The Effectiveness of the Sexual Reproduction in Selected Clonal and Nonclonal Species of the Genus Ranunculus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Pollen Quality and Pistil Morphology
2.3. Efficiency of Seed Formation, Their Viability and Ability to Germinate
2.4. Statistical Analysis
3. Results
3.1. Pollen Quality and Pistil Morphology
3.2. Seeds’ Formation Efficiency, Their Viability and Ability to Germinate
3.3. Cluster Analysis
4. Discussion
4.1. Seed Germination
4.2. Pollen-Tube Development
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rautiainen, P.; Koivula, K.; Hyvärinen, M. The effect of within-genet and between-genet competition on sexual reproduction and vegetative spread in Potentilla anserina ssp. egedii. J. Ecol. 2004, 92, 505–511. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Kim, J.G. The optimal balance between sexual and asexual reproduction in variable environments: A systematic review. J. Ecol. Environ. 2016, 40, 12. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, D. Asexual and sexual reproductive strategies in clonal plants. Front. Biol. China 2007, 2, 256–262. [Google Scholar] [CrossRef]
- Eckert, C.G.; Dorken, M.E.; Barrett, S.C. Ecological and evolutionary consequences of sexual and clonal reproduction in aquatic plants. Aquat. Bot. 2016, 135, 46–61. [Google Scholar] [CrossRef]
- Tamura, M. Angiospermae. Ordnung Ranunculales. Fam. Ranunculaceae. II. Systematic Part. In Die Natürliche Pflanzenfamilien, 2nd ed.; Hiepko, P., Ed.; Duncker & Humblot: Berlin, Germany, 1995; pp. 223–519. (In German) [Google Scholar]
- Tutin, T.G.; Heywood, V.H.; Burges, N.A.; Valentine, D.H.; Walters, S.M.; Webb, D.A. Flora Europaea, 2nd ed.; Cambridge University Press: Cambridge, UK, 1993; Volume 1, pp. 269–286. [Google Scholar]
- Tamura, M. Ranunculaceae. In The Families and Genera of Vascular Plants; Kubitzki, K., Rohwer, J.G., Bittrich, V., Eds.; Springer: Berlin/Heidelberg, Germany, 1993; pp. 563–583. [Google Scholar]
- Sell, P.D. Ranunculus ficaria L. sensu lato. Watsonia 1994, 20, 41–50. [Google Scholar]
- Taylor, K.; Markham, B. Biological flora of the British Isles—Ranunculus ficaria L. J. Ecol. 1978, 66, 1011–1031. [Google Scholar] [CrossRef]
- Allen, A.M.; Hiscock, S.J. Evolution and Phylogeny of Self-Incompatibility Systems in Angiosperms. In Self-Incompatibility in Flowering Plants. Evolution, Diversity, and Mechanisms; Franklin-Tong, V.E., Ed.; Springer: Berlin/Heidenberg, Germany, 2008; pp. 73–101. [Google Scholar] [CrossRef] [Green Version]
- Rendle, H.; Murray, B.G. Breeding systems and pollen tube behaviour in compatible and incompatible crosses in New Zealand species of Ranunculus L. N. Z. J. Bot. 1988, 26, 467–471. [Google Scholar] [CrossRef]
- Sarukhán, J.; Harper, J.L. Studies on plant demography: Ranunculus repens L., R. bulbosus L. and R. acris L.: I. Population flux and survivorship. J. Ecol. 1974, 61, 675–715. [Google Scholar] [CrossRef] [Green Version]
- Cosendai, A.C.; Hörandl, E. Cytotype stability, facultative apomixis and geographical parthenogenesis in Ranunculus kuepferi (Ranunculaceae). Ann. Bot. 2010, 105, 457–470. [Google Scholar] [CrossRef] [Green Version]
- Hörandl, E. Evolutionary implications of self-compatibility and reproductive fitness in the apomictic Ranunculus auricomus polyploid complex (Ranunculaceae). Int. J. Plant Sci. 2008, 169, 1219–1228. [Google Scholar] [CrossRef] [Green Version]
- Hörandl, E.; Cosendai, A.C.; Temsch, E.M. Understanding the geographic distributions of apomictic plants: A case for a pluralistic approach. Plant Ecol. Divers. 2008, 1, 309–320. [Google Scholar] [CrossRef] [PubMed]
- Izmaiłow, R. Reproductive strategy in the Ranunculus auricomus complex (Ranunculaceae). Acta Soc. Bot. Pol. 1996, 65, 167–170. [Google Scholar] [CrossRef] [Green Version]
- Schinkel, C.C.; Kirchheimer, B.; Dullinger, S.; Geelen, D.; De Storme, N.; Hörandl, E. Pathways to polyploidy: Indications of a female triploid bridge in the alpine species Ranunculus kuepferi (Ranunculaceae). Plant Syst. Evol. 2017, 303, 1093–1108. [Google Scholar] [CrossRef] [Green Version]
- Pickering, C.M. Breeding systems of Australian Ranunculus in the alpine region. Nord. J. Bot. 1997, 17, 613–620. [Google Scholar] [CrossRef]
- PLADIAS. Database of the Czech Flora and Vegetation. Available online: www.pladias.cz (accessed on 10 November 2021).
