Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Kinematics Measurements
2.2.1. Setting and Procedure
2.2.2. Data Recording
2.2.3. Data Processing and Analysis
2.3. Diffusion MRI Measurements
2.3.1. Data Acquisition
2.3.2. Head Motion and Eddy Current Distortions Correction and Estimation Distribution of Fibers Orientation
2.3.3. Tractography Algorithm
2.3.4. Tractography Dissections of the Internal Capsule, Corticospinal Tract and Hand Motor Tract
2.3.5. Data Processing and Analysis
3. Results
3.1. Kinematics Data
3.2. Diffusion Imaging Data
3.2.1. Reaching Task
3.2.2. Reach-to-Grasp Task
4. Discussion
4.1. White Matter Asymmetries
4.2. Relating Variation in Kinematics to the Internal Capsule
4.3. Relating Variation in Kinematics to the Corticospinal Tract
4.4. Relating Variation in Kinematics to the Hand Motor Tract
4.5. A Note on Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jeannerod, M.; Arbib, M.; Rizzolatti, G.; Sakata, H. Grasping objects: The cortical mechanisms of visuomotor transformation. Trends Neurosci. 1995, 18, 314–320. [Google Scholar] [CrossRef]
- Rizzolatti, G.; Luppino, G. The Cortical Motor System. Neuron 2001, 31, 889–901. [Google Scholar] [CrossRef] [Green Version]
- Grafton, S.T. The cognitive neuroscience of prehension: Recent developments. Exp. Brain Res. 2010, 204, 475–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Betti, S.; Castiello, U.; Begliomini, C. Reach-to-Grasp: A Multisensory Experience. Front. Psychol. 2021, 12, 213. [Google Scholar] [CrossRef] [PubMed]
- Andersen, R.A.; Buneo, C.A. Intentional Maps in Posterior Parietal Cortex. Annu. Rev. Neurosci. 2002, 25, 189–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buneo, C.A.; Jarvis, M.R.; Batista, A.; Andersen, R.A. Direct visuomotor transformations for reaching. Nature 2002, 416, 632–636. [Google Scholar] [CrossRef] [PubMed]
- Connolly, J.D.; Andersen, R.A.; Goodale, M.A. FMRI evidence for a ‘parietal reach region’ in the human brain. Exp. Brain Res. 2003, 153, 140–145. [Google Scholar] [CrossRef] [PubMed]
- Luppino, G.; Rizzolatti, G. The Organization of the Frontal Motor Cortex. Physiology 2000, 15, 219–224. [Google Scholar] [CrossRef] [PubMed]
- Castiello, U. The neuroscience of grasping. Nat. Rev. Neurosci. 2005, 6, 726–736. [Google Scholar] [CrossRef] [PubMed]
- Castiello, U.; Begliomini, C. The Cortical Control of Visually Guided Grasping. Neuroscientist 2007, 14, 157–170. [Google Scholar] [CrossRef] [PubMed]
- Turella, L.; Lingnau, A. Neural correlates of grasping. Front. Hum. Neurosci. 2014, 8, 686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Budisavljevic, S.; Dell’Acqua, F.; Zanatto, D.; Begliomini, C.; Miotto, D.; Motta, R.; Castiello, U. Asymmetry and Structure of the Fronto-Parietal Networks Underlie Visuomotor Processing in Humans. Cereb. Cortex 2016, 27, 1532–1544. [Google Scholar] [CrossRef] [Green Version]
- Budisavljevic, S.; Dell’Acqua, F.; Djordjilovic, V.; Miotto, D.; Motta, R.; Castiello, U. The role of the frontal aslant tract and premotor connections in visually guided hand movements. NeuroImage 2017, 146, 419–428. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrides, M.; Pandya, D.N. Projections to the frontal cortex from the posterior parietal region in the rhesus monkey. J. Comp. Neurol. 1984, 228, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Makris, N.; Kennedy, D.N.; McInerney, S.; Sorensen, A.G.; Wang, R.; Caviness, V.S.; Pandya, D.N. Segmentation of Subcomponents within the Superior Longitudinal Fascicle in Humans: A Quantitative, In Vivo, DT-MRI Study. Cereb. Cortex 2004, 15, 854–869. [Google Scholar] [CrossRef] [PubMed]
