Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense
Abstract
:Simple Summary
Abstract
1. Introduction
2. G. boninense Life Cycle
3. Plant–Microbe Interaction
4. G. boninense Multi-Omics Data
5. Detection and Control Strategies
6. Future Directions for R&D
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availab ility Statement
Acknowledgments
Conflicts of Interest
References
- Kushairi, A.; Ong-Abdullah, M.; Nambiappan, B.; Hishamuddin, E.; Izuddin, Z.; Ghazali, R.; Subramaniam, V.; Sundram, S.; Ghulam Kadir, A.P. Oil palm economic performance in Malaysia and R&D progress in 2018. J. Oil Palm Res. 2019, 31, 165–194. [Google Scholar] [CrossRef]
- Bedford, G. Advances in the control of rhinoceros beetle, Oryctes rhinoceros in oil palm. J. Oil Palm Res. 2014, 26, 183–194. [Google Scholar]
- Abdul-Halim, W.N.M.; Muhaimin, A.M.D.; Syarifah-Zulaikha, S.A.; Nor Atikah, A.R.; Masri, M.M.M.; Yaakop, S. Evaluation of infestation in parasitoids on Metisa plana Walker (Lepidoptera: Psychidae) in three oil palm plantations in Peninsula Malaysia. Serangga 2017, 22, 135–149. [Google Scholar]
- Harith-Fadzilah, N.; Haris-Hussain, M.; Abd Ghani, I.; Zakaria, A.; Amit, S.; Zainal, Z.; Azmi, W.A.; Jalinas, J.; Hassan, M. Physical and physiological monitoring on red palm weevil-infested oil palms. Insects 2020, 11, 407. [Google Scholar] [CrossRef]
- Paterson, R.R.M. Ganoderma boninense disease deduced from simulation modelling with large data sets of future Malaysian oil palm climate. Phytoparasitica 2019, 47, 255–262. [Google Scholar] [CrossRef]
- Midot, F.; Lau, S.Y.L.; Wong, W.C.; Tung, H.J.; Yap, M.L.; Lo, M.L.; Jee, M.S.; Dom, S.P.; Melling, L. Genetic diversity and demographic history of Ganoderma boninense in oil palm plantations of Sarawak, Malaysia inferred from ITS regions. Microorganisms 2019, 7, 464. [Google Scholar] [CrossRef] [Green Version]
- Paterson, R.R.M. Ganoderma disease of oil palm—A white rot perspective necessary for integrated control. Crop Prot. 2007, 26, 1369–1376. [Google Scholar] [CrossRef] [Green Version]
- Idris, A.S.; Mohd Shukri, I.; Izzuddin, M.A.; Norman, K.; Khairuman, H.; Ramle, M.; Iptizam, N.; Dayang, N.S. Survey on Status of Ganoderma Disease of Oil Palm Estates and Smallholders in Malaysia. In Proceedings of the MPOB International Palm Oil Congress and Exhibition (PIPOC) 2019, Kuala Lumpur, Malaysia, 19–21 November 2019; Volume 2, pp. 548–557. [Google Scholar]
- Barcelos, E.; Rios, S.d.A.; Cunha, R.N.V.; Lopes, R.; Motoike, S.Y.; Babiychuk, E.; Skirycz, A.; Kushnir, S. Oil palm natural diversity and the potential for yield improvement. Front. Plant Sci. 2015, 6, 190. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Surendran, A.; Paterson, R.R.M.; Ali, A.; Ahmad, K. Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi J. Biol. Sci. 2021, 28, 2840–2849. [Google Scholar] [CrossRef] [PubMed]
- Chong, K.P.; Dayou, J.; Alexander, A. Pathogenic nature of Ganoderma boninense and basal stem rot disease. In Detection and Control of Ganoderma boninense in Oil Palm Crop; Chong, K.P., Dayou, J., Alexander, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 5–12. [Google Scholar]
- Ramli, N.R.; Mohamed, M.S.; Abu Seman, I.; Ahmad Zairun, M.; Mohamad, N. The potential of endophytic bacteria as a biological control agent for Ganoderma disease in oil palm. Sains Malays. 2016, 45, 401–409. [Google Scholar]
- Hushiarian, R.; Yusof, N.A.; Dutse, S.W. Detection and control of Ganoderma boninense: Strategies and perspectives. SpringerPlus 2013, 2, 555. [Google Scholar] [CrossRef] [Green Version]
- Pilotti, C.A. Stem rots of oil palm caused by Ganoderma boninense: Pathogen biology and epidemiology. Mycopathologia 2005, 159, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Paterson, R.R. Ganoderma boninense disease of oil palm to significantly reduce production after 2050 in Sumatra if projected climate change occurs. Microorganisms 2019, 7, 24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pilotti, C.A.; Gorea, E.A.; Bonneau, L. Basidiospores as sources of inoculum in the spread of Ganoderma boninense in oil palm plantations in Papua New Guinea. Plant Pathol. 2018, 67, 1841–1849. [Google Scholar] [CrossRef]
