High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives
Abstract
:Simple Summary
Abstract
1. Introduction
2. Human Papillomavirus: Classification, Structure and Replication Cycle
3. Epidemiology of HPV in Lung Cancer
4. HR-HPV-Mediated Lung Carcinogenesis: Potential Mechanisms
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, R. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050. Int. J. Clin. Oncol. 2022, 27, 665–675. [Google Scholar] [CrossRef]
- Mbemi, A.; Khanna, S.; Njiki, S.; Yedjou, C.; Tchounwou, P. Impact of Gene–Environment Interactions on Cancer Development. Int. J. Environ. Res. Public Health 2020, 17, 8089. [Google Scholar] [CrossRef]
- Levin, M.L.; Goldstein, H.; Gerhardt, P.R. Cancer and tobacco smoking; a preliminary report. J. Am. Med. Assoc. 1950, 143, 336–338. [Google Scholar] [CrossRef]
- Rudin, C.M.; Brambilla, E.; Faivre-Finn, C.; Sage, J. Small-cell lung cancer. Nat. Rev. Dis. Prim. 2021, 7, 3. [Google Scholar] [CrossRef]
- Stovold, R.; Blackhall, F.; Meredith, S.; Hou, J.; Dive, C.; White, A. Biomarkers for small cell lung cancer: Neuroendocrine, epithelial and circulating tumour cells. Lung Cancer 2012, 76, 263–268. [Google Scholar] [CrossRef]
- Molina, J.R.; Yang, P.; Cassivi, S.D.; Schild, S.E.; Adjei, A.A. Non-Small Cell Lung Cancer: Epidemiology, Risk Factors, Treatment, and Survivorship. Mayo Clin. Proc. 2008, 83, 584–594. [Google Scholar] [CrossRef]
- Syrjänen, K.J. HPV infections and lung cancer. J. Clin. Pathol. 2002, 55, 885–891. [Google Scholar] [CrossRef] [Green Version]
- Joh, J.; Jenson, A.B.; Moore, G.D.; Rezazedeh, A.; Slone, S.P.; Ghim, S.-J.; Kloecker, G.H. Human papillomavirus (HPV) and Merkel cell polyomavirus (MCPyV) in non small cell lung cancer. Exp. Mol. Pathol. 2010, 89, 222–226. [Google Scholar] [CrossRef]
- Palmarini, M.; Sharp, J.M.; Heras, M.D.L.; Fan, H. Jaagsiekte Sheep Retrovirus Is Necessary and Sufficient To Induce a Contagious Lung Cancer in Sheep. J. Virol. 1999, 73, 6964–6972. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Aziz, H.A.; Nakanishi, Y.; Masuda, S.; Saito, H.; Tsuneyama, K.; Takano, Y. Oncogenic role of JC virus in lung cancer. J. Pathol. 2007, 212, 306–315. [Google Scholar] [CrossRef]
- Becnel, D.; Abdelghani, R.; Nanbo, A.; Avilala, J.; Kahn, J.; Li, L.; Lin, Z. Pathogenic Role of Epstein–Barr Virus in Lung Cancers. Viruses 2021, 13, 877. [Google Scholar] [CrossRef]
- Gheit, T. Mucosal and Cutaneous Human Papillomavirus Infections and Cancer Biology. Front. Oncol. 2019, 9, 355. [Google Scholar] [CrossRef] [Green Version]
- Bzhalava, D.; Guan, P.; Franceschi, S.; Dillner, J.; Clifford, G. A systematic review of the prevalence of mucosal and cutaneous human papillomavirus types. Virology 2013, 445, 224–231. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: A comprehensive review. Clin. Sci. 2017, 131, 2201–2221. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, E.; Freese, U.K.; Gissmann, L.; Mayer, W.; Roggenbuck, B.; Stremlau, A.; Hausen, H.Z. Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 1985, 314, 111–114. [Google Scholar] [CrossRef]
- Zheng, Z.-M. Papillomavirus genome structure, expression, and post-transcriptional regulation. Front. Biosci. 2006, 11, 2286–2302. [Google Scholar] [CrossRef] [Green Version]
- Graham, S.V. Human papillomavirus: Gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Futur. Microbiol. 2010, 5, 1493–1506. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, A.L.; Caodaglio, A.S.; Sichero, L. Regulation of HPV transcription. Clinics 2018, 73, e486s. [Google Scholar] [CrossRef]
- Bletsa, G.; Zagouri, F.; Amoutzias, G.D.; Nikolaidis, M.; Zografos, E.; Markoulatos, P.; Tsakogiannis, D. Genetic variability of the HPV16 early genes and LCR. Present and future perspectives. Expert Rev. Mol. Med. 2021, 23, e19. [Google Scholar] [CrossRef]
- López-Saavedra, A.; González-Maya, L.; Ponce-De-León, S.; García-Carrancá, A.; Mohar, A.; Lizano, M. Functional implication of sequence variation in the long control region and E2 gene among human papillomavirus type 18 variants. Arch. Virol. 2009, 154, 747–754. [Google Scholar] [CrossRef]
- Warowicka, A.; Broniarczyk, J.; Węglewska, M.; Kwaśniewski, W.; Goździcka-Józefiak, A. Dual Role of YY1 in HPV Life Cycle and Cervical Cancer Development. Int. J. Mol. Sci. 2022, 23, 3453. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Egawa, N.; Griffin, H.; Kranjec, C.; Murakami, I. Human papillomavirus molecular biology and disease association. Rev. Med. Virol. 2015, 25 (Suppl. 1), 2–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stubenrauch, F.; Colbert, A.M.E.; Laimins, L.A. Transactivation by the E2 Protein of Oncogenic Human Papillomavirus Type 31 Is Not Essential for Early and Late Viral Functions. J. Virol. 1998, 72, 8115–8123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nishimura, A.; Ono, T.; Ishimoto, A.; Dowhanick, J.J.; Frizzell, M.A.; Howley, P.; Sakai, H. Mechanisms of Human Papillomavirus E2-Mediated Repression of Viral Oncogene Expression and Cervical Cancer Cell Growth Inhibition. J. Virol. 2000, 74, 3752–3760. [Google Scholar] [CrossRef] [Green Version]
- Hughes, F.J.; Romanos, M.A. E1 protein of human papillomavirus is a DNA helicase/ATPase. Nucleic Acids Res. 1993, 21, 5817–5823. [Google Scholar] [CrossRef] [Green Version]
- DeSmet, M.; Kanginakudru, S.; Rietz, A.; Wu, W.-H.; Roden, R.; Androphy, E.J. The Replicative Consequences of Papillomavirus E2 Protein Binding to the Origin Replication Factor ORC2. PLoS Pathog. 2016, 12, e1005934. [Google Scholar] [CrossRef] [Green Version]
- Sekhar, V.; McBride, A.A. Phosphorylation Regulates Binding of the Human Papillomavirus Type 8 E2 Protein to Host Chromosomes. J. Virol. 2012, 86, 10047–10058. [Google Scholar] [CrossRef] [Green Version]
- Doorbar, J. The E4 protein; structure, function and patterns of expression. Virology 2013, 445, 80–98. [Google Scholar] [CrossRef] [Green Version]