- De Schotten, M.T.; Bizzi, A.; Dell’Acqua, F.; Allin, M.; Walshe, M.; Murray, R.; Williams, S.C.; Murphy, D.G.M.; Catani, M. Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography. NeuroImage 2011, 54, 49–59. [Google Scholar] [CrossRef]
- de Schotten, M.T.; Dell’Acqua, F.; Valabregue, R.; Catani, M. Monkey to human comparative anatomy of the frontal lobe association tracts. Cortex 2012, 48, 82–96. [Google Scholar] [CrossRef]
- Jang, S.H.; Hong, J.H. The anatomical characteristics of superior longitudinal fasciculus I in human brain: Diffusion tensor tractography study. Neurosci. Lett. 2012, 506, 146–148. [Google Scholar] [CrossRef]
- Kamali, A.; Sair, H.; Radmanesh, A.; Hasan, K. Decoding the superior parietal lobule connections of the superior longitudinal fasciculus/arcuate fasciculus in the human brain. Neuroscience 2014, 277, 577–583. [Google Scholar] [CrossRef]
- Wang, X.; Pathak, S.; Stefaneanu, L.; Yeh, F.C.; Li, S.; Fernandez-Miranda, J.C. Subcomponents and connectivity of the superior longitudinal fasciculus in the human brain. Anat. Embryol. 2015, 221, 2075–2092. [Google Scholar] [CrossRef]
- Catani, M.; Schotten, M. A diffusion tensor imaging tractography atlas for virtual in vivo dissections. Cortex 2008, 44, 1105–1132. [Google Scholar] [CrossRef]
- Catani, M. The anatomy of the human frontal lobe. Handb. Clin. Neurol. 2019, 163, 95–122. [Google Scholar] [CrossRef] [PubMed]
- Newton, J.M.; Ward, N.S.; Parker, G.J.M.; Deichmann, R.; Alexander, D.C.; Friston, K.J.; Frackowiak, R.S.J. Non-invasive mapping of corticofugal fibres from multiple motor areas-relevance to stroke recovery. Brain 2006, 129, 1844–1858. [Google Scholar] [CrossRef] [PubMed]
- Porter, R.; Lemon, R. Corticospinal Function and Voluntary Movement; Oxford University Press: New York, NY, USA, 1993. [Google Scholar]
- Donkelaar, H.J.T.; Lammens, M.; Wesseling, P.; Hori, A.; Keyser, A.; Rotteveel, J. Development and malformations of the human pyramidal tract. J. Neurol. 2004, 251, 1429–1442. [Google Scholar] [CrossRef]
- Friel, K.; Chakrabarty, S.; Kuo, H.C.; Martin, J. Using Motor Behavior during an Early Critical Period to Restore Skilled Limb Movement after Damage to the Corticospinal System during Development. J. Neurosci. 2012, 32, 9265–9276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathan, P.W.; Smith, M.C.; Deacon, P. The corticospinal tracts in man: Course and location of fibres at different segmental levels. Brain 1990, 113, 303–324. [Google Scholar] [CrossRef]
- Catani, M.; Dell’Acqua, F.; Bizzi, A.; Forkel, S.J.; Williams, S.C.; Simmons, A.; Murphy, D.G.; de Schotten, M.T. Beyond cortical localization in clinico-anatomical correlation. Cortex 2012, 48, 1262–1287. [Google Scholar] [CrossRef] [PubMed]
- Mirchandani, A.S.; Beyh, A.; Lavrador, J.P.; Howells, H.; Dell’Acqua, F.; Vergani, F. Altered corticospinal microstructure and motor corte excitability in gliomas: An advanced tractography and transcranial magnetic stimulation study. J. Neurosurg. 2020, 134, 1368–1375. [Google Scholar] [CrossRef] [PubMed]
