Cryolipolysis on More than One Body Area Increases Lipid Peroxidation without Changing Lipid Profile and Inflammatory Markers
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Assessment
2.3. Body Composition
2.4. Physical Activity Level
2.5. Food Consumption
2.6. Lipid Profile
2.7. Malondialdehyde Concentration and Myeloperoxidase Activity in Plasma
2.8. Serum Concentration of Interleukin-1β and C-Reactive Protein
2.9. Application of Cryolipolysis
2.10. Data Analysis
2.11. Ethical Aspects
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohamed-Ali, V.; Pinkney, J.H.; Coppack, S.W. Adipose tissue as an endocrine and paracrine organ. Int. J. Obes. 1998, 22, 1145–1158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giorgino, F.; Laviola, L.; Eriksson, J.W. Regional differences of insulin action in adipose tissue: Insights from in vivo and in vitro studies. Acta Physiol. Scand. 2005, 183, 13–30. [Google Scholar] [CrossRef] [PubMed]
- Wajchenberg, B.L. Subcutaneous and visceral adipose tissue: Their relation to the metabolic syndrome. Enacr. Rev. 2000, 21, 697–738. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, Y. Pathophysiology and molecular mechanisms of visceral fat syndrome: The Japanese experience. Diabetes Metab. Rev. 1997, 13, 3–13. [Google Scholar] [CrossRef]
- Van, H.V.; Reynisdottir, S.; Eriksson, P.; Thörne, A.; Hoffstedt, J.; Lönnqvist, F.; Arner, P. Leptin secretion from subcutaneous and visceral adipose tissue in women. Diabetes 1998, 47, 913–917. [Google Scholar] [CrossRef]
- Evans, P.D.; McIntyre, N.J.; Fluck, R.J.; McIntyre, C.W.; Taal, M.W. Anthropomorphic measurements that include central fat distribution are more closely related with key risk factors than BMI in CKD stage 3. PLoS ONE 2012, 7, e34699. [Google Scholar] [CrossRef] [PubMed]
- Koenen, M.; Hill, M.A.; Cohen, P.; Sowers, J.R. Obesity, Adipose Tissue and Vascular Dysfunction. Circ. Res. 2021, 128, 951–968. [Google Scholar] [CrossRef]
- Buchwald, H.; Avidor, Y.; Braunwald, E.; Jensen, D.M.; Pories, W.; Fahrbach, K.; Schoelles, K. Bariatric surgery: A systematic review and meta-analysis. JAMA 2004, 292, 1724–1737. [Google Scholar] [CrossRef] [PubMed]
- Peterson, J.D.; Goldman, M.P. Laser, light, and energy devices for cellulite and lipodystrophy. Clin. Plast. Surg. 2011, 38, 463–474. [Google Scholar] [CrossRef]
- Glennon, J.A.; Brech, W.J.; Gordon, E.S. Effect of a short period of cold exposure on plasma FFA level in lean and obese humans. Metabolism 1967, 16, 503–506. [Google Scholar] [CrossRef]
- O’hara, W.J.; Allen, C.; Shephard, R.J. Treatment of obesity by exercise in the cold. Can. Med. Assoc. J. 1977, 117, 773–778. [Google Scholar] [PubMed]
- Durazzo, A.; Camilli, E.; D’Addezio, L.; Le Donne, C.; Ferrari, M.; Marconi, S.; Marletta, L.; Mistura, L.; Piccinelli, R.; Scalvedi, M.L.; et al. Food Groups and Individual Foods: Nutritional Attributes and Dietary Importance. Ref. Mod. Food Sci. 2018. Available online: https://www.sciencedirect.com/science/article/pii/B9780081005965213371?via%3Dihub. (accessed on 12 November 2022).
- Er, T.K.; Tsai, S.-M.; Wu, S.-H.; Chiang, W.; Lin, H.-C.; Lin, S.-F.; Tsai, L.-Y.; Liu, T.-Z. Antioxidant status and superoxide anion radical generation in acute myeloid leukemia. Clin. Biochem. 2007, 40, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Epstein, E.H., Jr.; Oren, M.E. Popsicle panniculitis. N. Engl. J. Med. 1970, 282, 966–967. [Google Scholar] [CrossRef]
- Manstein, D.; Laubach, H.; Watanabe, K.; Farinelli, W.; Zurakowski, D.; Anderson, R.R. Selective cryolysis: A novel method of non-invasive fat removal. Lasers Surg. Med. 2008, 40, 595–604. [Google Scholar] [CrossRef]
- US Food and Drug Administration 510(k) Clearance K133212. 2014. Available online: http://www.accessdata.fda.gov/cdrh_docs/pdf13/K133212.pdf. (accessed on 20 October 2022).