- Wong, W.C.; Tung, H.J.; Fadhilah, M.N.; Midot, F.; Lau, S.Y.L.; Melling, L.; Astari, S.; Hadziabdic, Đ.; Trigiano, R.N.; Goh, K.J.; et al. Genetic diversity and gene flow amongst admixed populations of Ganoderma boninense, causal agent of basal stem rot in African oil palm (Elaeis guineensis Jacq.) in Sarawak (Malaysia), Peninsular Malaysia, and Sumatra (Indonesia). Mycologia 2021, 113, 902–917. [Google Scholar] [CrossRef]
- Kok, S.M.; Goh, Y.K.; Jiat, T.; Goh, K.; Wei Chee, W.; Goh, Y.K. In vitro growth of Ganoderma boninense isolates on novel palm extract medium and virulence on oil palm (Elaeis guineensis) seedlings. Malays. J. Microbiol. 2013, 9, 33–42. [Google Scholar] [CrossRef]
- Pilotti, C.A.; Sanderson, F.R.; Aitken, E.A.B. Sexuality and interactions of monokaryotic and dikaryotic mycelia of Ganoderma boninense. Mycol. Res. 2002, 106, 1315–1322. [Google Scholar] [CrossRef]
- Kües, U.; Casselton, L.A. Homeodomains and regulation of sexual development in basidiomycetes. Trends Genet. 1992, 8, 154–155. [Google Scholar] [CrossRef]
- Pilotti, C.A.; Sanderson, F.R.; Aitken, E.A.B. Genetic structure of a population of Ganoderma boninense on oil palm. Plant Pathol. 2003, 52, 455–463. [Google Scholar] [CrossRef]
- Casselton, L.A.; Kües, U. The origin of multiple mating types in the model mushrooms Coprinopsis cinerea and Schizophyllum commune. In Sex in Fungi: Molecular Determination and Evolutionary Implications; Heitman, J., Kronstad, J.W., Taylor, J.W., Casselton, L.A., Eds.; ASM Press: Washington, DC, USA, 2007; pp. 283–300. [Google Scholar] [CrossRef]
- Kües, U.; Nelson, D.R.; Liu, C.; Yu, G.-J.; Zhang, J.; Li, J.; Wang, X.-C.; Sun, H. Genome analysis of medicinal Ganoderma spp. with plant-pathogenic and saprotrophic life-styles. Phytochemistry 2015, 114, 18–37. [Google Scholar] [CrossRef]
- James, T.Y.; Lee, M.; van Diepen, L.T.A. A single mating-type locus composed of homeodomain genes promotes nuclear migration and heterokaryosis in the white-rot fungus Phanerochaete chrysosporium. Eukaryot. Cell 2011, 10, 249–261. [Google Scholar] [CrossRef] [Green Version]
- Casselton, L.A.; Olesnicky, N.S. Molecular genetics of mating recognition in basidiomycete fungi. Microbiol. Mol. Biol. Rev. 1998, 62, 55–70. [Google Scholar] [CrossRef] [Green Version]
- Mohanta, T.K.; Mohanta, N.; Parida, P.; Panda, S.K.; Ponpandian, L.N.; Bae, H. Genome-wide identification of mitogen-activated protein kinase gene family across fungal lineage shows presence of novel and diverse activation loop motifs. PLoS ONE 2016, 11, e0149861. [Google Scholar] [CrossRef] [Green Version]
- Asante-Owusu, R.N.; Banham, A.H.; Böhnert, H.U.; Mellor, E.J.C.; Casselton, L.A. Heterodimerization between two classes of homeodomain proteins in the mushroom Coprinus cinereus brings together potential DNA-binding and activation domains. Gene 1996, 172, 25–31. [Google Scholar] [CrossRef]
- Morrow, C.A.; Fraser, J.A. Sexual reproduction and dimorphism in the pathogenic basidiomycetes. FEMS Yeast Res. 2009, 9, 161–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Metin, B.; Findley, K.; Heitman, J. The mating type locus (MAT) and sexual reproduction of Cryptococcus heveanensis: Insights into the evolution of sex and sex-determining chromosomal regions in fungi. PLoS Genet. 2010, 6, e1000961. [Google Scholar] [CrossRef] [Green Version]
- Sun, S.; Heitman, J. Is sex necessary? BMC Biol. 2011, 9, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olivera, P.D.; Sikharulidze, Z.; Dumbadze, R.; Szabo, L.J.; Newcomb, M.; Natsarishvili, K.; Rouse, M.N.; Luster, D.G.; Jin, Y. Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity. Phytopathology 2019, 109, 2152–2160. [Google Scholar] [CrossRef] [Green Version]
- Kahmann, R.; Romeis, T.; Bölker, M.; Kämper, J. Control of mating and development in Ustilago maydis. Curr. Opin. Genet. Dev. 1995, 5, 559–564. [Google Scholar] [CrossRef]
- Turner, P.D. The incidence of Ganoderma disease of oil palms in Malaya and its relation to previous crop. Ann. Appl. Biol. 1965, 55, 417–423. [Google Scholar] [CrossRef]
- Govender, N.; Wong, M.-Y.; Paterson, R. Opportunities for new-generation Ganoderma boninense biotechnology. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer: Cham, Switzerland, 2020; pp. 477–500. [Google Scholar]
