Identifying Blunt Force Traumatic Injury on Thermally Altered Remains: A Pilot Study Using Sus scrofa
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
4.1. Skeletal Biomechanics: Fracture Type & Morphology
4.2. Fracture Origin and Termination
4.3. Skeletal Color Change
4.4. Tissue Thickness and Soft Tissue Survival
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Macoveciuc, I.; Márquez-Grant, N.; Horsfall, I.; Zioupos, P. Sharp and blunt force trauma concealment by thermal alteration in homicides: An in-vitro experiment for methodology and protocol development in forensic anthropological analysis of burnt bones. Forensic Sci. Int. 2017, 275, 260–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vaughan, P.; Vogelsberg, C.; Vollner, J.; Fenton, T.; Haut, R. The Role of Interface Shape on the Impact Characteristics and Cranial Fracture Patterns Using the Immature Porcine Head Model. J. Forensic Sci. 2016, 61, 1190–1197. [Google Scholar] [CrossRef] [PubMed]
- Pope, E.; Smith, O. Identification of Traumatic Injury in Burned Cranial Bone: An Experimental Approach. J. Forensic Sci. 2004, 49, 431–440. [Google Scholar] [CrossRef]
- Atherton, D.; McGwin, G.; Davis, G. Comparison of the Distribution of Cranial Fractures by Mechanism of Formation. Acad. Forensic Pathol. 2015, 5, 338–343. [Google Scholar] [CrossRef]
- De Gruchy, S.; Rogers, T.L. Identifying chop marks on cremated bone: A preliminary study. J. Forensic Sci. 2002, 47, 933–936. [Google Scholar] [CrossRef] [PubMed]
- Symes, S.A.; Rainwater, C.W.; Chapman, E.N.; Gipson, D.R.; Piper, A.L. Patterned thermal destruction of human remains in a forensic setting. In The Analysis of Burned Human Remains; Schmidt, C.W., Symes, S.A., Eds.; Academic Press: London, UK, 2008; pp. 15–54. [Google Scholar]
- Herrmann, N.P.; Bennett, J.L. The differentiation of traumatic and heat-related fractures in burned bone. J. Forensic Sci. 1999, 44, 461–469. [Google Scholar] [CrossRef]
- Delannoy, Y.; Becart, A.; Colard, T.; Delille, R.; Tournel, G.; Hedouin, V.; Gosset, D. Skull wounds linked with blunt trauma (hammer example). A report of two depressed skull fractures–Elements of biomechanical explanation. Leg. Med. 2012, 14, 258–262. [Google Scholar] [CrossRef]
- Shipman, P.; Foster, G.; Schoeninger, M. Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. J. Archaeol. Sci. 1984, 11, 307–325. [Google Scholar] [CrossRef]
- Richter, D.; Hahn, M.; Ostermann, P.; Ekkernkamp, A.; Muhr, G. Vertical deceleration injuries: A comparative study of the injury patterns of 101 patients after accidental and intentional high falls. Injury 1996, 27, 655–659. [Google Scholar] [CrossRef]
- Bradley, A.; Swain, M.; Waddell, J.N.; Das, R.; Athens, J.; Kieser, J. A comparison between rib fracture patterns in peri- and post-mortem compressive injury in a piglet model. J. Mech. Behav. Biomed. Mater. 2014, 33, 67–75. [Google Scholar] [CrossRef]
- Sorg, M. Differentiating trauma from taphonomic alterations. Forensic Sci. Int. 2019, 302, 109893. [Google Scholar] [CrossRef]
- Gläser, N.; Kneubuehl, B.; Zuber, S.; Axmann, S.; Ketterer, T.; Thali, M.; Bolliger, S. Biomechanical Examination of Blunt Trauma due to Baseball Bat Blows to the Head. J. Forensic Biomech. 2011, 2, F100601. [Google Scholar] [CrossRef]
- Wescott, D. Postmortem change in bone biomechanical properties: Loss of plasticity. Forensic Sci. Int. 2019, 300, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Snoeck, C.; Lee-Thorp, J.; Schulting, R. From bone to ash: Compositional and structural changes in burned modern and archaeological bone. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2014, 416, 55–68. [Google Scholar] [CrossRef]
- Motherway, J.; Doorly, M.; Curtis, M.; Gilchrist, M. Head impact biomechanics simulations: A forensic tool for reconstructing head injury? Leg. Med. 2009, 11, S220–S222. [Google Scholar] [CrossRef] [Green Version]
- Thompson, T. Recent advances in the study of burned bone and their implications for forensic anthropology. Forensic Sci. Int. 2004, 146, S203–S205. [Google Scholar] [CrossRef]
- Thompson, T.J.U. Heat-induced dimensional changes in bone and their consequences for forensic anthropology. J. Forensic Sci. 2005, 50, 1008–1015. [Google Scholar] [CrossRef]