- Zelickson, B.; Egbert, B.M.; Preciado, J.; Allison, J.; Springer, K.A.S.; Rhoades, R.W.; Manstein, D. Cryolipolysis for noninvasive fat cell destruction: Initial results from a pig model. Dermatol. Surg. 2009, 35, 1462–1470. [Google Scholar] [CrossRef]
- Ingargiola, M.J.; Motakef, S.; Chung, M.T.; Vasconez, H.C.; Sasaki, G.H. Cryolipolysis for fat reduction and body contouring: Safety and efficacy of current treatment paradigms. Plast. Reconstr. Surg. 2015, 135, 1581–1590. [Google Scholar] [CrossRef]
- Lipner, S.R. Cryolipolysis for the treatment of submental fat: Review of the literature. J. Cosmet. Dermatol. 2018, 17, 145–151. [Google Scholar] [CrossRef]
- Stevens, W.G.; Pietrzak, L.K.; Spring, M.A. Broad overview of a commercial experience with CoolSculpting. Aesthetic Surg. J. 2013, 33, 835–846. [Google Scholar] [CrossRef] [Green Version]
- Jalian, H.R.; Avram, M.M. Cryolipolysis: A historical perspective and current clinical practice. Seminars in Cutaneous Medicine and Surgery. Front. Med. Commun. 2013, 32, 31–34. [Google Scholar]
- Lavie, C.J.; Milani, R.V. Obesity and cardiovascular disease: The Hippocrates paradox? J. Am. Coll. Cardiol. 2003, 42, 677–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaur, J. A comprehensive review on metabolic syndrome. Cardiol. Res. Pract. 2014. [Google Scholar] [CrossRef]
- Shek, S.Y.; Chan, N.P.Y.; Chan, H.H. Non-invasive cryolipolysis for body contouring in Chinese—A first commercial experience. Lasers Surg. Med. 2012, 44, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, G.A.; Francesco, F.D.; Cataldo, C.; Rossano, F.; Nicoletti, G.; Andrea, F.D. Synergistic effects of cryolipolysis and shock waves for noninvasive body contouring. Aesthetic Plast. Surg. 2012, 36, 666–679. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, G.H.; Abelev, N.; Tevez-Ortiz, A. Noninvasive selective cryolipolysis and reperfusion recovery for localized natural fat reduction and contouring. Aesthetic Surg. J. 2014, 34, 420–431. [Google Scholar] [CrossRef]
- Garibyan, L.; Sipprell, W.H.; Jalian, H.R.; Sakamoto, F.H.; Avram, M.; Anderson, R.R. Three-dimensional volumetric quantification of fat loss following cryolipolysis. Lasers Surg. Med. 2014, 46, 75–80. [Google Scholar] [CrossRef] [Green Version]
- Bernstein, E.F.; Bloom, J.D.; Basilavecchio, L.D.; Plugis, J.M. Non-invasive fat reduction of the flanks using a new cryolipolysis applicator and overlapping, two-cycle treatments. Lasers Surg. Med. 2014, 46, 731–735. [Google Scholar] [CrossRef] [PubMed]
- Brightman, L.; Geronemus, R. Can second treatment enhance clinical results in cryolipolysis? Cosmet. Dermatol. 2011, 24, 85–88. [Google Scholar]
- Auh, S.L.; Iyengar, S.; Weil, A.; Bolotin, D.; Cartee, V.D.; Dover, J.S.; Maher, I.A.; Sobanko, J.F.; Cohen, J.L.; Poom, E.; et al. Quantification of noninvasive fat reduction: A systematic review. Lasers Surg. Med. 2018, 50, 96–110. [Google Scholar] [CrossRef]
- Lee, K.R. Clinical efficacy of fat reduction on the thigh of Korean women through cryolipolysis. J. Obes. Weight Loss Ther. 2013, 3, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Hwang, I.C.; Kim, K.K.; Lee, K.R. Cryolipolysis-induced abdominal fat change: Split-body trials. PLoS ONE 2020, 15, e0242782. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Aal, N.M.; Elerian, A.E.; Elmakaky, A.M.; Alhamaky, D.M.A. Systemic Effects of Cryolipolysis in Central Obese Women: A Randomized Controlled Trial. Lasers Surg. Med. 2020, 52, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Jelliffe, D.B.; Jelliffe, E.F.P. Anthropometry: Major measurements. In Community Nutritional Assessment with Special Reference to Less Technically Developed Countries, 2nd ed.; Jelliffe, D.B., Jelliffe, E.F.P., Eds.; Oxford University Press: London, UK, 1989. [Google Scholar]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry; WHO Technical Report Series, n. 854; WHO: Geneva, Switzerland, 1995. [Google Scholar]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation on Obesity; WHO Technical Report Series n. 894; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica (ABESO). Diretrizes Brasileiras de Obesidade, 4th ed.; Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica: São Paulo, Brazil, 2016; 187p, Available online: https://abeso.org.br/wp-content/uploads/2019/12/Diretrizes-Download-Diretrizes-Brasileiras-de-Obesidade-2016.pdf (accessed on 12 November 2022).