- DiMaio, D.; Petti, L.M. The E5 proteins. Virology 2013, 445, 99–114. [Google Scholar] [CrossRef]
- Venuti, A.; Paolini, F.; Nasir, L.; Corteggio, A.; Roperto, S.; Campo, M.S.; Borzacchiello, G. Papillomavirus E5: The smallest oncoprotein with many functions. Mol. Cancer 2011, 10, 140. [Google Scholar] [CrossRef]
- Kim, S.-H.; Juhnn, Y.-S.; Kang, S.; Park, S.-W.; Sung, M.-W.; Bang, Y.-J.; Song, Y.-S. Human papillomavirus 16 E5 up-regulates the expression of vascular endothelial growth factor through the activation of epidermal growth factor receptor, MEK/ ERK1,2 and PI3K/Akt. Cell Mol. Life Sci. 2006, 63, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Ashrafi, G.H.; Haghshenas, M.R.; Marchetti, B.; O’Brien, P.M.; Campo, M.S. E5 protein of human papillomavirus type 16 selectively downregulates surface HLA class I. Int. J. Cancer 2004, 113, 276–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yugawa, T.; Kiyono, T. Molecular mechanisms of cervical carcinogenesis by high-risk human papillomaviruses: Novel functions of E6 and E7 oncoproteins. Rev. Med. Virol. 2009, 19, 97–113. [Google Scholar] [CrossRef] [PubMed]
- Melsheimer, P.; Vinokurova, S.; Wentzensen, N.; Bastert, G.; Doeberitz, M.V.K. DNA Aneuploidy and Integration of Human Papillomavirus Type 16 E6/E7 Oncogenes in Intraepithelial Neoplasia and Invasive Squamous Cell Carcinoma of the Cervix Uteri. Clin. Cancer Res. 2004, 10, 3059–3063. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malecka, K.A.; Fera, D.; Schultz, D.C.; Hodawadekar, S.; Reichman, M.; Donover, P.S.; Murphy, M.E.; Marmorstein, R. Identification and Characterization of Small Molecule Human Papillomavirus E6 Inhibitors. ACS Chem. Biol. 2014, 9, 1603–1612. [Google Scholar] [CrossRef]
- Veldman, T.; Liu, X.; Yuan, H.; Schlegel, R. Human papillomavirus E6 and Myc proteins associate in vivo and bind to and cooperatively activate the telomerase reverse transcriptase promoter. Proc. Natl. Acad. Sci. USA 2003, 100, 8211–8216. [Google Scholar] [CrossRef] [Green Version]
- Scheffner, M.; Whitaker, N.J. Human papillomavirus-induced carcinogenesis and the ubiquitin–proteasome system. Semin. Cancer Biol. 2003, 13, 59–67. [Google Scholar] [CrossRef]
- Martin, L.G.; Demers, G.W.; Galloway, D.A. Disruption of the G 1 /S Transition in Human Papillomavirus Type 16 E7-Expressing Human Cells Is Associated with Altered Regulation of Cyclin E. J. Virol. 1998, 72, 975–985. [Google Scholar] [CrossRef] [Green Version]
- Zerfass, K.; Schulze, A.; Spitkovsky, D.; Friedman, V.; Henglein, B.; Jansen-Dürr, P. Sequential activation of cyclin E and cyclin A gene expression by human papillomavirus type 16 E7 through sequences necessary for transformation. J. Virol. 1995, 69, 6389–6399. [Google Scholar] [CrossRef] [Green Version]
- Narisawa-Saito, M.; Kiyono, T. Basic mechanisms of high-risk human papillomavirus-induced carcinogenesis: Roles of E6 and E7 proteins. Cancer Sci. 2007, 98, 1505–1511. [Google Scholar] [CrossRef]
- Gupta, S.; Kumar, P.; Das, B.C. HPV: Molecular pathways and targets. Curr. Probl. Cancer 2018, 42, 161–174. [Google Scholar] [CrossRef] [PubMed]
- Doorbar, J.; Griffin, H. Refining our understanding of cervical neoplasia and its cellular origins. Papillomavirus Res. 2019, 7, 176–179. [Google Scholar] [CrossRef] [PubMed]
- Beutner, K.R.; Tyring, S. Human Papillomavirus and Human Disease. Am. J. Med. 1997, 102, 9–15. [Google Scholar] [CrossRef]
- Cubie, H.A. Diseases associated with human papillomavirus infection. Virology 2013, 445, 21–34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafti-Keramat, S.; Handisurya, A.; Kriehuber, E.; Meneguzzi, G.; Slupetzky, K.; Kirnbauer, R. Different Heparan Sulfate Proteoglycans Serve asCellular Receptors for HumanPapillomaviruses. J. Virol. 2003, 77, 13125–13135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Richards, R.M.; Lowy, D.R.; Schiller, J.T.; Day, P.M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc. Natl. Acad. Sci. USA 2006, 103, 1522–1527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spoden, G.; Freitag, K.; Husmann, M.; Boller, K.; Sapp, M.; Lambert, C.; Florin, L. Clathrin- and Caveolin-Independent Entry of Human Papillomavirus Type 16—Involvement of Tetraspanin-Enriched Microdomains (TEMs). PLoS ONE 2008, 3, e3313. [Google Scholar] [CrossRef] [Green Version]
- DiGiuseppe, S.; Bienkowska-Haba, M.; Guion, L.G.M.; Keiffer, T.R.; Sapp, M. Human Papillomavirus Major Capsid Protein L1 Remains Associated with the Incoming Viral Genome throughout the Entry Process. J. Virol. 2017, 91. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Iv, W.H.Y.; Viscidi, R.P.; Roden, R.B.S. Interaction of L2 with ॆ-Actin Directs Intracellular Transport of Papillomavirus and Infection. J. Biol. Chem. 2003, 278, 12546–12553. [Google Scholar] [CrossRef] [Green Version]
- Pyeon, D.; Pearce, S.M.; Lank, S.M.; Ahlquist, P.; Lambert, P.F. Establishment of Human Papillomavirus Infection Requires Cell Cycle Progression. PLOS Pathog. 2009, 5, e1000318. [Google Scholar] [CrossRef]
- Fisher, C. Recent Insights into the Control of Human Papillomavirus (HPV) Genome Stability, Loss, and Degradation. J. Clin. Med. 2015, 4, 204–230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Liu, H.; Ge, H.; Ajiro, M.; Sharma, N.R.; Meyers, C.; Morozov, P.; Tuschl, T.; Klar, A.; Court, D.; et al. Viral DNA Replication Orientation and hnRNPs Regulate Transcription of the Human Papillomavirus 18 Late Promoter. mBio 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Longworth, M.S.; Laimins, L.A. Pathogenesis of Human Papillomaviruses in Differentiating Epithelia. Microbiol. Mol. Biol. Rev. 2004, 68, 362–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mole, S.; Faizo, A.; Hernandez-Lopez, H.; Griffiths, M.; Stevenson, A.; Roberts, S.; Graham, S.V. Human papillomavirus type 16 infection activates the host serine arginine protein kinase 1 (SRPK1)—Splicing factor axis. J. Gen. Virol. 2020, 101, 523–532. [Google Scholar] [CrossRef] [PubMed]