- Miller, R.; Holderness, M.; Bridge, P.; Chung, G.; Zakaria, M. Genetic diversity of Ganoderma in oil palm plantings. Plant Pathol. 1999, 48, 595–603. [Google Scholar] [CrossRef]
- Rees, R.W.; Flood, J.; Hasan, Y.; Potter, U.; Cooper, R.M. Basal stem rot of oil palm (Elaeis guineensis); mode of root infection and lower stem invasion by Ganoderma boninense. Plant Pathol. 2009, 58, 982–989. [Google Scholar] [CrossRef]
- Govender, N.; Wong, M.-Y. Detection of oil palm root penetration by Agrobacterium-mediated transformed Ganoderma boninense, expressing green fluorescent protein. Phytopathology 2017, 107, 483–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexander, A.; Sipaut, C.S.; Dayou, J.; Chong, K.P. Oil palm roots colonisation by Ganoderma boninense: An insight study using scanning electron microscopy. J. Oil Palm Res. 2017, 29, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Darus, A.; Seman, I.A.; Hassan, A.H. Histopathological studies on colonization of oil palm root by Ganoderma boninense. Elaeis 1991, 3, 289–293. [Google Scholar]
- Idris, A.S.; Arifurrahman, R.; Kushairi, A. Hexaconale as a preventive treatment for managing Ganoderma in oil palm. MPOB Inf. Ser. 2010, 75, 533–534. [Google Scholar]
- Chan, J.J.; Latiffah, Z.; Liew, K.W.; Idris, A.S. Pathogenicity of monokaryotic and dikaryotic mycelia of Ganoderma boninense on oil palm seedlings and germinated seeds in Malaysia. Australas. Plant Pathol. 2011, 40, 222–227. [Google Scholar] [CrossRef]
- Rees, R.W.; Flood, J.; Hasan, Y.; Wills, M.A.; Cooper, R.M. Ganoderma boninense basidiospores in oil palm plantations: Evaluation of their possible role in stem rots of Elaeis guineensis. Plant Pathol. 2012, 61, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Bahari, M.N.A.; Sakeh, N.M.; Abdullah, S.N.A.; Ramli, R.R.; Kadkhodaei, S. Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC Plant Biol. 2018, 18, 377. [Google Scholar] [CrossRef]
- Lorang, J. Necrotrophic exploitation and subversion of plant defense: A lifestyle or just a phase, and implications in breeding resistance. Phytopathology 2018, 109, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, K.; Mat Razali, N.; Cheah, B.H.; Sahruna, N.S.; Ismail, I.; Tathode, M.; Bankar, K. Draft genome sequence of Rhizoctonia solani anastomosis group 1 subgroup 1A strain 1802/KB isolated from rice. Genome Announc. 2017, 5, e01188-17. [Google Scholar] [CrossRef]
- Bhaskar Rao, T.; Chopperla, R.; Prathi, N.B.; Balakrishnan, M.; Prakasam, V.; Laha, G.S.; Balachandran, S.M.; Mangrauthia, S.K. A comprehensive gene expression profile of pectin degradation enzymes reveals the molecular events during cell wall degradation and pathogenesis of rice sheath blight pathogen Rhizoctonia solani AG1-IA. J. Fungi 2020, 6, 71. [Google Scholar] [CrossRef] [PubMed]
- Ramzi, A.B.; Che Me, M.L.; Ruslan, U.S.; Baharum, S.N.; Nor Muhammad, N.A. Insight into plant cell wall degradation and pathogenesis of Ganoderma boninense via comparative genome analysis. PeerJ 2019, 7, e8065. [Google Scholar] [CrossRef] [Green Version]
- Tan, J.S.; Lee, Y.P.; Sulaiman, S.; Camus-Kulandaivelu, L.; Klopp, C.; Mercière, M.; Breton, F.; Durand-Gasselin, T.; Syed Alwee, S.S.R. The route to the development of basal stem rot resistance in oil palm (Elaeis guineensis) via the discovery of lignin degradation process in the pathogen Ganoderma boninense. In Proceedings of the International Symposia on Tropical and Temperate Horticulture—ISTTH2016, Cairns, Australia, 20–25 November 2016; Volume 1205, pp. 359–370. [Google Scholar] [CrossRef]
- Dhillon, B.; Hamelin, R.C.; Rollins, J.A. Transcriptional profile of oil palm pathogen, Ganoderma boninense, reveals activation of lignin degradation machinery and possible evasion of host immune response. BMC Genom. 2021, 22, 326. [Google Scholar] [CrossRef]
- Yu, X.; Feng, B.; He, P.; Shan, L. From chaos to harmony: Responses and signaling upon microbial pattern recognition. Annu. Rev. Phytopathol. 2017, 55, 109–137. [Google Scholar] [CrossRef]
- Sahebi, M.; Hanafi, M.; Wong, M.-Y.; Abu Seman, I.; Azizi, P.; Faseleh jahromi, M.; Shokryazdan, P.; Abiri, R.; Mohidin, H. Towards immunity of oil palm against Ganoderma fungus infection. Acta Physiol. Plant. 2015, 37, 195. [Google Scholar] [CrossRef]