- Lohman, T.G.; Champaign, I.L. Advances in Body Composition Assessment; Kinetics Publishers: Champaign, IL, USA, 1992; pp. 1–24. Available online: https://www.scielosp.org/article/csp/1993.v9suppl1/S116-S117/en/ (accessed on 12 November 2022).
- Cômodo, A.R.O. Utilização da bioimpedância para avaliação da massa corpórea. Associação Brasileira de Nutrologia. Sociedade Brasileira de Nutrição Parenteral e Enteral. Projeto Diretrizes. Associação Médica Brasileira. Conselho Federal de Medicina. Brasília: AMB/CFM. 2009. Available online: https://amb.org.br/files/_BibliotecaAntiga/utilizacao-da-bioimpedancia-para-avaliacao-da-massa-corporea.pdf (accessed on 12 November 2022).
- Boucher, J.P.; Chamberland, G.; Aubertin-Leheudre, M.; Jones, D.H.; Rehel, R.; Comtois, A.S. Validation of The Bodymetrix Ultrasound System For Percent Body Fat. In American College of Sports Medicine; LIPPINCOTT WILLIAMS & WILKINS 530 WALNUT ST: Philadelphia, PA, USA, 2012; Volume 44, pp. 799–800. [Google Scholar]
- Jackson, A.S.; Pollock, M.L.; Ward, A. Generalized equations for predicting body density of women. Med. Sci. Sports Exerc. 1980, 12, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Matsudo, S.; Araújo, T.; Marsudo, V.; Andrade, D.; Andrade, E.; Braggion, G. Questinário Internacional de Atividade Física (IPAQ): Estudo de validade e reprodutibilidade no Brasil. Rev. Bras. Ativ. Fís. Saúde 2001, 6, 5–18. [Google Scholar]
- Zabotto, C.B.; Viana, R.P.T.; Gil, M.F. Registro Fotográfico para Inquéritos Dietéticos: Utensílios e Porções; UNICAMP e Goiânia; UFG: Campinas, Brazil, 1996. [Google Scholar]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Pesquisa de Orçamentos Familiares 2008-2009: Tabelas de Composição Nutricional dos Alimentos Consumidos no Brasil; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2011; 350p. Available online: https://biblioteca.ibge.gov.br/visualizacao/livros/liv50002.pdf (accessed on 12 November 2022).
- Santana, R.I. Avanutri: Software de Avaliação Nutricional, Versão 4.0. Rio de Janeiro. 2009. Available online: https://www.avanutri.com.br/software_avanutri_online/ (accessed on 15 September 2022).
- TACO. Tabela brasileira de composição de alimentos. In Tabela Brasileira de Composição de Alimentos; Universidade Estadual de Campinas: Campinas, Brazil, 2011; Available online: https://www.cfn.org.br/wp-content/uploads/2017/03/taco_4_edicao_ampliada_e_revisada.pdf (accessed on 12 November 2022).