- Muñoz, N.; Castellsagué, X.; de González, A.B.; Gissmann, L. Chapter 1: HPV in the etiology of human cancer. Vaccine 2006, 24 (Suppl. 3), S1–S10. [Google Scholar] [CrossRef]
- Johansson, C.; Somberg, M.; Li, X.; Winquist, E.B.; Fay, J.; Ryan, F.; Pim, D.; Banks, L.; Schwartz, S. HPV-16 E2 contributes to induction of HPV-16 late gene expression by inhibiting early polyadenylation. EMBO J. 2012, 31, 3212–3227. [Google Scholar] [CrossRef]
- Ault, K.A. Epidemiology and Natural History of Human Papillomavirus Infections in the Female Genital Tract. Infect. Dis. Obstet. Gynecol. 2006, 2006, 40470. [Google Scholar] [CrossRef]
- Park, T.W.; Fujiwara, H.; Wright, T.C. Molecular biology of cervical cancer and its precursors. Cancer 1995, 76, 1902–1913. [Google Scholar] [CrossRef]
- Duensing, S.; Münger, K. Mechanisms of genomic instability in human cancer: Insights from studies with human papillomavirus oncoproteins. Int. J. Cancer 2003, 109, 157–162. [Google Scholar] [CrossRef]
- Doorbar, J. Molecular biology of human papillomavirus infection and cervical cancer. Clin. Sci. 2006, 110, 525–541. [Google Scholar] [CrossRef]
- Syrjänen, K.J. Condylomatous Changes in Neoplastic Bronchial Epithelium. Report of a case. Respiration 1979, 38, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Syrjänen, K.J. Epithelial Lesions Suggestive of a Condylomatous Origin Found Closely Associated with Invasive Bronchial Squamous Cell Carcinomas. Respiration 1980, 40, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Stremlau, A.; Gissmann, L.; Ikenberg, H.; Stark, M.; Bannasch, P.; Hausen, H.Z. Human papillomavirus type 16 related DNA in an anaplastic carcinoma of the lung. Cancer 1985, 55, 1737–1740. [Google Scholar] [CrossRef]
- Syrjänen, K.; Syrjänen, S.; Kellokoski, J.; Kärjä, J.; Mäntyjärvi, R. Human papillomavirus (HPV) type 6 and 16 DNA sequences in bronchial squamous cell carcinomas demonstrated by in situ DNA hybridization. Lung 1989, 167, 33–42. [Google Scholar] [CrossRef]
- Béjui-Thivolet, F.; Liagre, N.; Chignol, M.C.; Chardonnet, Y.; Patricot, L.M. Detection of human papillomavirus DNA in squamous bronchial metaplasia and squamous cell carcinomas of the lung by in situ hybridization using biotinylated probes in paraffin-embedded specimens. Hum. Pathol. 1990, 21, 111–116. [Google Scholar] [CrossRef]
- Thomas, P.; De Lamballerie, X.; Garbe, L.; Douagui, H.; Kleisbauer, J.P. Detection of human papillomavirus DNA in primary lung carcinoma by nested polymerase chain reaction. Cell. Mol. Biol. 1995, 41, 1093–1097. [Google Scholar]
- Noutsou, A.; Koffa, M.; Ergazaki, M.; Siafakas, N.; Spandidos, D. Detection of human papilloma virus (HPV) and K-ras mutations in human lung carcinomas. Int. J. Oncol. 1996, 8, 1089–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Welt, A.; Hummel, M.; Niedobitek, G.; Stein, H. Human papillomavirus infection is not associated with bronchial carcinoma: Evaluation by in situ hybridization and the polymerase chain reaction. J. Pathol. 1997, 181, 276–280. [Google Scholar] [CrossRef]
- Papadopoulou, K.; Labropoulou, V.; Davaris, P.; Mavromara, P.; Tsimara-Papastamatiou, H. Detection of human papillomaviruses in squamous cell carcinomas of the lung. Virchows Arch. 1998, 433, 49–54. [Google Scholar] [CrossRef]
- Gorgoulis, V.G.; Zacharatos, P.; Kotsinas, A.; Kyroudi, A.; Rassidakis, A.N.; A Ikonomopoulos, J.; Barbatis, C.; Herrington, C.S.; Kittas, C. Human papilloma virus (HPV) is possibly involved in laryngeal but not in lung carcinogenesis. Hum. Pathol. 1999, 30, 274–283. [Google Scholar] [CrossRef]
- Hennig, E.M.; Suo, Z.; Karlsen, F.; Holm, R.; Thoresen, S.; Nesland, J.M. HPV positive bronchopulmonary carcinomas in women with previous high-grade cervical intraepithelial neoplasia (CIN III). Acta Oncol. 1999, 38, 639–648. [Google Scholar] [PubMed]
- Xing, L.Q.; Liu, H.R.; Si, J.Y. Detection of human papillomavirus DNA in squamous cell carcinomas of the lung by multiple polymerase chain reaction. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chin. J. Tuberc. Respir. Dis. 1993, 16, 275–277, 319. [Google Scholar]
- Szabó, I.; Sepp, R.; Nakamoto, K.; Maeda, M.; Sakamoto, H.; Uda, H. Human papillomavirus not found in squamous and large cell lung carcinomas by polymerase chain reaction. Cancer 1994, 73, 2740–2744. [Google Scholar] [CrossRef]
- Tsuhako, K.; Nakazato, I.; Hirayasu, T.; Sunakawa, H.; Iwamasa, T. Human papillomavirus DNA in adenosquamous carcinoma of the lung. J. Clin. Pathol. 1998, 51, 741–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.R.; Xing, L.Q.; Si, J.Y. A study of human papillary virus infection by in situ hybridization and histopathology in squamous cell carcinoma of the lung. Zhonghua bing li xue za zhi = Chin. J. Pathol. 1994, 23, 299–301. [Google Scholar]
- Hu, K.; Li, Q.; Yang, J.; Hu, S. Detection of human papillomavirus types 16, 18 DNA related sequences in bronchogenic carcinoma. Zhonghua Shi Yan He Lin Chuang Bing Du Xue Za Zhi 1997, 11, 147–149. [Google Scholar]
- Yousem, S.A.; Ohori, N.P.; Sonmez-Alpan, E. Occurrence of Human Papillomavirus DNA in Primary Lung Neoplasms. Cancer 1992, 69, 693–697. [Google Scholar] [CrossRef]
- Bohlmeyer, T.; Le, T.N.; Shroyer, A.L.; Markham, N.; Shroyer, K.R. Detection of Human Papillomavirus in Squamous Cell Carcinomas of the Lung by Polymerase Chain Reaction. Am. J. Respir. Cell Mol. Biol. 1998, 18, 265–269. [Google Scholar] [CrossRef]
- Clavel, C.E.; Nawrocki, B.; Bosseaux, B.; Poitevin, G.; Putaud, I.C.; Mangeonjean, C.C.; Monteau, M.; Birembaut, P.L. Detection of human papillomavirus DNA in bronchopulmonary carcinomas by hybrid capture II: A study of 185 tumors. Cancer 2000, 88, 1347–1352. [Google Scholar] [CrossRef]