- Guder, S.; Pasternak, O.; Gerloff, C.; Schulz, R. Strengthened structure–function relationships of the corticospinal tract by free water correction after stroke. Brain Commun. 2021, 3, fcab034. [Google Scholar] [CrossRef]
- Dell’Acqua, F.; Scifo, P.; Rizzo, G.; Catani, M.; Simmons, A.; Scotti, G.; Fazio, F. A modified damped Richardson–Lucy algorithm to reduce isotropic background effects in spherical deconvolution. NeuroImage 2010, 49, 1446–1458. [Google Scholar] [CrossRef] [PubMed]
- Dell’Acqua, F.; Simmons, A.; Williams, S.C.; Catani, M. Can spherical deconvolution provide more information than fiber orientations? Hindrance modulated orientational anisotropy, a true-tract specific index to characterize white matter diffusion. Hum. Brain Mapp. 2012, 34, 2464–2483. [Google Scholar] [CrossRef]
- Dell’Acqua, F.; Tournier, J.D. Modelling white matter with spherical deconvolution: How and why? NMR Biomed. 2019, 32, e3945. [Google Scholar] [CrossRef]
- Jeannerod, M. The Timing of Natural Prehension Movements. J. Mot. Behav. 1984, 16, 235–254. [Google Scholar] [CrossRef]
- Marteniuk, R.G.; Mackenzie, C.L.; Jeannerod, M.; Athenes, S.; Dugas, C. Constraints on human arm movement trajectories. Can. J. Psychol./Rev. Can. Psychol. 1987, 41, 365–378. [Google Scholar] [CrossRef] [Green Version]
- Oldfield, R.C. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia 1971, 9, 97–113. [Google Scholar] [CrossRef]
- D’Amico, M.; Ferrigno, G. Technique for the evaluation of derivatives from noisy biomechanichal displacement data using a model-based bandwidth-selection procedure. Med. Biol. Eng. Comput. 1990, 28, 407–415. [Google Scholar] [CrossRef]
- D’Amico, M.; Ferrigno, G. Comparison between the more recent techniques for smoothing and derivative assessment in biomechanics. Med. Biol. Eng. Comput. 1992, 30, 193–204. [Google Scholar] [CrossRef] [PubMed]
- Gentilucci, M.; Castiello, U.; Corradini, M.; Scarpa, M.; Umiltà, C.; Rizzolatti, G. Influence of different types of grasping on the transport component of prehension movements. Neuropsychologia 1991, 29, 361–378. [Google Scholar] [CrossRef]
- Leemans, A.; Jeurissen, B.; Sijbers, J.; Jones, D.K. ExploreDTI: A graphical toolbox for processing, analyzing, and visualizing diffusion MR data. In Proceedings of the International Society of Magnetic Resonance in Medicine, Honolulu, HI, USA, 18–24 April 2009; p. 17. [Google Scholar]
- Tournier, J.D.; Calamante, F.; Gadian, D.G.; Connelly, A. Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. NeuroImage 2004, 23, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Tournier, J.D.; Calamante, F.; Connelly, A. Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution. NeuroImage 2007, 35, 1459–1472. [Google Scholar] [CrossRef]
- Alexander, D.C. Maximum Entropy Spherical Deconvolution for Diffusion MRI. In Proceedings of the Biennial International Conference on Information Processing in Medical Imaging, Glenwood Springs, CO, USA, 10–15 July 2005; pp. 76–87. [Google Scholar] [CrossRef]
- Wang, R.; Benner, T.; Sorensen, A.G.; Wedeen, V.J. Diffusion toolkit: A software package for diffusion imaging data processing and tractography. In Proceedings of the Annual Meeting of the International Society for Magnetic Resonance Medicine, Berlin, Germany, 19–25 May 2007; Available online: https://cds.ismrm.org/protected/07MProceedings/ (accessed on 1 August 2022).