- Philippi, S.T. Tabela de Composição de Alimentos: Suporte para Decisão Nutricional; Manole: Barueri, Brazil, 2018. [Google Scholar]
- Friedewald, W.T.; Levy, R.I. Fredrickson DS. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979, 95, 351–358. [Google Scholar] [CrossRef]
- Pyles, L.A.; Stejskal, E.J.; Einzig, S. Spectrophotometric measurement of plasma 2-thiobarbituric acid-reactive substances in the presence of hemoglobin and bilirubin interference. Proc. Soc. Exp. Biol. Med. 1993, 202, 407–419. [Google Scholar] [CrossRef]
- Bradley, P.P.P.; Christensen, R.D.; Rothstein, G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Investing. Dermatol. 1982, 78, 206–209. [Google Scholar] [CrossRef] [Green Version]
- Loap, S.; Lathe, R. Mechanism underlying tissue cryotherapy to combat obesity/overweight: Triggering thermogenesis. J. Obes. 2018, 2018, 5789647. [Google Scholar] [CrossRef] [Green Version]
- Falster, M.; Schardong, J.; Santos, D.P.D.; Machado, B.C.; Peres, A.; Rosa, P.V.D.; Plentz, R.D.M.P. Effects of cryolipolysis on lower abdomen fat thickness of healthy women and patient satisfaction: A randomized controlled trial. Braz. J. Phys. Ther. 2020, 24, 441–448. [Google Scholar] [CrossRef]
- Ponga-Manso, M. Ultrasound assessment of abdominal adipose panniculus in patients treated with a single session of cryolipolysis in a clinical setting. J. Cosmet. Dermatol. 2022, 21, 307–315. [Google Scholar] [CrossRef] [PubMed]
- Savacini, M.B.; Bueno, D.T.; Molina, A.C.S.; Lopes, A.C.A.; Silva, C.N.; Moreira, R.G.; Almeida, S.; Guidi, R.M.; Sant’Ana, E.; Liebano, R.E. Effectiveness and Safety of Contrast Cryolipolysis for Subcutaneous-Fat Reduction. Dermatol. Res. Pract. 2018, 2018, 5276528. [Google Scholar] [CrossRef] [PubMed]
- Klein, K.B.; Zelickson, B.; Riopelle, J.G.; Okamoto, E.; Bachelor, E.P.; Harry, R.S.; Preciado, J.A. Non-invasive cryolipolysisTM for subcutaneous fat reduction does not affect serum lipid levels or liver function tests. Lasers Surg. Med. Off. J. Am. Soc. Laser Med. Surg. 2009, 41, 785–790. [Google Scholar] [CrossRef]
- Heitmann, B.L. Prediction of body water and fat in adult Danes from measurement of electrical impedance. A validation study. Int. J. Obes. 1990, 14, 789–802. [Google Scholar]
- Pugliese, D.; Melfa, F.; Guarino, E.; Cascardi, E.; Maggi, M.; Ferrari, E.; Maiorano, E. Histopathological Features of Tissue Alterations Induced by Cryolipolysis on Human Adipose Tissue. Aesthetic Surg. J. 2020, 40, 761–766. [Google Scholar] [CrossRef]
- Monastero, R.N.; Pentyala, S. Cytokines as Biomarkers and Their Respective Clinical Cutoff Levels. Int. J. Inflam. 2017, 2017, 4309485. [Google Scholar] [CrossRef] [Green Version]
- Avram, M.M.; Harry, R.S. Cryolipolysis TM for subcutaneous fat layer reduction. Lasers Surg. Med. 2009, 41, 703–708. [Google Scholar] [CrossRef]