- Miąsko, A.; Niklińska, W.; Nikliński, J.; Chyczewska, E.; Naumnik, W.; Chyczewski, L. Detection of human papillomavirus in non-small cell lung carcinoma by polymerase chain reaction. Folia Histochem. Cytobiol. 2001, 39, 127–128. [Google Scholar]
- Kaya, H.; Kotiloğlu, E.; Inanli, S.; Ekicioğlu, G.; Bozkurt, S.U.; Tutkun, A.; Küllü, S. Prevalence of human papillomavirus (HPV) DNA in larynx and lung carcinomas. Pathologica 2001, 93, 531–534. [Google Scholar] [PubMed]
- Zafer, E.; Ergun, M.A.; Alver, G.; Sahin, F.I.; Yavuzer, S.; Ekmekci, A. Detection and Typing of Human Papillomavirus in Non-Small Cell Lung Cancer. Respiration 2004, 71, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Brouchet, L.; Valmary, S.; Dahan, M.; Didier, A.; Galateau-Salle, F.; Brousset, P.; Degano, B. Detection of oncogenic virus genomes and gene products in lung carcinoma. Br. J. Cancer 2005, 92, 743–746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coissard, C.J.; Besson, G.; Polette, M.C.; Monteau, M.; Birembaut, P.L.; Clavel, C.E. Prevalence of human papillomaviruses in lung carcinomas: A study of 218 cases. Mod. Pathol. 2005, 18, 1606–1609. [Google Scholar] [CrossRef] [Green Version]
- Ciotti, M.; Giuliani, L.; Ambrogi, V.; Ronci, C.; Benedetto, A.; Mineo, T.C.; Syrjänen, K.; Favalli, C. Detection and expression of human papillomavirus oncogenes in non-small cell lung cancer. Oncol. Rep. 2006, 16, 183–189. [Google Scholar] [CrossRef] [PubMed]
- Giuliani, L.; Jaxmar, T.; Casadio, C.; Gariglio, M.; Manna, A.; D’Antonio, D.; Syrjanen, K.; Favalli, C.; Ciotti, M. Detection of oncogenic viruses (SV40, BKV, JCV, HCMV, HPV) and p53 codon 72 polymorphism in lung carcinoma. Lung Cancer 2007, 57, 273–281. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Y.W.; Chiou, H.L.; Sheu, G.T.; Hsieh, L.L.; Chen, J.T.; Chen, C.Y.; Su, J.M.; Lee, H. The association of human papillomavirus 16/18 infection with lung cancer among nonsmoking Taiwanese women. Cancer Res. 2001, 61, 2799–2803. [Google Scholar]
- Hsu, N.Y.; Cheng, Y.W.; Chan, I.P.; Ho, H.C.; Chen, C.Y.; Hsu, C.P.; Lin, M.H.; Chou, M.C. Association between expression of human papillomavirus 16/18 E6 oncoprotein and survival in patients with stage I non-small cell lung cancer. Oncol. Rep. 2009, 21, 81–87. [Google Scholar]
- Yu, Y.; Yang, A.; Hu, S.; Yan, H. Correlation of HPV-16/18 infection of human papillomavirus with lung squamous cell carcinomas in Western China. Oncol. Rep. 2009, 21, 1627–1632. [Google Scholar]
- Xu, Y.; Cheng, B.; Pan, H.; Wu, A.; Zhang, L. The Relationship between the Status of Human Papillomavirus 16/18 Infection and the Expression of Bcl-2 and Bax in Squamous Cell Carcinomas of the Lung. Zhongguo Fei Ai Za Zhi 2009, 12, 849–852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, T.; Han, M.; Yang, Z.H.; Liu, L.X.; Chen, Y.; Zhang, L.; Hu, H.Z.; Xi, M.R. Variation of human papillomavirus 16 in cervical and lung cancers in Sichuan, China. Acta Virol. 2010, 54, 247–253. [Google Scholar] [CrossRef] [PubMed]
- Fei, Y.; Yang, J.; Hsieh, W.-C.; Wu, J.-Y.; Wu, T.-C.; Goan, Y.-G.; Lee, H.; Cheng, Y.-W. Different Human Papillomavirus 16/18 Infection in Chinese Non-Small Cell Lung Cancer Patients Living in Wuhan, China. Jpn. J. Clin. Oncol. 2006, 36, 274–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.; Wang, Y.; Wang, A.; Jiang, R.; Pan, H.; Huang, B.; Lu, Y. Human papillomavirus type 16 and 18 infection is associated with lung cancer patients from the central part of China. Oncol. Rep. 1994, 20, 333–339. [Google Scholar] [CrossRef] [Green Version]
- Miyagi, J.; Tsuhako, K.; Kinjo, T.; Iwamasa, T.; Hirayasu, T. Recent striking changes in histological differentiation and rate of human papillomavirus infection in squamous cell carcinoma of the lung in Okinawa, a subtropical island in southern Japan. J. Clin. Pathol. 2000, 53, 676–684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.S.; Chang, Y.S.; Shin, J.H.; Kim, D.J.; Chung, K.Y.; Shin, D.H.; Moon, J.W.; Kang, S.M.; Hahn, C.H.; Kim, Y.S.; et al. The Prevalence of Human Papillomavirus Infection in Korean Non-Small Cell Lung Cancer Patients. Yonsei Med. J. 2007, 48, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadji, S.A.; Mokhtari-Azad, T.; Mahmoodi, M.; Yahyapour, Y.; Naghshvar, F.; Torabizadeh, J.; Ziaee, A.A.; Nategh, R. Relationship between lung cancer and human papillomavirus in north of Iran, Mazandaran province. Cancer Lett. 2007, 248, 41–46. [Google Scholar] [CrossRef]
- Lim, W.-T.; Chuah, K.L.; Leong, S.S.; Tan, E.H.; Toh, C.K. Assessment of human papillomavirus and Epstein-Barr virus in lung adenocarcinoma. Oncol. Rep. 2009, 21, 971–975. [Google Scholar] [CrossRef] [Green Version]
- Castillo, A.; Aguayo, F.; Koriyama, C.; Shuyama, K.; Akiba, S.; Herrera-Goepfert, R.; Carrascal, E.; Klinge, G.; Sánchez, J.; Eizuru, Y. Human papillomavirus in lung carcinomas among three Latin American countries. Oncol. Rep. 2006, 15, 883–888. [Google Scholar] [CrossRef]
- Aguayo, F.; Castillo, A.; Koriyama, C.; Higashi, M.; Itoh, T.; Capetillo, M.; Shuyama, K.; Corvalan, A.; Eizuru, Y.; Akiba, S. Human papillomavirus-16 is integrated in lung carcinomas: A study in Chile. Br. J. Cancer 2007, 97, 85–91. [Google Scholar] [CrossRef]
- Branica, B.V.; Smojver-Jezek, S.; Juros, Z.; Grgić, S.; Srpak, N.; Mitrecić, D.; Gajović, S. Detection of human papillomaviruses type 16, 18 and 33 in bronchial aspirates of lung carcinoma patients by polymerase chain reaction: A study of 84 cases in Croatia. Coll. Antropol. 2010, 34, 159–162. [Google Scholar]
- Carpagnano, G.E.; Koutelou, A.; Natalicchio, M.I.; Martinelli, D.; Ruggieri, C.; Di Taranto, A.; Antonetti, R.; Carpagnano, F.; Barbaro, M.P.F. HPV in exhaled breath condensate of lung cancer patients. Br. J. Cancer 2011, 105, 1183–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Syrjänen, K.; Silvoniemi, M.; Salminen, E.; Vasankari, T.; Syrjänen, S. Detection of human papillomavirus genotypes in bronchial cancer using sensitive multimetrix assay. Anticancer Res. 2012, 32, 625–631. [Google Scholar] [PubMed]