- Rojkova, K.; Volle, E.; Urbanski, M.; Humbert, F.; Dell’Acqua, F.; De Schotten, M.T. Atlasing the frontal lobe connections and their variability due to age and education: A spherical deconvolution tractography study. Brain Struct. Funct. 2016, 221, 1751–1766. [Google Scholar] [CrossRef] [PubMed]
- Yousry, T.A.; Schmid, U.D.; Alkadhu, H.; Schmidt, D.; Peraud, A.; Buettner, A.; Winkler, P. Localization of the motor hand area to aknob on the precentral gyrus. A new landmark. Brain 1997, 120, 141–157. [Google Scholar] [CrossRef] [Green Version]
- Kruschke, J.K. Baysesian estimation supersedes the t test. J. Exp. Psychol. Gen. 2013, 142, 573–603. [Google Scholar] [CrossRef] [Green Version]
- Castiello, U. The effects of abrupt onset of 2-D and 3-D distractors on prehension movements. Percept. Psychophys. 2001, 63, 1014–1025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaiser, H.F. Directional statistical decisions. Psychol. Rev. 1960, 67, 160–167. [Google Scholar] [CrossRef]
- Lee, D.H.; Lee, D.W.; Han, B.S. Topographic organization of motor fibre tracts in the human brain: Findings in multiple locations using magnetic resonance diffusion tensor tractography. Eur. Radiol. 2016, 26, 1751–1759. [Google Scholar] [CrossRef]
- Seo, J.; Jang, S. Different Characteristics of the Corticospinal Tract according to the Cerebral Origin: DTI Study. Am. J. Neuroradiol. 2013, 34, 1359–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angstmann, S.; Madsen, K.S.; Skimminge, A.; Jernigan, T.L.; Baaré, W.F.C.; Siebner, H.R. Microstructural asymmetry of the corticospinal tracts predicts right–left differences in circle drawing skill in right-handed adolescents. Anat. Embryol. 2016, 221, 4475–4489. [Google Scholar] [CrossRef] [Green Version]
- Seizeur, R.; Magro, E.; Prima, S.; Wiest-Daessle, N.; Maumet, C.; Morandi, X. Corticospinal tract asymmetry and handedness in right- and left-handers by diffusion tensor tractography. Surg. Radiol. Anat. 2013, 36, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Westerhausen, R.; Huster, R.J.; Kreuder, F.; Wittling, W.; Schweiger, E. Corticospinal tract asymmetries at the level of the internal capsule: Is there an association with handedness? NeuroImage 2007, 37, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Ciccarelli, O.; Catani, M.; Johansen-Berg, H.; Clark, C.; Thompson, A. Diffusion-based tractography in neurological disorders: Concepts, applications, and future developments. Lancet Neurol. 2008, 7, 715–727. [Google Scholar] [CrossRef]
- Toosy, A.T.; Werring, D.J.; Orrell, R.W.; Howard, R.S.; King, M.D.; Barker, G.J.; Miller, D.H.; Thompson, A.J. Diffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1250–1257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hervé, P.Y.; Crivello, F.; Perchey, G.; Mazoyer, B.; Tzourio-Mazoyer, N. Handedness and cerebral anatomical asymmetries in young adult males. NeuroImage 2006, 29, 1066–1079. [Google Scholar] [CrossRef] [PubMed]
- Ardekani, S.; Kumar, A.; Bartzokis, G.; Sinha, U. Exploratory voxel-based analysis of diffusion indices and hemispheric asymmetry in normal aging. Magn. Reson. Imaging 2007, 25, 154–167. [Google Scholar] [CrossRef] [PubMed]
- Rosas, H.D.; Tuch, D.S.; Mph, N.D.H.; EdM, A.K.Z.; Vangel, M.; Hersch, S.M.; Salat, D.H. Diffusion tensor imaging in presymptomatic and early Huntington’s disease: Selective white matter pathology and its relationship to clinical measures. Mov. Disord. 2006, 21, 1317–1325. [Google Scholar] [CrossRef] [PubMed]