- Rena, K.; Torres, R. Role of interleukin-1β during pain and inflammation. Brain Res. Rev. 2009, 60, 57–64. [Google Scholar] [CrossRef] [Green Version]
- Flynn, M.G.; McFarlin, B.K.; Markofski, M.M. The Anti-Inflammatory Actions of Exercise Training. Am. J. Lifestyle Med. 2007, 1, 220–235. [Google Scholar] [CrossRef] [Green Version]
- Gleeson, M.; Bishop, N.C.; Stensel, D.J.; Lindley, M.R.; Mastana, S.S.; Nimmo, M.A. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 2011, 11, 607–615. [Google Scholar] [CrossRef] [PubMed]
- Zakeri, N.; Kelishadi, M.R.; Asbagui, O.; Naeini, F.; Afsharfar, M.; Mirzardeh, E.; Naserizadeh, S.K. Selenium Supplementation and Oxidative Stress: A review. Pharma Nutr. 2021, 17, 100263. [Google Scholar] [CrossRef]
- Olechnowicz, J.; Tinkov, A.; Skalny, A.; Suliburska, J. Zinc status is associated with inflammation, oxidative stress, lipid, and glucose metabolism. J. Physiol. Sci. 2018, 68, 19–31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olusi, S.O. Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int. J. Obes. 2002, 26, 1159–1164. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mas-bargues, C.; Escrivá, C.; Dromant, D.; Borrás, C.; Viña, J. Lipid peroxidation as measured by chromatographic determination of malondialdehyde. Human plasma reference values in health and disease. Arch. Biochem. Biophys. 2021, 709, 108941. [Google Scholar] [CrossRef]
- Gęgotek, A.; Skrzydlewska, E. Biological effect of protein modifications by lipid peroxidation products. Chem. Phys. Lipids 2019, 221, 46–52. [Google Scholar] [CrossRef]
- Zaki, M.; Basha, W.; Reyad, H.; Mohamed, R.; Hassan, N.; Kholousi, S. Association between Myeloperoxidase Levels and Risk of Insulin Resistance in Egyptian Obese Women. Open Access Maced. J. Med. Sci. 2018, 6, 629–633. [Google Scholar] [CrossRef] [Green Version]
- Frangie, C.; Frangie, C. Role of myeloperoxidase in inflammation and atherosclerosis (Review). Biomed. Rep. 2022, 16, 53. [Google Scholar] [CrossRef]
- Khan, A.A.; Alsahli, M.A.; Rahmani, A.H. Myeloperoxidase as an Active Disease Biomarker: Recent Biochemical and Pathological Perspectives. Med. Sci. 2018, 6, 33. [Google Scholar] [CrossRef] [PubMed]
Control Group (n = 8) (Mean ± SD) | Group A (n = 7) (Mean ± SD) | Group B (n = 9) (Mean ± SD) | ||||
---|---|---|---|---|---|---|
t0 | t30 | t0 | t30 | t0 | t30 | |
Anthropometric characteristics | ||||||
Body weight (kg) | 69.4 ± 8.4 | 69.7 ± 8.6 | 67.1 ± 8.0 | 67.3 ± 7.7 | 66.8 ± 9.7 | 66.9 ± 9.7 |
Abdomen circumference (cm) | 88.8 ± 8.6 | 90.0 ± 9.0 | 85.4 ± 6.7 | 83.9 ± 6.5 | 85.0 ± 7.5 | 85.7 ± 8.0 |
Waist circumference (cm) | 75.7 ± 24.6 | 83.2 ± 8.7 | 76.2 ± 5.6 | 75.4 ± 5.3 | 77.7 ± 7.6 | 76.2 ± 8.8 |