- Galvan, A.; Noci, S.; Taverna, F.; Lombardo, C.; Franceschi, S.; Pastorino, U.; Dragani, T.A. Testing of human papillomavirus in lung cancer and non-tumor lung tissue. BMC Cancer 2012, 12, 512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarchianaki, E.; Derdas, S.P.; Ntaoukakis, M.; Vakonaki, E.; Lagoudaki, E.D.; Lasithiotaki, I.; Sarchianaki, A.; Koutsopoulos, A.; Symvoulakis, E.K.; Spandidos, D.A.; et al. Detection and genotype analysis of human papillomavirus in non-small cell lung cancer patients. Tumor Biol. 2013, 35, 3203–3209. [Google Scholar] [CrossRef] [PubMed]
- Argyri, E.; Tsimplaki, E.; Marketos, C.; Politis, G.; Panotopoulou, E. Investigating the role of human papillomavirus in lung cancer. Papillomavirus Res. 2016, 3, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Shikova, E.; Ivanova, Z.; Alexandrova, D.; Shindov, M.; Lekov, A. Human papillomavirus prevalence in lung carcinomas in Bulgaria. Microbiol. Immunol. 2017, 61, 427–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jaworek, H.; Koudelakova, V.; Slavkovsky, R.; Drabek, J.; Hajduch, M. The absence of high-risk human papillomavirus in Czech non-small cell lung cancer cases. Biomed. Pap. 2020, 164, 71–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaussade, H.; Le Marec, F.; Coureau, G.; Leleux, O.; Neau, D.; Lazaro, E.; Amadeo, B.; Duffau, P.; Ferrand, H.; Courtault, C.; et al. Incidence of lung and human papilloma virus-associated malignancies in HIV-infected patients. AIDS 2021, 36, 665–673. [Google Scholar] [CrossRef]
- Sirera, G.; Videla, S.; Saludes, V.; Castellà, E.; Sanz, C.; Ariza, A.; Clotet, B.; Martró, E. Prevalence of HPV-DNA and E6 mRNA in lung cancer of HIV-infected patients. Sci. Rep. 2022, 12, 13196. [Google Scholar] [CrossRef]
- Koriyama, C.; Baba, M.; Castillo, A.; Yanagi, M.; Matsumoto, H.; Natsugoe, S.; Shuyama, K.Y.; Khan, N.; Higashi, M.; Itoh, T.; et al. Human papillomavirus is frequently detected in gefitinib-responsive lung adenocarcinomas. Oncol. Rep. 2010, 23, 1085–1092. [Google Scholar] [CrossRef]
- Iwakawa, R.; Kohno, T.; Enari, M.; Kiyono, T.; Yokota, J. Prevalence of human papillomavirus 16/18/33 infection and p53 mutation in lung adenocarcinoma. Cancer Sci. 2010, 101, 1891–1896. [Google Scholar] [CrossRef] [PubMed]
- Aguayo, F.; Anwar, M.; Koriyama, C.; Castillo, A.; Sun, Q.; Morewaya, J.; Eizuru, Y.; Akiba, S. Human papillomavirus-16 presence and physical status in lung carcinomas from Asia. Infect. Agents Cancer 2010, 5, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goto, A.; Li, C.-P.; Ota, S.; Niki, T.; Ohtsuki, Y.; Kitajima, S.; Yonezawa, S.; Koriyama, C.; Akiba, S.; Uchima, H.; et al. Human papillomavirus infection in lung and esophageal cancers: Analysis of 485 Asian cases. J. Med. Virol. 2011, 83, 1383–1390. [Google Scholar] [CrossRef] [PubMed]
- Jafari, H.; Gharemohammadlou, R.; Fakhrjou, A.; Ebrahimi, A.; Nejati-Koshki, K.; Nadri, M.; Sakhinia, E. Genotyping of Human Papillomavirus and TP53 Mutaions at Exons 5 to 7 in Lung Cancer Patients from Iran. BioImpacts 2013, 3, 135–140. [Google Scholar] [CrossRef]
- Yu, Y.; Yang, A.; Hu, S.; Zhang, J.; Yan, H. Significance of human papillomavirus 16/18 infection in association with p53 mutation in lung carcinomas. Clin. Respir. J. 2012, 7, 27–33. [Google Scholar] [CrossRef]
- Fan, X.; Yu, K.; Wu, J.; Shao, J.; Zhu, L.; Zhang, J. Correlation between squamous cell carcinoma of the lung and human papillomavirus infection and the relationship to expression of p53 and p16. Tumor Biol. 2014, 36, 3043–3049. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, X.; Yang, Y.; Zhao, X.; Xue, J.; Zhang, W.; Yang, A. Effect of FHIT loss and p53 mutation on HPV-infected lung carcinoma development. Oncol. Lett. 2015, 10, 392–398. [Google Scholar] [CrossRef] [Green Version]
- Al-Shabbani, N. Detection of Human Papilloma Virus (Type 16 and 18) in Cytological Samples in Patients with Lung Cancer. An Evaluation by Chromogenic In Situ Hybridization Technique. Redox Biol. 2015, 5, 416. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Deng, F.; Qian, L.-T.; Meng, S.-P.; Zhang, Y.; Shan, W.-L.; Zhang, X.-L.; Wang, B.-L. Association between human papillomavirus and EGFR mutations in advanced lung adenocarcinoma. Oncol. Lett. 2016, 12, 1953–1958. [Google Scholar] [CrossRef]
- Xiong, W.M.; He, F.; Xiao, R.D.; Yu, T.T.; Zhang, X.; Liu, Z.Q.; Xu, Q.P.; Cai, L. Association between human papillomavirus infection and lung cancer. Zhonghua Liu Xing Bing Xue Za Zhi 2016, 37, 1658–1661. [Google Scholar]
- He, F.; Xiong, W.; Yu, F.; Xiao, R.; Ye, H.; Li, W.; Liu, Z.; Hu, Z.; Cai, L. Human papillomavirus infection maybe not associated with primary lung cancer in the Fujian population of China. Thorac. Cancer 2020, 11, 561–569. [Google Scholar] [CrossRef] [PubMed]
- Rezaei, M.; Mostafaei, S.; Aghaei, A.; Hosseini, N.; Darabi, H.; Nouri, M.; Etemadi, A.; Neill, A.O.; Nahand, J.S.; Mirzaei, H.; et al. The association between HPV gene expression, inflammatory agents and cellular genes involved in EMT in lung cancer tissue. BMC Cancer 2020, 20, 916. [Google Scholar] [CrossRef] [PubMed]
- Hussen, B.M.; Ahmadi, G.; Marzban, H.; Azar, M.E.F.; Sorayyayi, S.; Karampour, R.; Nahand, J.S.; Hidayat, H.J.; Moghoofei, M. The role of HPV gene expression and selected cellular MiRNAs in lung cancer development. Microb. Pathog. 2020, 150, 104692. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yin, Q.; Zhou, Y.-L.; He, L.; Zou, Z.-Q.; Dai, X.-Y.; Xia, W. Evaluation of microRNAs as potential biomarkers in circulating HPV-DNA-positive non-small cell lung cancer patients. Cancer Biol. Ther. 2021, 22, 136–148. [Google Scholar] [CrossRef]
- Zou, D.-J.; Zhao, Y.-B.; Yang, J.-H.; Xu, H.-T.; Li, Q.-C.; Wu, G.-P. Expression and Significance of HPV16 E6/E7 mRNAs in the Bronchial Brush and TBNA Cells of Patients with Small Cell Lung Cancer. Technol. Cancer Res. Treat. 2021, 20. [Google Scholar] [CrossRef]