- Ho, C.-L.; Tan, Y.-C.; Yeoh, K.-A.; Ghazali, A.-K.; Yee, W.-Y.; Hoh, C.-C. De novo transcriptome analyses of host-fungal interactions in oil palm (Elaeis guineensis Jacq.). BMC Genom. 2016, 17, 66. [Google Scholar] [CrossRef] [Green Version]
- Ho, C.-L.; Tan, Y.-C.; Yeoh, K.-A.; Lee, W.-K.; Ghazali, A.-K.; Yee, W.-Y.; Hoh, C.-C. Leaf transcriptome of oil palm (Elaeis guineensis Jacq.) infected by Ganoderma boninense. Trees 2019, 33, 943–950. [Google Scholar] [CrossRef]
- Ouellette, G.B.; Baayen, R.P.; Simard, M.; Rioux, D. Reactions of paratracheal cells of resistant and susceptible carnation (Dianthus caryophyllus) cultivars to vascular invasion by Fusarium oxysporum f. sp. dianthi. New Phytol. 2002, 156, 113–128. [Google Scholar] [CrossRef]
- Mendgen, K.; Deising, H. Infection structures of fungal plant pathogens–A cytological and physiological evaluation. New Phytol. 1993, 124, 193–213. [Google Scholar] [CrossRef] [Green Version]
- Mendgen, K.; Hahn, M.; Deising, H. Morphogenesis and mechanisms of penetration by plant-pathogenic fungi. Annu. Rev. Phytopathol. 1996, 34, 367–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, M.A.; Jones, J.D.G.; Dangl, J.L. Reactive oxygen species signaling in response to pathogens. Plant Physiol. 2006, 141, 373–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bharudin, I.; Abdul Rahim, S.N.; Abu Bakar, M.F.; Ibrahim, S.N.; Kamaruddin, S.; Latif, M.T.; Samsudin, M.W.; Abdul Murad, A.M.; Abu Bakar, F.D. De novo transcriptome resources of the lichens, Dirinaria sp. UKM-J1 and UKM-K1 collected from Jerantut and Klang, Malaysia. Data Brief 2018, 19, 2416–2419. [Google Scholar] [CrossRef] [PubMed]
- Bharudin, I.; Abu Bakar, M.F.; Hashim, N.H.F.; Mat Isa, M.N.; Alias, H.; Firdaus-Raih, M.; Md Illias, R.; Najimudin, N.; Mahadi, N.M.; Abu Bakar, F.D.; et al. Unravelling the adaptation strategies employed by Glaciozyma antarctica PI12 on Antarctic sea ice. Mar. Environ. Res. 2018, 137, 169–176. [Google Scholar] [CrossRef]
- Jazamuddin, F.M.; Aizat, W.M.; Goh, H.-H.; Low, C.-F.; Baharum, S.N. Transcriptome data of Epinephelus fuscoguttatus infected by Vibrio vulnificus. Data Brief 2017, 16, 466–469. [Google Scholar] [CrossRef]
- Alias, N.N.; Basherudin, N.; Bakar, M.F.A.; Ahmad-Syazwan, S.; Muhammad, N.; Ahmad, M.F.; Abdullah, M.Z. De novo transcriptome sequencing and identification of upregulated genes involved in phenylpropanoid pathway of Acacia mangium in response to Ceratocystis infection. Malays. Appl. Biol. 2018, 47, 135–148. [Google Scholar]
- Fradj, N.; de Montigny, N.; Mérindol, N.; Awwad, F.; Boumghar, Y.; Germain, H.; Desgagné-Penix, I. A first insight into North American plant pathogenic fungi Armillaria sinapina transcriptome. Biology 2020, 9, 153. [Google Scholar] [CrossRef] [PubMed]
- Utomo, C.; Tanjung, Z.A.; Aditama, R.; Buana, R.F.N.; Pratomo, A.D.M.; Tryono, R.; Liwang, T. Draft genome sequence of the phytopathogenic fungus Ganoderma boninense, the causal agent of basal stem rot disease on oil palm. Genome Announc. 2018, 6, e00122-18. [Google Scholar] [CrossRef] [Green Version]
- Mercière, M.; Laybats, A.; Carasco-Lacombe, C.; Tan, J.S.; Klopp, C.; Durand-Gasselin, T.; Alwee, S.S.R.S.; Camus-Kulandaivelu, L.; Breton, F. Identification and development of new polymorphic microsatellite markers using genome assembly for Ganoderma boninense, causal agent of oil palm basal stem rot disease. Mycol. Prog. 2015, 14, 103. [Google Scholar] [CrossRef] [Green Version]
- Voo, C.L.Y.; Yeo, D.E.T.; Chong, K.-P.; Rodrigues, K.F. Draft genome sequence of a phytopathogenic Ganoderma sp. strain that causes basal stem rot disease on oil palm in Sabah, Malaysia. Microbiol. Resour. Announc. 2020, 9, e01240-19. [Google Scholar] [CrossRef] [Green Version]
- Sulaiman, S.; Othman, N.Q.; Tan, J.S.; Lee, Y.P. Draft genome assembly dataset of the basidiomycete pathogenic fungus, Ganoderma boninense. Data Brief 2020, 29, 105167. [Google Scholar] [CrossRef] [PubMed]
- Utomo, C.; Tanjung, Z.A.; Aditama, R.; Buana, R.F.N.; Pratomo, A.D.M.; Tryono, R.; Liwang, T. Complete mitochondrial genome sequence of the phytopathogenic basidiomycete Ganoderma boninense strain G3. Microbiol. Resour. Announc. 2019, 8, e00968-18. [Google Scholar] [CrossRef]