- Galtés, I.; Scheirs, S. Differentiation between perimortem trauma and heat-induced damage: The use of perimortem traits on burnt long bones. Forensic Sci. Med. Pathol. 2019, 15, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Efford, M. The Implications of Thermogenic Modification for Anthropological Recovery of Burned Bone. Arbutus Rev. 2016, 7, 20. [Google Scholar] [CrossRef] [Green Version]
- Viorel, P.; Mariana, R. Problems of forensic anthropological identification of carbonized human remains. Rom. J. Leg. Med. 2007, 15, 39–44. [Google Scholar] [CrossRef]
- Bohnert, M.; Rost, T.; Faller-Marquardt, M.; Ropohl, D.; Pollak, S. Fractures of the base of the skull in charred bodies—post-mortem heat injuries or signs of mechanical traumatisation? Forensic Sci. Int. 1997, 87, 55–62. [Google Scholar] [CrossRef]
- Spennemann, D.H.R.; Colley, S.M. Fire in a pit: The effects of burning of faunal remains. Archaeozoologia 1989, 3, 51–64. [Google Scholar]
- Fanton, L.; Jdeed, K.; Tilhet-Coartet, S.; Malicier, D. Criminal burning. Forensic Sci. Int. 2006, 158, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Bradtmiller, B.; Buikstra, J. Effects of Burning on Human Bone Microstructure: A Preliminary Study. J. Forensic Sci. 1984, 29, 11701J. [Google Scholar] [CrossRef]
- Egeland, C.; Pickering, T. Cruel traces: Bone surface modifications and their relevance to forensic science. Wires Forensic Sci. 2021, 3, e1400. [Google Scholar] [CrossRef]
- Tümer, A.; Akçan, R.; Karacaoğlu, E.; Balseven-Odabaşı, A.; Keten, A.; Kanburoğlu, Ç.; Unal, M.; Dinç, A.H. Postmortem burning of the corpses following homicide. J. Forensic Leg. Med. 2012, 19, 223–228. [Google Scholar] [CrossRef] [PubMed]
- Ubelaker, D. The forensic evaluation of burned skeletal remains: A synthesis. Forensic Sci. Int. 2009, 183, 1–5. [Google Scholar] [CrossRef]
- Christensen, A.; Crowder, C. Evidentiary Standards for Forensic Anthropology. J. Forensic Sci. 2009, 54, 1211–1216. [Google Scholar] [CrossRef]
- Lesciotto, K. The Impact of Daubert on the Admissibility of Forensic Anthropology Expert Testimony. J. Forensic Sci. 2015, 60, 549–555. [Google Scholar] [CrossRef]
- National Research, Council; National Academy of Sciences. Strengthening Forensic Science in the United States: A Path Forward [Hereinafter NAS Forensic Science Report]; The National Academies Press: Washington, DC, USA, 2009. [Google Scholar]
- Daubert v. Merrell Dow Pharmaceuticals, Inc., 509 U.S. 579.1993. Available online: https://supreme.justia.com/cases/federal/us/509/579/ (accessed on 20 December 2021).
Group | Tool | Position | Identifier # |
---|---|---|---|
1 | Control-NA | NA | C1 |
Control-NA | NA | C2 | |
Control-NA | NA | C3 | |
2 | Crowbar | Supine | CBS1 |
Crowbar | Supine | CBS2 | |
Crowbar | Horizontal | CBH1 | |
Crowbar | Horizontal | CBH2 | |
3 | Hammer | Supine | HS1 |
Hammer | Supine | HS2 | |
Hammer | Horizontal | HH1 | |
Hammer | Horizontal | HH2 |
Sample | Defect Observed | ||||||
---|---|---|---|---|---|---|---|
Longitudinal | Transverse | Comminuted | Curved Transverse | Depressed | Patina | Delamination | |
C1 | ✓ | ✓ | X | ✓ | X | ✓ | ✓ |
C2 | ✓ | ✓ | X | ✓ | X | ✓ | ✓ |
C3 | ✓ | ✓ | X | ✓ | X | ✓ | ✓ |
CBS1 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
CBS2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
CBH1 | X | X | ✓ | ✓ | ✓ | ✓ | ✓ |
CBH2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
HS1 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
HS2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
HH1 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
HH2 | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keys, K.; Ross, A.H. Identifying Blunt Force Traumatic Injury on Thermally Altered Remains: A Pilot Study Using Sus scrofa. Biology 2022, 11, 87. https://doi.org/10.3390/biology11010087
Keys K, Ross AH. Identifying Blunt Force Traumatic Injury on Thermally Altered Remains: A Pilot Study Using Sus scrofa. Biology. 2022; 11(1):87. https://doi.org/10.3390/biology11010087
Chicago/Turabian StyleKeys, Kamryn, and Ann H. Ross. 2022. "Identifying Blunt Force Traumatic Injury on Thermally Altered Remains: A Pilot Study Using Sus scrofa" Biology 11, no. 1: 87. https://doi.org/10.3390/biology11010087
APA StyleKeys, K., & Ross, A. H. (2022). Identifying Blunt Force Traumatic Injury on Thermally Altered Remains: A Pilot Study Using Sus scrofa. Biology, 11(1), 87. https://doi.org/10.3390/biology11010087