- Huang, J.-Y.; Lin, C.; Tsai, S.C.-S.; Lin, F.C.-F. Human Papillomavirus Is Associated With Adenocarcinoma of Lung: A Population-Based Cohort Study. Front. Med. 2022, 9, 932196. [Google Scholar] [CrossRef]
- Badillo-Almaraz, I.; Zapata-Benavides, P.; Saavedra-Alonso, S.; Zamora-Avila, D.; Reséndez-Pérez, D.; Tamez-Guerra, R.; Herrera-Esparza, R.; Rodríguez-Padilla, C. Human Papillomavirus 16/18 Infections in Lung Cancer Patients in Mexico. Intervirology 2013, 56, 310–315. [Google Scholar] [CrossRef]
- Koshiol, J.; Rotunno, M.; Gillison, M.L.; Van Doorn, L.-J.; Chaturvedi, A.K.; Tarantini, L.; Song, H.; Quint, W.G.V.; Struijk, L.; Goldstein, A.M.; et al. Assessment of Human Papillomavirus in Lung Tumor Tissue. JNCI J. Natl. Cancer Inst. 2011, 103, 501–507. [Google Scholar] [CrossRef]
- Yanagawa, N.; Wang, A.; Kohler, D.; Santos, G.D.C.; Sykes, J.; Xu, J.; Pintilie, M.; Tsao, M. Human papilloma virus genome is rare in North American non-small cell lung carcinoma patients. Lung Cancer 2013, 79, 215–220. [Google Scholar] [CrossRef]
- Chang, S.Y.; Keeney, M.; Law, M.; Donovan, J.; Aubry, M.-C.; Garcia, J. Detection of human papillomavirus in non–small cell carcinoma of the lung. Hum. Pathol. 2015, 46, 1592–1597. [Google Scholar] [CrossRef]
- Colombara, D.V.; Manhart, L.E.; Carter, J.J.; Hawes, S.E.; Weiss, N.S.; Hughes, J.P.; Barnett, M.J.; Goodman, G.E.; Smith, J.S.; Qiao, Y.-L.; et al. Prior human polyomavirus and papillomavirus infection and incident lung cancer: A nested case–control study. Cancer Causes Control 2015, 26, 1835–1844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Oliveira, T.H.A.; Amaral, C.M.D.; Marcos, B.D.F.S.; Nascimento, K.C.G.; Rios, A.C.D.M.; Quixabeira, D.C.A.; Muniz, M.T.C.; Neto, J.D.C.S.; de Freitas, A.C. Presence and activity of HPV in primary lung cancer. J. Cancer Res. Clin. Oncol. 2018, 144, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Silva, E.M.; Mariano, V.S.; Pastrez, P.R.A.; Pinto, M.C.; Nunes, E.M.; Sichero, L.; Villa, L.L.; Scapulatempo-Neto, C.; Syrjanen, K.J.; Longatto-Filho, A. Human papillomavirus is not associated to non-small cell lung cancer: Data from a prospective cross-sectional study. Infect. Agents Cancer 2019, 14, 18. [Google Scholar] [CrossRef] [PubMed]
- Karnosky, J.; Dietmaier, W.; Knuettel, H.; Freigang, V.; Koch, M.; Koll, F.; Zeman, F.; Schulz, C. HPV and lung cancer: A systematic review and meta-analysis. Cancer Rep. 2021, 4, e1350. [Google Scholar] [CrossRef] [PubMed]
- Mittal, S.; Banks, L. Molecular mechanisms underlying human papillomavirus E6 and E7 oncoprotein-induced cell transformation. Mutat. Res. Mutat. Res. 2017, 772, 23–35. [Google Scholar] [CrossRef]
- Aguayo, F.C.M.; González, C.; Gheit, T.; Tommasino, M.; Corvalán, A. Role of HPV-16 physical status (episomal/integrated) in lung cancer from Chile. In Proceedings of the American Society for Virology, 29th Annual Meeting, Bozeman, MT, USA, 17–21 July 2010. [Google Scholar]
- Szymonowicz, E.A.K.A.; Chen, J. Biological and clinical aspects of HPV-related cancers. Cancer Biol. Med. 2020, 17, 864–878. [Google Scholar] [CrossRef]
- Pinatti, L.; Walline, H.; Carey, T. Human Papillomavirus Genome Integration and Head and Neck Cancer. J. Dent. Res. 2017, 97, 691–700. [Google Scholar] [CrossRef]
- Bodelon, C.; Untereiner, M.E.; Machiela, M.J.; Vinokurova, S.; Wentzensen, N. Genomic characterization of viral integration sites in HPV-related cancers. Int. J. Cancer 2016, 139, 2001–2011. [Google Scholar] [CrossRef]
- Oyervides-Muñoz, M.A.; Pérez-Maya, A.A.; Rodríguez-Gutiérrez, H.F.; Gómez-Macias, G.S.; Fajardo, O.R.; Trevino, V.; Barrera-Saldaña, H.A.; Garza-Rodríguez, M.L. Understanding the HPV integration and its progression to cervical cancer. Infect. Genet. Evol. 2018, 61, 134–144. [Google Scholar] [CrossRef]
- Senapati, R.; Senapati, N.N.; Dwibedi, B. Molecular mechanisms of HPV mediated neoplastic progression. Infect. Agents Cancer 2016, 11, 59. [Google Scholar] [CrossRef]
- Wentzensen, N.; Vinokurova, S.; Doeberitz, M.V.K. Systematic Review of Genomic Integration Sites of Human Papillomavirus Genomes in Epithelial Dysplasia and Invasive Cancer of the Female Lower Genital Tract. Cancer Res. 2004, 64, 3878–3884. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akagi, K.; Li, J.; Broutian, T.R.; Padilla-Nash, H.; Xiao, W.; Jiang, B.; Rocco, J.W.; Teknos, T.N.; Kumar, B.; Wangsa, D.; et al. Genome-wide analysis of HPV integration in human cancers reveals recurrent, focal genomic instability. Genome Res. 2013, 24, 185–199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, F.; Cao, M.; Shi, Q.; Chen, H.; Wang, Y.; Li, X. Integration of the full-length HPV16 genome in cervical cancer and Caski and Siha cell lines and the possible ways of HPV integration. Virus Genes 2015, 50, 210–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chen, J.-H.; Richard, K.; Chen, P.-Y.; Christiani, D.C. Lung adenocarcinoma and human papillomavirus infection. Cancer 2004, 101, 1428–1436. [Google Scholar] [CrossRef]
- Chen, M.; Wang, Y.; Wang, L.; Shen, C.; Chen, C.; Lee, H. PD-L1 expressed from tumor cells promotes tumor growth and invasion in lung cancer via modulating TGF-β1/SMAD4 expression. Thorac. Cancer 2022, 13, 1322–1332. [Google Scholar] [CrossRef] [PubMed]
- Tung, M.-C.; Lin, P.-L.; Cheng, Y.-W.; Wu, D.-W.; Yeh, S.-D.; Chen, C.-Y.; Lee, H. Reduction of microRNA-184 by E6 oncoprotein confers cisplatin resistance in lung cancer via increasing Bcl-2. Oncotarget 2016, 7, 32362–32374. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.-H.; Wu, J.-Y.; Cheng, Y.-W.; Chen, C.-Y.; Lee, M.-C.; Goan, Y.-G.; Lee, H. cIAP2 Upregulated by E6 Oncoprotein via Epidermal Growth Factor Receptor/Phosphatidylinositol 3-Kinase/AKT Pathway Confers Resistance to Cisplatin in Human Papillomavirus 16/18–Infected Lung Cancer. Clin. Cancer Res. 2010, 16, 5200–5210. [Google Scholar] [CrossRef] [Green Version]