Hip circumference (cm) | 103.2 ± 8.0 | 103.8 ± 8.4 | 101.4 ± 5.8 | 101.4 ± 6.4 | 99.8 ± 12.1 | 102.4 ± 8.6 |
BMI (kg/m2) | 27.2 ± 3.8 | 27.3 ± 3.9 | 25.3 ± 2.9 | 25.4 ± 2.7 | 25.6 ± 4.5 | 25.6 ± 4,6 |
Body composition components determined by bioimpedance | ||||||
Body fat (%) | 32.4 ± 5.6 | 33.9 ± 4.4 | 30.3 ± 1.9 | 32.5 ± 2.5 | 29.5 ± 4.0 | 31.8 ± 4.7 |
Fat weight (kg) | 22.9 ± 6.3 | 24.2 ± 5.9 | 20.4 ± 3.3 | 22.0 ± 4.0 | 19.9 ± 6.0 | 21.2 ± 7.2 |
Fat-free mass weight (kg) | 42.5 ± 11.0 | 42.1 ± 10.7 | 46.6 ± 5.0 | 45.2 ± 4.0 | 46.9 ± 5.1 | 45.5 ± 4.1 |
BMR (kcal/day) | 1416 ± 96.0 | 1388 ± 100.6 | 1421 ± 152.3 | 1375 ± 123.5 | 1424 ± 115.8 | 1383 ± 122.2 |
Total body water (kg) | 34.7 ± 7.4 | 33.8 ± 8.2 | 32.3 ± 3.3 | 31.1 ± 2.5 | 33.7 ± 3.9 | 40.0 ± 17.3 |
Body composition components determined by ultrasound | ||||||
% Body fat (%) | 33.5 ± 4.1 | 32.8 ± 4.0 | 30.8 ± 4.3 | 29.7 ± 5.0 | 30.8 ± 5.7 | 31.3 ± 5.7 |
Healthy fat weight (kg) | 14.5 ± 1.0 | 14.7 ± 1.3 | 16.4 ± 7.0 | 16.6 ± 7.0 | 14.3 ± 1.6 | 16.5 ± 8.4 |
Fat-free mass (kg) | 14.9 ± 7.3 | 26.9 ± 40.8 | 12.4 ± 1.1 | 12.6 ± 1.3 | 12.3 ± 1.4 | 12.0 ± 1.3 |
Total body water (kg) | 33.4 ± 2.4 | 34.0 ± 2.9 | 33.5 ± 3.3 | 34.1 ± 3.5 | 30.6 ± 5.9 | 32.7 ± 3. 5 |
Abdominal fat (mm) * | 31.6 ± 9.9 | 32.4 ± 11.6 | 30.1 ± 6.9 | 29.7 ± 6.4 | 27.6 ± 8.5 | 29.9 ± 6.6 |
Flank fat (mm) ** | 17.7 ± 3.8 | 16.8 ± 4.2 | 16.9 ± 3.0 | 16.8 ± 2.5 | 21.2 ± 10.7 | 17.9 ± 7.4 |
Control Group (n = 8) | Group A (n = 7) | Group B (n = 9) | ||||
---|---|---|---|---|---|---|
t0 | t30 | t0 | t30 | t0 | t30 | |
Carbohydrates (g) (Median ± IQR) | 214.2 ± 176.0 | 210.0 ± 192.8 | 397.6 ± 269.1 | 166.4 ± 190.3 | 135.8 ± 47.7 | 170.0 ± 116.4 |
Proteins (g) (Median ± IQR) | 93.1 ± 69.6 | 90.1 ± 70.0 | 127.2 ± 20.6 | 60.2 ± 68.1 | 82.8 ± 71.1 | 86.2 ± 42.7 |
Lipids (g) (Median ± IQR) | 69.5 ± 53.4 | 54.9 ± 70.5 | 71.0 ± 65.3 | 46.7 ± 37.0 | 45.3 ± 24.7 | 57.6 ± 85.3 |
TEV (kcal) (Mean ± SD) | 1256.0 ± 151.3 | 1547.0 ± 579.2 | 1626.6 ± 591.0 | 1307 ± 686.6 | 1461.0 ± 576.3 | 1252.8 ± 393.1 |
t0 | t30 | |||||
---|---|---|---|---|---|---|
n | c (%) | p | n | c (%) | p | |
Control group (n = 8) | 8 | 2 (25.0) | 0.078 | 8 | 0 (0.0) | 0.065 |
Group A | 7 | 2 (28.6) | 7 | 1 (14.3) | ||
Group B | 9 | 6 (66.7) | 9 | 3 (33.3) |
Control Group (n = 8) (Mean ± SD) | Group A (n = 7) (Mean ± SD) | Group B (n = 9) (Mean ± SD) | |||||||
---|---|---|---|---|---|---|---|---|---|
t0 | t10 | t30 | t0 | t10 | t30 | t0 | t10 | t30 | |
TC | 126 ± 27.8 | 149 ± 38.9 | 119.5 ± 40.3 | 150.5 ± 13.6 | 131.6 ± 29.6 | 126.5 ± 21.4 | 129 ± 24.0 | 129.4 ± 27.9 | 137.3 ± 42.2 |
TG | 91 ± 31.3 | 115.5 ± 70.9 | 98.6 ± 43.1 | 88.8 ± 34.5 | 82.1 ± 20.1 | 76.3 ± 31.3 | 116 ± 38.1 | 87.5 ± 43.3 | 100.2 ± 57.3 |
LDLc | 72.4 ± 26.8 | 87.9 ± 22.3 | 71.2 ± 26.8 | 95.7 ± 14.7 | 82 ± 21.4 | 82.3 ± 13.6 | 90.7 ± 18.2 | 81.8.1 ± 13.2 | 80.5 ± 33.5 |