- Sulaiman, S.; Yusoff, N.; Tan, J.S.; Lee, Y.P. Deciphering the pan-genome of Ganoderma sp. to depict potential genomic components that contribute to Ganoderma boninense pathogenicity. Malays. Appl. Biol. 2018, 47, 71–80. [Google Scholar]
- Isaac, I.L.; Walter, A.W.C.Y.; Bakar, M.F.A.; Idris, A.S.; Bakar, F.D.A.; Bharudin, I.; Murad, A.M.A. Transcriptome datasets of oil palm pathogen Ganoderma boninense. Data Brief 2018, 17, 1108–1111. [Google Scholar] [CrossRef]
- Ahmad Zairun, M.; Idris, A.S.; Kamaruddin, S.; Bharudin, I.; Abu Bakar, F.D.; Murad, A.M.A. Identification and characterization of a mating signalling gene from an oil palm pathogen, Ganoderma boninense. In AIP Conference Proceedings, Proceedings of the Postgraduate Colloquium of the Faculty-of-Science-and-Technology of the Universi-ti-Kebangsaan-Malaysia (UKM FST), Selangor, Malaysia, 4–6 April 2018; Hasbullah, S.A., Jumali, M.H.H., Ibrahim, K., Rasol, N.H.A., Latif, M.T., Ibrahim, N., Hanafiah, M.M., Eds.; AIP Publishing: Melville, NY, USA, 2019; Volume 2111, p. 040005. [Google Scholar]
- Jones, S.K., Jr.; Bennett, R.J. Fungal mating pheromones: Choreographing the dating game. Fungal Genet. Biol. 2011, 48, 668–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, M.Y.; Govender, N.T.; Ong, C.S. RNA-seq data of Ganoderma boninense at axenic culture condition and under in planta pathogen-oil palm (Elaeis guineensis Jacq.) interaction. BMC Res. Notes 2019, 12, 631. [Google Scholar] [CrossRef] [Green Version]
- Frías, M.; Brito, N.; González, M.; González, C. The phytotoxic activity of the cerato-platanin BcSpl1 resides in a two-peptide motif on the protein surface. Mol. Plant Pathol. 2014, 15, 342–351. [Google Scholar] [CrossRef]
- Othman, N.Q.; Sulaiman, S.; Lee, Y.P.; Tan, J.S. Transcriptomic data of mature oil palm basal trunk tissue infected with Ganoderma boninense. Data Brief 2019, 25, 104288. [Google Scholar] [CrossRef] [PubMed]
- Lim, F.-H.; Fakhrana, I.N.; Rasid, O.A.; Idris, A.S.; Ho, C.-L.; Shaharuddin, N.A.; Parveez, G.K.A. Molecular cloning and expression analysis of Ganoderma boninense cyclophilins at different growth and infection stages. Physiol. Mol. Plant Pathol. 2017, 99, 31–40. [Google Scholar] [CrossRef]
- Teh, C.-Y.; Pang, C.-L.; Tor, X.-Y.; Ho, P.-Y.; Lim, Y.-Y.; Namasivayam, P.; Ho, C.-L. Molecular cloning and functional analysis of a necrosis and ethylene inducing protein (NEP) from Ganoderma boninense. Physiol. Mol. Plant Pathol. 2019, 106, 42–48. [Google Scholar] [CrossRef]
- Ho, C.-L.; Tan, Y.-C.; Yeoh, K.-A.; Lee, W.-K.; Ghazali, A.-K.; Yee, W.-Y.; Hoh, C.-C. Transcriptional response of oil palm (Elaeis guineensis Jacq.) inoculated simultaneously with both Ganoderma boninense and Trichoderma harzianum. Plant Gene 2018, 13, 56–63. [Google Scholar] [CrossRef]
- Nawawi, A.; Ho, Y.W. Effect of temperature and pH on growth pattern of Ganoderma boninense from oil palm in Peninsular Malaysia. Pertanika 1990, 13, 303–307. [Google Scholar]
- Chung, G.F. Management of Ganoderma diseases in oil palm plantations. Planter 2011, 87, 325–339. [Google Scholar]
- Darus, A.; Chong, C.K.; Henson, I.E.; Sukaimi, J.; Wahid, M.B.; Mohd-Tayeb, D.; Paranjothy, K.; Rajanaidu, N. PORIM International Palm Oil Congress Update and Vision. Agriculture. Proceedings. In Proceedings of the PORIM International Palm Oil Congress Update and Vision, Kuala Lumpur, Malaysia, 20–25 September 1993. [Google Scholar]
- Utomo, C.; Werner, S.; Niepold, F.; Deising, H.B. Identification of Ganoderma, the causal agent of basal stem rot disease in oil palm using a molecular method. Mycopathologia 2005, 159, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Ahmad Zairun, M.; Abu Seman, I.; Ar, R. Polyclonal antibodies of Ganoderma boninense isolated from Malaysian oil palm for detection of basal stem rot disease. Afr. J. Biotechnol. 2014, 13, 3455–3463. [Google Scholar] [CrossRef] [Green Version]
- Utomo, C.; Niepold, F. Development of Diagnostic Methods for Detecting Ganoderma-infected Oil Palms. J. Phytopathol. 2000, 148, 507–514. [Google Scholar] [CrossRef]
- Sundram, S.; Chris, D.; Sioban, O.; Idris, A. Preliminary studies on the development of monoclonal antibodies against mycelia of Ganoderma boninense, the causal pathogen of Basal Stem Rot of oil palm. Malays. J. Microbiol. 2006, 2(1), 30–34. [Google Scholar] [CrossRef]