- Chen, P.-M.; Cheng, Y.-W.; Wang, Y.-C.; Wu, T.-C.; Chen, C.-Y.; Lee, H. Up-Regulation of FOXM1 by E6 Oncoprotein through the MZF1/NKX2-1 Axis Is Required for Human Papillomavirus–Associated Tumorigenesis. Neoplasia 2014, 16, 961–971. [Google Scholar] [CrossRef] [Green Version]
- Hu, Y.; Wu, M.; Gu, N.; Xu, H.; Li, Q.; Wu, G. Human papillomavirus 16 (HPV 16) E6 but not E7 inhibits the antitumor activity of LKB1 in lung cancer cells by downregulating the expression of KIF7. Thorac. Cancer 2020, 11, 3175–3180. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, H.; Tao, S. A review of arsenic exposure and lung cancer. Toxicol. Res. 2019, 8, 319–327. [Google Scholar] [CrossRef]
- Riudavets, M.; de Herreros, M.G.; Besse, B.; Mezquita, L. Radon and Lung Cancer: Current Trends and Future Perspectives. Cancers 2022, 14, 3142. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Mengersen, K.; Tong, S.; Kimlin, M.; Zhou, M.; Hu, W. Global, regional, and national burden of lung cancer and its attributable risk factors, 1990 to 2017. Cancer 2020, 126, 4220–4234. [Google Scholar] [CrossRef] [PubMed]
- Jedrychowski, W.; Becher, H.; Basa-Cierpialek, Z.; Gomola, K. Effect of tobacco smoking on various histological types of lung cancer. J. Cancer Res. Clin. Oncol. 1992, 118, 276–282. [Google Scholar] [CrossRef]
- Stading, R.; Gastelum, G.; Chu, C.; Jiang, W.; Moorthy, B. Molecular mechanisms of pulmonary carcinogenesis by polycyclic aromatic hydrocarbons (PAHs): Implications for human lung cancer. Semin. Cancer Biol. 2021, 76, 3–16. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-Moutinho, J.A. Smoking and Cervical Cancer. ISRN Obstet. Gynecol. 2011, 2011, 847684. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, J.P.; González, C.; Parra, B.; Corvalan, A.; Tornesello, M.L.; Eizuru, Y.; Aguayo, F. Functional Interaction between Human Papillomavirus Type 16 E6 and E7 Oncoproteins and Cigarette Smoke Components in Lung Epithelial Cells. PLoS ONE 2012, 7, e38178. [Google Scholar] [CrossRef]
- Peña, N.; Carrillo, D.; Muñoz, J.P.; Chnaiderman, J.; Urzua, U.; León, O.; Tornesello, M.L.; Corvalan, A.; Rifo, R.S.; Aguayo, F. Tobacco Smoke Activates Human Papillomavirus 16 p97 Promoter and Cooperates with High-Risk E6/E7 for Oxidative DNA Damage in Lung Cells. PLoS ONE 2015, 10, e0123029. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Griego, A.M.; Chu, M.; Ozbun, M.A. Tobacco exposure results in increased E6 and E7 oncogene expression, DNA damage and mutation rates in cells maintaining episomal human papillomavirus 16 genomes. Carcinogenesis 2014, 35, 2373–2381. [Google Scholar] [CrossRef] [Green Version]
- Miller, L.G.; Goldstein, G.; Murphy, M.; Ginns, L.C. Reversible Alterations in Immunoregulatory T Cells in Smoking. Analysis by monoclonal antibodies and flow cytometry. Chest 1982, 82, 526–529. [Google Scholar] [CrossRef]
- Ferson, M.; Edwards, A.; Lind, A.; Milton, G.W.; Hersey, P. Low natural killer-cell activity and immunoglobulin levels associated with smoking in human subjects. Int. J. Cancer 1979, 23, 603–609. [Google Scholar] [CrossRef]
- Holt, P.G.; Keast, D. Environmentally induced changes in immunological function: Acute and chronic effects of inhalation of tobacco smoke and other atmospheric contaminants in man and experimental animals. Bacteriol. Rev. 1977, 41, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Iwasaka, T.; Hayashi, Y.; Yokoyama, M.; Hara, K.; Matsuo, N.; Sugimori, H. ‘Hit and run’ oncogenesis by human papillomavirus type 18 DNA. Acta Obstet. Gynecol. Scand. 1992, 71, 219–223. [Google Scholar] [CrossRef] [PubMed]
- Viarisio, D.; Müller-Decker, K.; Accardi, R.; Robitaille, A.; Dürst, M.; Beer, K.; Jansen, L.; Flechtenmacher, C.; Bozza, M.; Harbottle, R.; et al. Beta HPV38 oncoproteins act with a hit-and-run mechanism in ultraviolet radiation-induced skin carcinogenesis in mice. PLoS Pathog. 2018, 14, e1006783. [Google Scholar] [CrossRef] [PubMed]
- Kostov, S.; Dzhenkov, D.; Metodiev, D.; Kornovski, Y.; Slavchev, S.; Ivanova, Y.; Yordanov, A. A case of human papillomavirus infection and vulvar cancer in a young patient—“Hit and run” theory. Gynecol. Oncol. Rep. 2021, 36, 100760. [Google Scholar] [CrossRef]
Tumor Types | Total | HPV (+) | (%) | HPV Genotype | HPV Gene | Methods | Country | Year | Ref |
---|---|---|---|---|---|---|---|---|---|
SQC | 1 | Condiloma | 100 | - | Histological changes | Finland | 1972 | [61] | |
SQC | 100 | -Condiloma | 6 | - | Histological changes | Finland | 1980 | [62] | |
-Endophytic condyloma | 4 | ||||||||
-Flat type condyloma | 26 | ||||||||
Anaplastic carcinoma in the lung | 24 | HPV 16 DNA | 4.2 | - | DNA hybridizing | Germany | 1985 | [63] | |
SQC | 131 | 9 | 6.9 | 6, 11, 16, 18, and 30 | - | ISH | Finland | 1989 | [64] |
Squamous bronchial metaplasia, SQC | 43 | 7 | 16 | 6, 11, 16 and 18 | - | ISH | France | 1990 | [65] |
SQC, AdC, SCLC, Large cell undifferentiated carcinoma, bronchioloalveolar carcinoma | 58 | 7 | 12.1 | 6, 11, 16, 18, 31, 33, 35 | - | ISH | USA | 1992 | [77] |
SQC | 49 | 7 | 14.3 | 6,11 | - | PCR | Republic of China | 1993 | [72] |
SQC, SCLC | 47 | 0 | 0 | - | - | PCR | Japan | 1994 | [73] |
SQC | 49 | 7 | 14.3 | 6, 11 | - | PCR | Republic of China | 1994 | [75] |
5 | 10.2 | ISH | |||||||
SQC, AdC, Neuro-endocrine cancers. | 31 | 5 | 16.1 | 6, 11, 16 | - | PCR | France | 1995 | [66] |
SQC, AdC, SCLC, SCC, adenosquamous carcinomas | 99 | 14 | 15 | 11, 16, 18, 33 | - | PCR | Greece | 1996 | [67] |
SQC, SCC | 38 | 0 | 0 | - | - | ISH | Germany | 1997 | [68] |
SQC, AdC, SCC | 50 | 16 | 32 | 16, 18 | - | PCR, dot-blot hybridization | Republic of China | 1997 | [76] |
SQC | 34 | 2 | 6 | 18 | - | PCR, SBH | USA | 1998 | [78] |
SQC | 52 | 32 | 69 | 6, 11, 16, 18 | - | PCR, SBH | Greece | 1998 | [69] |