- Beruto, M.; Rabaglio, M.; Viglione, S.; Van Labeke, M.C.; Dhooghe, E. Ranunculus. In Ornamental Crops. Handbook of Plant Breeding; Van Huylenbroeck, J., Ed.; Springer: Cham, Switzerland, 2018; Volume 11, pp. 649–671. [Google Scholar] [CrossRef]
- Lloyd, D.G.; Webb, C.J. The avoidance of interference between the presentation of pollen and stigmas in angiosperms I. Dichogamy. N. Z. J. Bot. 1986, 24, 135–162. [Google Scholar] [CrossRef] [Green Version]
- Stanton, M.L.; Galen, C. Consequences of flower heliotropism for reproduction in an alpine buttercup (Ranunculus adoneus). Oecologia 1989, 78, 477–485. [Google Scholar] [CrossRef]
- Totland, Ø.; Alatalo, J.M. Effects of temperature and date of snowmelt on growth, reproduction, and flowering phenology in the arctic/alpine herb, Ranunculus glacialis. Oecologia 2002, 133, 168–175. [Google Scholar] [CrossRef]
- Wagner, J.; Steinacher, G.; Landinig, U. Ranunculus glacialis L.: Successful reproduction at the altitudinal limits of higher plant life. Protoplasma 2010, 243, 117–128. [Google Scholar] [CrossRef]
- Galen, C.; Stanton, M.L. Sunny-side up: Flower heliotropism as a source of parental environmental effects on pollen quality and performance in the snow buttercup, Ranunculus adoneus (Ranunculaceae). Am. J. Bot. 2003, 90, 724–729. [Google Scholar] [CrossRef]
- Rybka, V.; Duchoslav, M. Influence of water depth on growth and reproduction of Ranunculus lingua. Belg. J. Bot. 2007, 140, 130–135. [Google Scholar]
- Hörandl, E.; Dobeš, C.; Lambrou, M. Chromosomen-und Pollenuntersuchungen an österreichischen Arten des apomiktischen Ranunculus auricomus-Komplexes. Bot. Helv. 1997, 107, 195–209. [Google Scholar]
- Kallajxhiu, N.; Kapidani, G.; Naqellari, P.; Pupuleku, B.; Turku, S.; Gjeta, E. Palynological comparison of pollen grains of Ranunculus psilostachys with those of Ranunculus bulbosum and Ranunculus sardous. Int. J. Eng. Sci. Invent. 2015, 4, 40–45. [Google Scholar]
- Verma, K.; Urfan, M.; Tiwari, P. In Vitro Pollen Germination, Tube Growth and Pollen Viability of Some Angiospermic Taxa from Srinagar Valley (Garhwal Himalya). Int. J. Eng. Technol. Sci. Res. 2017, 4, 345–353. [Google Scholar]
- Carta, A.; Bedini, G.; Foggi, B.; Probert, R.J. Laboratory germination and seed bank storage of Ranunculus peltatus subsp. baudotii seed from the Tuscan Archipelago. Seed Sci. Technol. 2012, 40, 11–20. [Google Scholar] [CrossRef]
- Nomizu, T.; Niimi, Y.; Wanatabe, E. Embryo development and seed germination of Hepatica nobilis Schreber var. japonica as affected by temperature after sowing. Sci. Hortic. 2004, 99, 345–352. [Google Scholar] [CrossRef]
- Wcisło, H.; Pogan, E. Cytoembryological aspects of reduced seed setting in Ranunculus ficaria L. subsp. bulbifer (Marsden-Jones) Lawalrée. Acta Soc. Bot. Pol. 1981, 50, 253–255. [Google Scholar] [CrossRef]