- Ahmad Zairun, M.; Maizatul-Suriza, M.; Idris, A.; Bakar, M.; Kamaruddin, S.; Bharudin, I.; Abu Bakar, F.; Murad, A. Comparison of DNA extraction and detection of Ganoderma, causal of basal stem rot disease in oil palm using loop-mediated isothermal amplification. Malays. Appl. Biol. 2018, 47, 119–127. [Google Scholar]
- Fakruddin, M.; Mannan, K.S.B.; Chowdhury, A.; Mazumdar, R.M.; Hossain, M.N.; Islam, S.; Chowdhury, M.A. Nucleic acid amplification: Alternative methods of polymerase chain reaction. J. Pharm. Bioallied. Sci. 2013, 5, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Akanbi, F.S.; Yusof, N.A.; Abdullah, J.; Sulaiman, Y.; Hushiarian, R. Detection of quinoline in G. boninense-infected plants using functionalized multi-walled carbon nanotubes: A field study. Sensors 2017, 17, 1538. [Google Scholar] [CrossRef] [Green Version]
- Isha, A.; Akanbi, F.S.; Yusof, N.A.; Osman, R.; Mui-Yun, W.; Abdullah, S.N.A. An NMR metabolomics approach and detection of Ganoderma boninense-infected oil palm leaves using MWCNT-based electrochemical sensor. J. Nanomater. 2019, 2019, 12. [Google Scholar] [CrossRef] [Green Version]
- Rani, E.; Mohshim, S.A.; Ahmad, M.Z.; Goodacre, R.; Alang Ahmad, S.A.; Wong, L.S. Polymer pen lithography-fabricated DNA arrays for highly sensitive and selective detection of unamplified Ganoderma boninense DNA. Polymers 2019, 11, 561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maznah, Z.; Halimah, M.; Ismail, S.; Idris, A.S. Dissipation of the fungicide hexaconazole in oil palm plantation. Environ. Sci. Pollut. Res. 2015, 22, 19648–19657. [Google Scholar] [CrossRef]
- Muhamad, H.; Zainol, M.; Sahid, I.; Seman, I.A. Determination of hexaconazole in field samples of an oil palm plantation. Drug Test Anal. 2012, 4, 112–117. [Google Scholar] [CrossRef] [PubMed]
- Maluin, F.N.; Hussein, M.Z.; Yusof, N.A.; Fakurazi, S.; Idris, A.S.; Hilmi, N.H.; Jeffery Daim, L.D. A potent antifungal agent for basal stem rot disease treatment in oil palms based on chitosan-dazomet nanoparticles. Int. J. Mol. Sci. 2019, 20, 2247. [Google Scholar] [CrossRef] [Green Version]
- Idris, A.B.; Maizatul, S.M. Stumpt treatment with dazomet for controlling Ganoderma disease in oil palm. MPOB Inf. Ser. 2012, 107, 615–616. [Google Scholar]
- Said, N.; Omar, D.; Nasehi, A.; Wong, M.Y. Pyraclostrobin suppressed Ganoderma basal stem rot (BSR), promoted plant growth and induced early expression of β-1,3-Glucanase in oil palm (Elaeis guineensis). J. Oil Palm Res. 2019, 31, 248–261. [Google Scholar] [CrossRef] [Green Version]
- Yusoff, A.; Ashaari, F.H.M.; Abd Samad, M.A.; Ab Wahab, A.F.F.; Bharudin, I. Identification of soil bacteria with antifungus activity towards palm oil pathogen, Ganoderma boninense. Sains Malays. 2021, 50, 3557–3567. [Google Scholar] [CrossRef]
- Shariffah-Muzaimah, S.A.; Idris, A.S.; Madihah, A.Z.; Dzolkhifli, O.; Kamaruzzaman, S. Isolation of actinomycetes from rhizosphere of oil palm (Elaeis guineensis Jacq.) for antagonism against Ganoderma boninense. J. Oil Palm Res. 2015, 27, 19–29. [Google Scholar]
- Cheong, S.L.; Cheow, Y.L.; Ting, A.S.Y. Characterizing antagonistic activities and host compatibility (via simple endophyte-calli test) of endophytes as biocontrol agents of Ganoderma boninense. Biol. Control 2017, 105, 86–92. [Google Scholar] [CrossRef]
- Angel, L.P.L.; Sundram, S.; Ping, B.T.Y.; Yusof, M.T.; Ismail, I.S. Profiling of anti-fungal activity of Trichoderma virens 159C involved in biocontrol assay of Ganoderma boninense. J. Oil Palm Res. 2018, 30, 83–93. [Google Scholar] [CrossRef]
- Abdul Aziz, S.D.; Jafarah, N.F.; Sabri, S.; Abdul Wahab, M.A.; Balia Yusof, Z.N. Antifungal activity of dichloromethane and hexane extracts of four Malaysian seaweed species against Ganoderma boninense. Malays. Appl. Biol. 2019, 48, 189–196. [Google Scholar]
- Sethuraman, A.; Janzen, F.J.; Weisrock, D.W.; Obrycki, J.J. Insights from population genomics to enhance and sustain biological control of insect pests. Insects 2020, 11, 462. [Google Scholar] [CrossRef] [PubMed]
- Barratt, B.I.P.; Moran, V.C.; Bigler, F.; van Lenteren, J.C. The status of biological control and recommendations for improving uptake for the future. BioControl 2018, 63, 155–167. [Google Scholar] [CrossRef] [Green Version]