- Salat, D.; Tuch, D.; Greve, D.; van der Kouwe, A.; Hevelone, N.; Zaleta, A.; Rosen, B.; Fischl, B.; Corkin, S.; Rosas, H.D.; et al. Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol. Aging 2005, 26, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- De Santis, S.; Drakesmith, M.; Bells, S.; Assaf, Y.; Jones, D.K. Why diffusion tensor MRI does well only some of the time: Variance and covariance of white matter tissue microstructure attributes in the living human brain. NeuroImage 2013, 89, 35–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jones, D. Studying connections in the living human brain with diffusion MRI. Cortex 2008, 44, 936–952. [Google Scholar] [CrossRef]
- Budisavljevic, S.; Castiello, U.; Begliomini, C. Handedness and White Matter Networks. Neuroscientist 2020, 27, 88–103. [Google Scholar] [CrossRef]
- Budisavljevic, S.; Dell’Acqua, F.; Castiello, U. Cross-talk connections underlying dorsal and ventral stream integration during hand actions. Cortex 2018, 103, 224–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baraldi, P.; Porro, C.A.; Serafini, M.; Pagnoni, G.; Murari, C.; Corazza, R.; Nichelli, P. Bilateral representation of sequential finger movements in human cortical areas. Neurosci. Lett. 1999, 269, 95–98. [Google Scholar] [CrossRef]
- Singh, L.N.; Higano, S.; Takahashi, S.; Kurihara, N.; Furuta, S.; Tamura, H.; Shimanuki, Y.; Mugikura, S.; Fujii, T.; Yamadori, A.; et al. Comparison of ipsilateral activation between right and left handers. NeuroReport 1998, 9, 1861–1866. [Google Scholar] [CrossRef]
- Begliomini, C.; Caria, A.; Grodd, W.; Castiello, U. Comparing Natural and Constrained Movements: New Insights into the Visuomotor Control of Grasping. PLoS ONE 2007, 2, e1108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadatou-Pastou, M.; Ntolka, E.; Schmitz, J.; Martin, M.; Munafò, M.R.; Ocklenburg, S.; Paracchini, S. Human handedness: A meta-analysis. Psychol. Bull. 2020, 146, 481–524. [Google Scholar] [CrossRef]
- Binkofski, F.; Dohle, C.; Posse, S.; Stephan, K.M.; Hefter, H.; Seitz, R.J.; Freund, H.J. Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology 1998, 50, 1253–1259. [Google Scholar] [CrossRef] [PubMed]
- Frey, S.H.; Vinton, D.; Norlund, R.; Grafton, S.T. Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Cogn. Brain Res. 2005, 23, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Begliomini, C.; Sartori, L.; Miotto, D.; Stramare, R.; Motta, R.; Castiello, U. Exploring manual asymmetries during grasping: A dynamic causal modeling approach. Front. Psychol. 2015, 6, 167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culham, J.C.; Valyear, K.F. Human parietal cortex in action. Curr. Opin. Neurobiol. 2006, 16, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Davare, M.; Duque, J.; Vandermeeren, Y.; Thonnard, J.L.; Olivier, E. Role of the Ipsilateral Primary Motor Cortex in Controlling the Timing of Hand Muscle Recruitment. Cereb. Cortex 2006, 17, 353–362. [Google Scholar] [CrossRef] [PubMed]
- Scantlebury, N.; Cunningham, T.; Dockstader, C.; Laughlin, S.; Gaetz, W.; Rockel, C.; Dickson, J.; Mabbott, D. Relations between White Matter Maturation and Reaction Time in Childhood. J. Int. Neuropsychol. Soc. 2013, 20, 99–112. [Google Scholar] [CrossRef] [PubMed]
- Karahan, E.; Costigan, A.G.; Graham, K.S.; Lawrence, A.D.; Zhang, J. Cognitive and White-Matter Compartment Models Reveal Selective Relations between Corticospinal Tract Microstructure and Simple Reaction Time. J. Neurosci. 2019, 39, 5910–5921. [Google Scholar] [CrossRef]
- Hyett, M.P.; Perry, A.; Breakspear, M.; Wen, W.; Parker, G.B. White matter alterations in the internal capsule and psychomotor impairment in melancholic depression. PLoS ONE 2018, 13, e0195672. [Google Scholar] [CrossRef] [Green Version]
- Koch, G.; Versace, V.; Bonnì, S.; Lupo, F.; Gerfo, E.L.; Oliveri, M.; Caltagirone, C. Resonance of cortico–cortical connections of the motor system with the observation of goal directed grasping movements. Neuropsychologia 2010, 48, 3513–3520. [Google Scholar] [CrossRef] [PubMed]
