 | 301 | Quercetin-3-arabinopyranoside |
Quercetin-3-arabinofuranoside | 22.21 | 433 | 301 | Quercetin-3-arabinofuranoside |
Quercetin-3-rhamnoside | 22.43 | 447 | 301 | Quercetin-3-rhamnoside |
Hydroxycinnamic acids | ||||
Neochlorogenic acid (3-caffeoylquinic acid) | 9.36 | 353 | 191, 179, 135 | Neochlorogenic acid |
3-p-Coumaroylquinic acid | 12.01 | 337 | 163, 191, 173 | Neochlorogenic acid |
Remaining phenolic compounds | ||||
Gallic acid derivative | 21.99 | 489 | 271, 313 | Gallic acid |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medic, A.; Zamljen, T.; Hudina, M.; Veberic, R. Time-Dependent Degradation of Naphthoquinones and Phenolic Compounds in Walnut Husks. Biology 2022, 11, 342. https://doi.org/10.3390/biology11020342
Medic A, Zamljen T, Hudina M, Veberic R. Time-Dependent Degradation of Naphthoquinones and Phenolic Compounds in Walnut Husks. Biology. 2022; 11(2):342. https://doi.org/10.3390/biology11020342
Chicago/Turabian StyleMedic, Aljaz, Tilen Zamljen, Metka Hudina, and Robert Veberic. 2022. "Time-Dependent Degradation of Naphthoquinones and Phenolic Compounds in Walnut Husks" Biology 11, no. 2: 342. https://doi.org/10.3390/biology11020342
APA StyleMedic, A., Zamljen, T., Hudina, M., & Veberic, R. (2022). Time-Dependent Degradation of Naphthoquinones and Phenolic Compounds in Walnut Husks. Biology, 11(2), 342. https://doi.org/10.3390/biology11020342