SQC, AdC | 207 | 18 | 9 | 6, 11, 16, 18 | E6,E7 | NISH | Japan | 1998 | [74] |
SQC, AdC, oat cell carcinomas, LCC, anaplastic carcinoma | 75 | 37 | 49 | 6, 11, 16, 18 | - | PCR, ISH | Norway | 1998 | [71] |
SQC | 91 | 0 | 0 | - | - | PCR, ISH | Greece | 1998 | [70] |
SQC, AdC | 185 | 5 | 2,7 | 16, 31, 33 | - | HCA | France | 2000 | [79] |
SQC | 434 | 80 | 18 | 6, 11, 16, 18 | E6,E7 | PCR, SBH | Japan | 2000 | [94] |
NSCLC | 40 | 4 | 10 | - | - | - | Poland | 2001 | [80] |
SQC, AdC | 141 | 77 | 54.6 | 16, 18 | L1 | Nested PCR, ISH | Republic of China | 2001 | [87] |
SQC | 26 | 3 | 11.5 | 6, 11, 16, 18 | - | NISH | Turkey | 2001 | [81] |
SQC, AdC, SCLC | 40 | 2 | 5 | 18 | L1 | ISH, PCR, SBH, dot blotting | Turkey | 2004 | [82] |
SQC | 122 | 0 | 0 | - | - | ISH | France | 2005 | [83] |
SQC, AdC, Bronchioalveolar carcinomas | 218 | 4 | 2 | 16 | L1, E6 | PCR | France | 2005 | [84] |
SQC, AdC, SCC | 36 | 10 | 28 | 16, 18, 33 | L1 | PCR, SBH | Japan | 2006 | [98] |
SQC, AdC | 73 | 23 | 32 | 16, 18 | - | ISH | Republic of China | 2006 | [92] |
NSCLC | 38 | 8 | 21 | 16, 18, 31 | E6, E7 | RT-PCR | Italy | 2006 | [85] |
NSCLC | 112 | 58 | 52 | 16, 18, 33 | E6 | PCR | Korea | 2007 | [95] |
LCLC, AdC, SQC, LCC, SCLC | 141 | 33 | 26 | 6, 11, 16, 18, 26, 31 | L1 | Nested PCR | Iran | 2007 | [96] |
AdC, SQC | 69 | 20 | 29 | 16, 18, 31, 33, 45, 59 | L1, E6 | PCR, SBH, IHC | Chile | 2007 | [99] |
AdC, SQC, LCC | 78 | 10 | 13 | 6, 16, 31 | E6, E7 | PCR, RFLP | Italy | 2007 | [86] |
AdC, SQC | 313 | 138 | 39.1 | 16, 18 | E6, E7 | NISH | Republic of China | 2008 | [93] |
AdC, SQC | 217 | 80 | 37 | 16, 18 | E6 | IHC | Republic of China | 2009 | [88] |
AdC | 110 | 0 | 0 | - | - | ISH | Republic of Singapore | 2009 | [97] |
AdC, SQC | 109 | 43 | 39 | 16, 18 | L1, E6, E2 | INNO-LIPA PCR, RT-PCR | Republic of China | 2009 | [89] |
SQC | 44 | 32 | 73 | 16, 18 | - | ISH | Republic of China | 2009 | [90] |
NSCLC | 104 | 18 | 17.3 | 16 | L1, E6, E7 | RT-PCR, PCR | Republic of China | 2009 | [91] |
AdC, SQC, LCC, SCLC | 84 | 3 | 3.6 | 16, 18, 33 | E6 | PCR | Croatia | 2010 | [100] |
AdC, SQC | 57 | 11 | 19.3 | 6, 16, 18, 33 | L1, E6, E2 | RT-PCR, PCR | Japan | 2010 | [110] |
AdC | 297 | 0 | 0 | 16, 18, 33 | L1, E1, E6, E7 | Multiplex PCR, Nested PCR | Japan | 2010 | [111] |
AdC, SQC, SCLC | 59 | 8 | 13 | 16 | L1, E6, E2 | qRT-PCR, SBH | Japan | 2010 | [112] |
AdC, SQC | 30 | 5 | 16.7 | 16, 11 | L1 | PCR, DNA sequencing | USA | 2010 | [8] |
AdC, SQC, LCC, SCLC | 399 | 0 | 0 | - | E6, E7 | qRT-PCR | USA | 2011 | [128] |
AdC, SQC | 304 | 20 | 6.6 | 6, 11, 16, 18 | L1 | PCR, ISH | Japan | 2011 | [113] |
AdC, SQC, SCLC | 89 | 13 | 13.5 | 16, 30, 31, 39 | E1 | PCR, pyrosequencing analysis | Italy | 2011 | [101] |
AdC, SQC | 77 | 4 | 5.2 | 6,16 | L1 | Luminex-based Multimetrix | Finland | 2012 | [102] |
AdC, SQC | 100 | 0 | 0 | - | L1 | PCR, ISH | Italy | 2012 | [103] |
SQC | 50 | 9 | 18 | 6, 18 | L1 | Nested PCR | Iran | 2013 | [114] |
AdC, SQC | 39 | 16 | 41 | 16, 18 | L1 | PCR, ISH | Mexico | 2013 | [127] |
AdC, SQC | 170 | 75 | 44 | 16, 18 | E6 | PCR, INNO-LIPA, SBH | Republic of China | 2013 | [115] |
AdC, SQC | 336 | 5 | 1.5 | 16 | L1 | PCR, ISH | Canada | 2013 | [129] |
AdC, SQC | 200 | 19 | 9.5 | 16, 11 | L1 | qRT-PCR | Greece | 2014 | [104] |
AdC, SQC | 262 | 22 | 8.4 | 16,18,31 | - | PCR, ISH, reverse dot blot | Republic of China | 2015 | [116] |
AdC, SQC, SCLC | 180 | 100 | 55.6 | 16, 18 | L1 | PCR and immunohistochemistry | Republic of China | 2015 | [117] |
SQC | 50 | 30 | 60 | 16, 18 | - | ISH | Iraq | 2015 | [118] |
AdC, SQC | 196 | 0 | 0 | - | E6, E7 | DNA-ISH, RNA-ISH | Canada | 2015 | [130] |
AdC, SQC, LCC, SCLC | 200 | 5 | 2.5 | 16 | L1, | Antibody assays | USA | 2015 | [131] |
16 | 8.5 | E6, | |||||||
4 | 2 | E7 | |||||||
AdC | 95 | 27 | 28.4 | 16, 18, 33, 58 | L1 | PCR | Republic of China | 2016 | [119] |
NSCLC | 83 | 7 | 8.4 | - | L1 | Reverse hybridization | Republic of China | 2016 | [120] |
AdC, SQC, SCLC | 67 | 2 | 3 | 16, 53 | E6, E7 | NASBA | Greece | 2017 | [105] |
AdC, SQC | 132 | 33 | 25 | 16, 18 | L1 | PCR | Denmark | 2017 | [106] |
AdC, SQC, LCC | 63 | 33 | 52 | 16, 18 | E6, E7 | PCR | Brazil | 2018 | [132] |
AdC, SQC | 77 | 0 | 0 | - | E7 | Multiplex PCR, RT-PCR | Brazil | 2019 | [133] |
AdC, SQC, LCC | 140 | 13 | 9.3 | 16, 18, 35, 42, 44, 51 | L1 | PCR, Reverse hybridization | Republic of China | 2020 | [121] |
AdC, SQC, LCC | 80 | 0 | 0 | - | E6 | qPCR | Czech Republic | 2020 | [107] |
AdC, SQC, SCLC | 102 | 54 | 52.9 | 16 | L1, E2, E6, E7 | PCR, INNO-LiPA | Iran | 2020 | [122] |
AdC, SQC, SCLC | 109 | 56 | 51.4 | 6, 11, 16, 18, 33 | L1, E,2, E6, E7 | PCR, INNO-LiPA | Iran | 2021 | [123] |
AdC, SQC | 100 | 16 | 16 | 16 | L1 | PCR | Republic of China | 2021 | [124] |
SCLC, SQC, AdC | 310 | 183 | 59 | - | E6, E7 | qRT-PCR | Republic of China | 2021 | [125] |
AdC, SQC, NSCLC, SCLC | 41 | 23 | 56 | 16,18,33, 56,58 | L1, E6 | RT-PCR | Spain | 2022 | [109] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Osorio, J.C.; Candia-Escobar, F.; Corvalán, A.H.; Calaf, G.M.; Aguayo, F. High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives. Biology 2022, 11, 1691. https://doi.org/10.3390/biology11121691
Osorio JC, Candia-Escobar F, Corvalán AH, Calaf GM, Aguayo F. High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives. Biology. 2022; 11(12):1691. https://doi.org/10.3390/biology11121691
Chicago/Turabian StyleOsorio, Julio C., Felipe Candia-Escobar, Alejandro H. Corvalán, Gloria M. Calaf, and Francisco Aguayo. 2022. "High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives" Biology 11, no. 12: 1691. https://doi.org/10.3390/biology11121691
APA StyleOsorio, J. C., Candia-Escobar, F., Corvalán, A. H., Calaf, G. M., & Aguayo, F. (2022). High-Risk Human Papillomavirus Infection in Lung Cancer: Mechanisms and Perspectives. Biology, 11(12), 1691. https://doi.org/10.3390/biology11121691