- Filimon, F. Human Cortical Control of Hand Movements: Parietofrontal Networks for Reaching, Grasping, and Pointing. Neuroscientist 2010, 16, 388–407. [Google Scholar] [CrossRef] [PubMed]
- Santello, M.; Soechting, J.F. Matching object size by controlling finger span and hand shape. Somatosens. Mot. Res. 1997, 14, 203–212. [Google Scholar] [PubMed]
- Jeannerod, M. Specialized channels for cognitive responses. Cognition 1981, 10, 135–137. [Google Scholar] [CrossRef]
- Kamper, D.; Harvey, R.; Suresh, S.; Rymer, W. Relative contributions of neural mechanisms versus muscle mechanics in promoting finger extension deficits following stroke. Muscle Nerve 2003, 28, 309–318. [Google Scholar] [CrossRef] [PubMed]
- Lang, C.E.; DeJong, S.; Beebe, J.A. Recovery of Thumb and Finger Extension and Its Relation to Grasp Performance after Stroke. J. Neurophysiol. 2009, 102, 451–459. [Google Scholar] [CrossRef] [PubMed]
- Fritz, S.L.; Light, K.E.; Patterson, T.S.; Behrman, A.L.; Davis, S.B. Active Finger Extension Predicts Outcomes after Constraint-Induced Movement Therapy for Individuals with Hemiparesis after Stroke. Stroke 2005, 36, 1172–1177. [Google Scholar] [CrossRef] [PubMed]
- Roby-Brami, A.; Jacobs, S.; Bennis, N.; Levin, M.F. Hand orientation for grasping and arm joint rotation patterns in healthy subjects and hemiparetic stroke patients. Brain Res. 2003, 969, 217–229. [Google Scholar] [CrossRef]
- Gentilucci, M.; Chieffi, S.; Scarpa, M.; Castiello, U. Temporal coupling between transport and grasp components during prehension movements: Effects of visual perturbation. Behav. Brain Res. 1992, 47, 71–82. [Google Scholar] [CrossRef]
- Hoff, B.; Arbib, M.A. Models of Trajectory Formation and Temporal Interaction of Reach and Grasp. J. Mot. Behav. 1993, 25, 175–192. [Google Scholar] [CrossRef]
- Ehrsson, H.H.; Fagergren, A.; Jonsson, T.; Westling, G.; Johansson, R.S.; Forssberg, H. Cortical Activity in Precision- versus Power-Grip Tasks: An fMRI Study. J. Neurophysiol. 2000, 83, 528–536. [Google Scholar] [CrossRef]
- Kuhtz-Buschbeck, J.P.; Ehrsson, H.H.; Forssberg, H. Human brain activity in the control of fine static precision grip forces: An fMRI study. Eur. J. Neurosci. 2001, 14, 382–390. [Google Scholar] [CrossRef]
- Feydy, A.; Carlier, R.; Roby-Brami, A.; Bussel, B.; Cazalis, F.; Pierot, L.; Burnod, Y.; Maier, M.A. Longitudinal Study of Motor Recovery after Stroke. Stroke 2002, 33, 1610–1617. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, S.; Strnad, L.; Caramazza, A.; Lingnau, A. Overlapping representations for grip type and reach direction. NeuroImage 2014, 94, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Begliomini, C.; De Sanctis, T.; Marangon, M.; Tarantino, V.; Sartori, L.; Miotto, D.; Motta, R.; Stramare, R.; Castiello, U. An investigation of the neural circuits underlying reaching and reach-to-grasp movements: From planning to execution. Front. Hum. Neurosci. 2014, 8, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartzman, R.J. A Behavioral analysis of complete unilateral section of the pyramidal tract at the medullary level in macaca mulatta. Ann. Neurol. 1978, 4, 234–244. [Google Scholar] [CrossRef]
- Brinkman, J.; Kuypers, H.G.J.M. Splitbrain Monkeys: Cerebral Control of Ipsilateral and Contralateral Arm, Hand, and Finger Movements. Science 1972, 176, 536–539. [Google Scholar] [CrossRef]
- Flament, D.; Goldsmith, P.; Buckley, C.J.; Lemon, R.N. Task dependence of responses in first dorsal interosseous muscle to magnetic brain stimulation in man. J. Physiol. 1993, 464, 361–378. [Google Scholar] [CrossRef]