- Shariffah-Muzaimah, S.A.; Idris, A.S.; Madihah, A.Z.; Dzolkhifli, O.; Kamaruzzaman, S.; Maizatul-Suriza, M. Characterization of Streptomyces spp. isolated from the rhizosphere of oil palm and evaluation of their ability to suppress basal stem rot disease in oil palm seedlings when applied as powder formulations in a glasshouse trial. World J. Microbiol. Biotechnol. 2017, 34, 15. [Google Scholar] [CrossRef] [PubMed]
- Bolivar-Anillo, H.J.; González-Rodríguez, V.E.; Cantoral, J.M.; García-Sánchez, D.; Collado, I.G.; Garrido, C. Endophytic bacteria Bacillus subtilis, isolated from Zea mays, as potential biocontrol agent against Botrytis cinerea. Biology 2021, 10, 492. [Google Scholar] [CrossRef]
- Angel, L.P.L.; Yusof, M.T.; Ismail, I.S.; Ping, B.T.Y.; Mohamed Azni, I.N.A.; Kamarudin, N.H.; Sundram, S. An in vitro study of the antifungal activity of Trichoderma virens 7b and a profile of its non-polar antifungal components released against Ganoderma boninense. J. Microbiol. 2016, 54, 732–744. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.; Abdullah, S.; Rossall, S.; Chong, K.P. Evaluation of the efficacy and mode of action of biological control for suppression of Ganoderma boninense in oil palm. Pak. J. Bot. 2017, 49, 1193–1199. [Google Scholar]
- Lim, P.; Gansau, J.A.; Chong, K.P. Streptomyces spp. a potential biocontrol agent against Ganoderma boninense of basal stem rot. J. Oil Palm Res. 2018, 30, 265–275. [Google Scholar] [CrossRef]
- Sujarit, K.; Pathom-aree, W.; Mori, M.; Dobashi, K.; Shiomi, K.; Lumyong, S. Streptomyces palmae CMU-AB204T, an antifungal producing-actinomycete, as a potential biocontrol agent to protect palm oil producing trees from basal stem rot disease fungus, Ganoderma boninense. Biol. Control 2020, 148, 104307. [Google Scholar] [CrossRef]
- Sujarit, K.; Mori, M.; Dobashi, K.; Shiomi, K.; Pathom-aree, W.; Lumyong, S. New antimicrobial phenyl alkenoic acids isolated from an oil palm rhizosphere-associated actinomycete, Streptomyces palmae CMU-AB204T. Microorganisms 2020, 8, 350. [Google Scholar] [CrossRef] [Green Version]
- Rebitanim, N.A.; Hanafi, M.M.; Idris, A.S.; Abdullah, S.N.A.; Mohidin, H.; Rebitanim, N.Z. GanoCare® improves oil palm growth and resistance against Ganoderma basal stem rot disease in nursery and field trials. BioMed Res. Int. 2020, 2020, 3063710. [Google Scholar] [CrossRef] [PubMed]
- Nur Sabrina, A.; Sariah, M.; Zaharah, A. Suppression of basal stem rot disease progress in oil palm (Elaeis guineensis) after copper and calcium supplementation. Pertanika J. Trop. Agric. Sci. 2012, 35, 13–24. [Google Scholar]
- Abdullah, S.; Ling, Y.S.; Daim, S.J.; Alexander, A.; Chong, K.P. Ganoderma boninense isolated from Sabah, Malaysia exhibits potent antibacterial activity against clinically important bacterial pathogens. Bangladesh J. Pharmacol. 2018, 13, 10–12. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, S.; Oh, Y.S.; Kwak, M.-K.; Chong, K. Biophysical characterization of antibacterial compounds derived from pathogenic fungi Ganoderma boninense. J Microbiol. 2021, 59, 164–174. [Google Scholar] [CrossRef]
- Tisné, S.; Pomiès, V.; Riou, V.; Syahputra, I.; Cochard, B.; Denis, M. Identification of Ganoderma disease resistance loci using natural field infection of an oil palm multiparental population. G3 Genes Genomes Genet. 2017, 7, 1683–1692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Strain | Source of Isolate | Sample Type | Genome Size | Accession | Reference |
---|---|---|---|---|---|
PER71 | Peninsular Malaysia, Malaysia | Genomic DNA | - | PRJNA182005 | Broad Institute |
NJ3 | North Sumatra, Indonesia | Genomic DNA | 65.03 Mb | PRJNA287769 | [64] |
G3 | North Sumatera, Indonesia | Genomic DNA | 79.24 Mb | PRJNA421251 | [63] |
FGV-M | Peninsular Malaysia, Malaysia | Genomic DNA | 66.57 Mb | PRJNA503786 | [66] |
BRIUMSc | Borneo, Malaysia | Genomic DNA | 52.28 Mb | PRJNA553124 | [65] |
G3 | North Sumatera, Indonesia | Mitochondrial DNA | 86,549 bp | PRJNA421251 | [67] |
Gene(s) | Up-Regulated Genes | Down-Regulated Genes |
---|---|---|
Fungus (G. boninense) [49] | ||
Plant Cell Wall Degrading Enzymes (CWDEs) | ||