HDLc | 35.4 ± 5.5 | 37.9 ± 13.4 | 28.1 ± 10.8 | 37.5 ± 8.2 | 33.1 ± 13.4 | 29.3 ± 8.2 | 45.2 ± 15.8 | 34.9 ± 11.9 | 36.6 ± 9.7 |
t0 | t30 | |||||
---|---|---|---|---|---|---|
n | c (%) | p | n | c (%) | p | |
Control group (n = 8) | 8 | 6 (80.0) | 0.447 | 8 | 7 (90.0) | 0.206 |
Group A | 7 | 6 (83.3) | 7 | 7 (100.0) | ||
Group B | 9 | 8 (88.9) | 9 | 9 (100.0) |
Control Group (n = 8) | Group A (n = 7) | Group B (n = 9) | |||||||
---|---|---|---|---|---|---|---|---|---|
t0 | t10 | t30 | t0 | t10 | t30 | t0 | t10 | t30 | |
MDA (Median± IQR) | 2.1 ± 2.7 A | 3.0 ± 1.6 a | 4.9 ± 4.6 * | 2.0 ± 1.2 A | 3.3 ± 1.5 *ab | 3.2 ± 3.2 * | 3.6 ± 2.5 B | 4.7 ± 3.7 b | 3.8 ± 2.6 |
MPO (Mean± SD) | 5.9 ± 1.5 A | 4.9 ± 1.4 a | 5.2 ± 2.1α | 4.6 ± 2.5 A | 7.7 ± 3.5 a | 9.3 ± 2.6αβ | 9.7 ± 3.6 B | 14.1 ± 7.7 b | 11.6 ± 5.2 β |
IL-1β (Median± IQR) | 2.9 ± 1.4 A | 3.6 ± 5.4 | 3.0 ± 3.0 | 4.9 ± 6.9 B | 4.1 ± 3.0 | 2.7 ± 2.4 | 3.2 ± 5.0 AB | 2.2 ± 11.7 | 1.8 ± 0.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, A.D.S.d.; Oliveira, A.S.d.S.S.; Brito, A.K.d.S.; Lopes, L.A.R.; Primo, M.G.S.; Sales, A.L.d.C.C.; Santos, M.A.P.d.; Barros, N.V.d.A.; Moura-Filho, O.F.d.; Silva, J.K.M.d.; et al. Cryolipolysis on More than One Body Area Increases Lipid Peroxidation without Changing Lipid Profile and Inflammatory Markers. Biology 2022, 11, 1690. https://doi.org/10.3390/biology11121690
Costa ADSd, Oliveira ASdSS, Brito AKdS, Lopes LAR, Primo MGS, Sales ALdCC, Santos MAPd, Barros NVdA, Moura-Filho OFd, Silva JKMd, et al. Cryolipolysis on More than One Body Area Increases Lipid Peroxidation without Changing Lipid Profile and Inflammatory Markers. Biology. 2022; 11(12):1690. https://doi.org/10.3390/biology11121690
Chicago/Turabian StyleCosta, Antônio Daniel Saraiva da, Amanda Suellenn da Silva Santos Oliveira, Ana Karolinne da Silva Brito, Lays Arnaud Rosal Lopes, Maísa Guimarães Silva Primo, Ana Lina de Carvalho Cunha Sales, Marcos Antônio Pereira dos Santos, Nara Vanessa dos Anjos Barros, Oséas Florêncio de Moura-Filho, Jaynara Keylla Moreira da Silva, and et al. 2022. "Cryolipolysis on More than One Body Area Increases Lipid Peroxidation without Changing Lipid Profile and Inflammatory Markers" Biology 11, no. 12: 1690. https://doi.org/10.3390/biology11121690
APA StyleCosta, A. D. S. d., Oliveira, A. S. d. S. S., Brito, A. K. d. S., Lopes, L. A. R., Primo, M. G. S., Sales, A. L. d. C. C., Santos, M. A. P. d., Barros, N. V. d. A., Moura-Filho, O. F. d., Silva, J. K. M. d., Moura, E. I. d. M., Lucarini, M., Durazzo, A., Arcanjo, D. D. R., & Martins, M. d. C. d. C. e. (2022). Cryolipolysis on More than One Body Area Increases Lipid Peroxidation without Changing Lipid Profile and Inflammatory Markers. Biology, 11(12), 1690. https://doi.org/10.3390/biology11121690