- Ellis, C.M.; Simmons, A.; Jones, D.K.; Bland, J.; Dawson, J.M.; Horsfield, M.A.; Williams, S.C.R.; Leigh, P.N. Diffusion tensor MRI assesses corticospinal tract damage in ALS. Neurology 1999, 53, 1051. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Rocca, M.A.; Ciccarelli, O.; De Stefano, N.; Evangelou, N.; Kappos, L.; Rovira, A.; Sastre-Garriga, J.; Tintorè, M.; Frederiksen, J.L.; et al. MRI criteria for the diagnosis of multiple sclerosis: MAGNIMS consensus guidelines. Lancet Neurol. 2016, 15, 292–303. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.H.; Kim, D.G.; Kim, D.S.; Kim, Y.H.; Lee, C.H.; Jang, S.H. Motor outcome according to the integrity of the corticospinal tract determined by diffusion tensor tractography in the early stage of corona radiata infarct. Neurosci. Lett. 2007, 426, 123–127. [Google Scholar] [CrossRef] [PubMed]
- Werring, D.J.; Toosy, A.T.; Clark, C.A.; Parker, G.J.; Barker, G.J.; Miller, D.H.; Thompson, A.J. Diffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke. J. Neurol. Neurosurg. Psychiatry 2000, 69, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Thomalla, G.; Glauche, V.; Koch, M.A.; Beaulieu, C.; Weiller, C.; Röther, J. Diffusion tensor imaging detects early Wallerian degeneration of the pyramidal tract after ischemic stroke. NeuroImage 2004, 22, 1767–1774. [Google Scholar] [CrossRef]
- Jankowska, E.; Padel, Y.; Tanaka, R. Projections of pyramidal tract cells to alpha-motoneurones innervating hind-limb muscles in the monkey. J. Physiol. 1975, 249, 637–667. [Google Scholar] [CrossRef]
- Muir, R.; Lemon, R. Corticospinal neurons with a special role in precision grip. Brain Res. 1983, 261, 312–316. [Google Scholar] [CrossRef]
- Cheney, P.D.; Fetz, E.E.; Mewes, K. Chapter 11 Neural mechanisms underlying corticospinal and rubrospinal control of limb movements. Prog. Brain Res. 1991, 87, 213–252. [Google Scholar] [CrossRef]
- Desmurget, M.; Grafton, S. Forward modeling allows feedback control for fast reaching movements. Trends Cogn. Sci. 2000, 4, 423–431. [Google Scholar] [CrossRef]
- Cramer, S.C.; Finklestein, S.P.; Schaechter, J.D.; Bush, G.; Rosen, B.R. Activation of Distinct Motor Cortex Regions during Ipsilateral and Contralateral Finger Movements. J. Neurophysiol. 1999, 81, 383–387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.S.; Pope, A. Somatotopically located motor fibres in corona radiata: Evidence from subcortical small infarcts. Neurology 2005, 64, 1438–1440. [Google Scholar] [CrossRef] [PubMed]
- Yarosh, C.A.; Hoffman, D.S.; Strick, P.L. Deficits in Movements of the Wrist Ipsilateral to a Stroke in Hemiparetic Subjects. J. Neurophysiol. 2004, 92, 3276–3285. [Google Scholar] [CrossRef] [PubMed]
- Boroojerdi, B.; Foltys, H.; Krings, T.; Spetzger, U.; Thron, A.; Töpper, R. Localization of the motor hand area using transcranial magnetic stimulation and functional magnetic resonance imaging. Clin. Neurophysiol. 1999, 110, 699–704. [Google Scholar] [CrossRef]
- Kuo, H.C.; Ferre, C.L.; Carmel, J.B.; Gowatsky, J.L.; Stanford, A.D.; Rowny, S.B.; Lisanby, S.H.; Gordon, A.; Friel, K.M. Using diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy. Dev. Med. Child Neurol. 2016, 59, 65–71. [Google Scholar] [CrossRef]
- Celebisoy, M.; Özdemirkiran, T.; Tokucoglu, F.; Kaplangi, D.N.; Arici, S. Isolated Hand Palsy Due to Cortical Infarction: Localization of the Motor Hand Area. Neurologist 2007, 13, 376–379. [Google Scholar] [CrossRef]
- Ghez, C.; Gordon, J.; Ghilardi, M.; Christakos, C.; Cooper, S. Roles of Proprioceptive Input in the Programming of Arm Trajectories. Cold Spring Harb. Symp. Quant. Biol. 1990, 55, 837–847. [Google Scholar] [CrossRef]