multicopper oxidases (AA1_1) | /(5) | - |
glucose-methanol-choline (GMC) oxidoreductases (AA3) | /(4) | - |
peroxidase (AA2) | /(1) | - |
copper radical oxidase (AA5) | /(1) | - |
benzoquinone reductase (AA6) | /(1) | - |
copper dependent lytic polysaccharide monooxygenase (LPMO) (AA9) | /(1) | - |
xyloglucan hydrolases (GH16) | /(2) | - |
carboxylesterase enzymes | /(2) | - |
α-glucosidase (GH31) | /(1) | - |
β-galactosidases (GH35) | /(2) | - |
α-glucuronidases (GH15) | /(2) | - |
β-glucuronidases (GH79) | /(2) | - |
pectate lyases 3 (PL3) | /(2) | - |
pectate lyases 8 (PL8) | /(1) | - |
Fungal Cell Wall Remodeling and/or Degrading Enzymes | ||
chitin synthase (CHS) | /(1) | - |
chitinase | /(1) | /(5) |
endochitinase | /(1) | - |
Beta-glucanase | - | /(2) |
Small Secreted Proteins | ||
hydrophobins | - | /(4) |
cerato platanins | - | /(3) |
Stress Response Proteins | ||
thaumatin-like proteins | - | /(5) |
Protease | ||
metalloproteases | /(5) | - |
Oil palm (E. guineensis) root tissues [43] | ||
Pathogenesis-Related (PR) Proteins | ||
pathogenesis-related protein 1-like (EgPR-1) | / | - |
peroxidases (EgPER) | / | - |
germin-like proteins (EgGLP) | / | - |
chitinases (EgCht) | / | - |
Secondary Cell Wall Biosynthetic Genes | ||
cellulose synthase A catalytic subunits (EgCESA) | / | - |
cellulose synthase-like proteins (EgCSL) | / | - |
expansin-B18-like (EgEXPB18) | / | - |
Lipid Metabolism | ||
GDSL esterase/lipases 5 (EgGLIP5) | - | / |
monogalactosyldiacylglycerol synthase 1 (EgMGD1) | - | / |
Biosynthesis of Phytohormones | ||
allene oxide cyclase 1, chloroplastic-like (EgAOC1) | - | / |
12-oxophytodienoate reductase 1-like (EgOPR1) | - | / |
1-aminocyclopropane-1-carboxylate oxidase-like (EgACO) | - | / |
L-ascorbate L-gulonolactone oxidase-like (EgGULO) | - | / |
Transcriptome Data | Sample | Accession | Reference |
---|---|---|---|
G. boninense | Monokaryon Dikaryon Mating Junction | PRJNA269646 | [69] |
G. boninense at | axenic culture pathogen–oil palm interaction | PRJNA514399 | [72] |
Oil palm root | infected with G. boninense infected with G. boninense + Trichoderma harzianum | PRJEB7252 | [52] [77] |
Oil palm | infected by G. boninense | PRJNA530030 | [74] |
Oil palm leaf | infected with G. boninense | PRJEB17971 | [53] |
Oil palm | early interaction with G. boninense | PRJEB27915 | [43] |
Bio-Control Agent | Dual Culture | Other Test | Reference | ||
---|---|---|---|---|---|
PIRG Value (%) | Test | PIRG Value (%) | Test | ||
Pseudomonas aeruginosa | 70.0 | Dual culture | 80.0 | Culture filtrate | [12] |
Burkholderia cepacia | 55.5 | Dual culture | 65.0 | Culture filtrate | [12] |
Streptomyces hygroscopicus | 50.0–80.0 | Dual culture | 100 | Powder formulation | [96,102] |
Streptomyces ahygroscopicus | 50.0–80.0 | Dual culture | 100 | Powder formulation | [96,102] |
Aspergillus calidoustous BTF07 | 49.5 | Dual culture | - | - | [97] |
Trichoderma asperellum T2 | 47.5 | Dual culture | - | - | [97] |
Trichoderma virens 159C | - | - | 44.3 | Crude extract | [98] |
Sargassum oligocystum | 38.64 | Dual culture | 42.5 | Hexane extract | [99] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bharudin, I.; Ab Wahab, A.F.F.; Abd Samad, M.A.; Xin Yie, N.; Zairun, M.A.; Abu Bakar, F.D.; Abdul Murad, A.M. Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. Biology 2022, 11, 251. https://doi.org/10.3390/biology11020251
Bharudin I, Ab Wahab AFF, Abd Samad MA, Xin Yie N, Zairun MA, Abu Bakar FD, Abdul Murad AM. Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. Biology. 2022; 11(2):251. https://doi.org/10.3390/biology11020251
Chicago/Turabian StyleBharudin, Izwan, Anis Farhan Fatimi Ab Wahab, Muhammad Asyraff Abd Samad, Ng Xin Yie, Madihah Ahmad Zairun, Farah Diba Abu Bakar, and Abdul Munir Abdul Murad. 2022. "Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense" Biology 11, no. 2: 251. https://doi.org/10.3390/biology11020251
APA StyleBharudin, I., Ab Wahab, A. F. F., Abd Samad, M. A., Xin Yie, N., Zairun, M. A., Abu Bakar, F. D., & Abdul Murad, A. M. (2022). Review Update on the Life Cycle, Plant–Microbe Interaction, Genomics, Detection and Control Strategies of the Oil Palm Pathogen Ganoderma boninense. Biology, 11(2), 251. https://doi.org/10.3390/biology11020251