- Lukos, J.R.; Ansuini, C.; Santello, M. Anticipatory Control of Grasping: Independence of Sensorimotor Memories for Kinematics and Kinetics. J. Neurosci. 2008, 28, 12765–12774. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.; Christiansen, K.; Chapman, R.; Aggleton, J. Distinct subdivisions of the cingulum bundle revealed by diffusion MRI fibre tracking: Implications for neuropsychological investigations. Neuropsychologia 2013, 51, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Catani, M.; Bodi, I.; Dell’Acqua, F. Comment on “The Geometric Structure of the Brain Fiber Pathways”. Science 2012, 337, 1605. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Boccia, G.; Martins, V.F.; Zoppirolli, C.; Bortolan, L.; Pellegrini, B. Margins of stability and trunk coordination during Nordic walking. J. Biomech. 2022, 134, 111001. [Google Scholar] [CrossRef] [PubMed]
- Leal-Nascimento, A.H.; da Silva, E.S.; Zanardi, A.P.J.; Ivaniski-Mello, A.; Passos-Monteiro, E.; Martinez, F.G.; de Carvalho, A.R.; Baptista, R.R.; Peyré-Tartaruga, L.A. Biomechanical responses of Nordic walking in people with Parkinson’s disease. Scand. J. Med. Sci. Sports 2021, 32, 290–297. [Google Scholar] [CrossRef] [PubMed]
Mean | Standard Deviation | 99% CI | |||
---|---|---|---|---|---|
Variable | Reaching | Reach-to-Grasp | Reaching | Reach-to-Grasp | |
Movement Time (ms) | 655.13 | 730.46 | 55.05 | 55.81 | −119, −41 |
Time of Maximum Peak Velocity (ms) | 263.90 | 308.76 | 23.52 | 24.60 | −61, −27 |
Time of Maximum Peak Acceleration (ms) | 165.13 | 218.83 | 15.39 | 12.58 | −98, −62 |
Time of Maximum Peak Deceleration (ms) | 424.50 | 503.73 | 29.92 | 20.91 | −64, −44 |
Time of Maximum Grip Aperture (ms) | N/A | 509.26 | N/A | 22.20 | N/A |
Time of Maximum Opening Velocity (ms) | N/A | 289.45 | N/A | 30.02 | N/A |
Reaching Timing | Reach-to-Grasp Timing | |
---|---|---|
Movement Time (ms) | 0.83 | 0.73 |
Time of Maximum Peak Velocity (ms) | 0.59 | 0.76 |
Time of Maximum Peak Acceleration (ms) | 0.66 | 0.59 |
Time of Maximum Peak Deceleration (ms) | 0.91 | 0.84 |
Time of Maximum Grip Aperture (ms) | N/A | 0.83 |
Time of Maximum Opening Velocity (ms) | N/A | 0.77 |
LIHMOA | Mean | Standard Deviation | 99% CI |
---|---|---|---|
IC | 0.00 | 0.01 | −0.01, 0.01 |
CST | 0.00 | 0.04 | −0.02, 0.02 |
HMT | 0.06 | 0.06 | −0.02, 0.04 |
Reaching Timing [99% CI] | Reach-to-Grasp Timing [99% CI] | ||
---|---|---|---|
IC | Left | r = 0.55[0.35, 0.89] * | r = 0.52[0.11, 0.81] * |
Right | r = 0.34[−0.12, 0.70] | r = 0.58[0.12, 0.79] * | |
CST | Left | r = 0.52[0.08, 0.80] * | r = 0.50[0.09, 0.81] * |
Right | r = 0.32[−0.22, 0.66] | r = 0.58[0.09, 0.78] * | |
HMT | Left | r = 0.52[0.07, 0.77] * | r = 0.57[0.08, 0.77] * |
Right | r = 0.34[−0.62, 0.60] | r = 0.28[−0.11, 0.75] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Begliomini, C.; Ceccarini, F.; Dell’Acqua, V.P.; Budisavljevic, S.; Castiello, U. Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements. Biology 2022, 11, 1482. https://doi.org/10.3390/biology11101482
Begliomini C, Ceccarini F, Dell’Acqua VP, Budisavljevic S, Castiello U. Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements. Biology. 2022; 11(10):1482. https://doi.org/10.3390/biology11101482
Chicago/Turabian StyleBegliomini, Chiara, Francesco Ceccarini, Veronica Pinuccia Dell’Acqua, Sanja Budisavljevic, and Umberto Castiello. 2022. "Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements" Biology 11, no. 10: 1482. https://doi.org/10.3390/biology11101482
APA StyleBegliomini, C., Ceccarini, F., Dell’Acqua, V. P., Budisavljevic, S., & Castiello, U. (2022). Structure of the Motor Descending Pathways Correlates with the Temporal Kinematics of Hand Movements. Biology, 11(10), 1482. https://doi.org/10.3390/biology11101482