- Tiwari, A.K.; Tiwari, T.N.; Prasad, S.R. Seed dormancy in ornamental plants: A review. Indian J. Agric. Sci. 2016, 86, 580–592. [Google Scholar]
- Young, J.A.; Martens, E.; West, N.E. Germination of buttercup seeds. J. Range Manag. 1992, 45, 358–362. [Google Scholar] [CrossRef] [Green Version]
- Pérez-García, F. Effect of cryopreservation, gibberellic acid and mechanical scarification on the seed germination of eight endemic species from Canary Islands. Seed Sci. Technol. 2008, 36, 237–242. [Google Scholar] [CrossRef]
- Karami, A.; Khosh-Khui, M. Presence of double dormancy in Wild Persian Buttercup (Ranunculus asiaticus L.). Int. J. Agric. Res. 2007, 2, 97–101. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N.; Sharma, V.; Dobriyal, A.K.; Kamal, B.; Gupta, S.; Jadon, V.S. Influence of pre-sowing treatments on in vitro seed germination of Ativisha (Aconitum heterophyllum Wall) of Uttarakhand. Biotechnology 2011, 10, 215–219. [Google Scholar] [CrossRef] [Green Version]
- Grulich, V. The Red List of vascular plants of the Czech Republic. Příroda 2017, 35, 75–132. [Google Scholar]
- Kaźmierczakowa, R.; Towpasz, K. Ranunculus illyricus L.—Jaskier illiryjski. In Polish Red Data Book of Plants—Pteridophytes and Flowering Plants, 3rd ed.; Kaźmierczakowa, R., Zarzycki, K., Mirek, Z., Eds.; Polish Academy of Sciences, Institute of Nature Conservation: Cracow, Poland, 2014; pp. 196–197. (In Polish) [Google Scholar]
- Turis, P.; Kliment, J.; Feráková, V.; Dítě, D.; Eliáš, P.; Hrivnák, R.; Koštál, J.; Šuvada, R.; Mráz, P.; Bernátová, D. Red List of vascular plants of the Carpathian part of Slovakia. Thaiszia J. Bot. 2014, 24, 35–87. [Google Scholar]
- Erikson, J. Zür Biologie und Morphologie von Ranunculus illyricus. Bot. Zent. 1897, 72, 193. (In German) [Google Scholar]
- Troll, W. Vergleichende Morphologie der Höheren Pflanzen; Verlag von Gebrüder Bortraeger: Berlin-Zehlendorf, Germany, 1943; pp. 2646–2652. [Google Scholar]
- Herben, T.; Tackenberg, O.; Klimešová, J. Reproduction by seed and clonality in plants: Correlated syndromes or independent strategies? J. Ecol. 2016, 104, 1696–1706. [Google Scholar] [CrossRef]
- Izmaiłow, R. Cytogenetic studies in the apomictic species Ranunculus cassubicus L. Acta Biol. Crac. Ser. Bot. 1970, 13, 37–50. [Google Scholar]
- Izmaiłow, R. Cyto-embryological studies in experimental hybrids of the apomictic species Ranunculus cassubicus L. Acta Biol. Crac. Ser. Bot. 1973, 16, 99–120. [Google Scholar]
- Paun, O.; Stuessy, T.F.; Hörandl, E. The role of hybridization, polyploidization and glaciation in the origin and evolution of the apomictic Ranunculus cassubicus complex. New Phytol. 2006, 171, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Towpasz, K. Ficaria verna Huds. ssp. calthifolia (Rchb.) Vel. in Poland. Fragm. Flor. Geobot Pol. 1971, 17, 215–219. (In Polish) [Google Scholar]
- Dembicz, J.; Kozub, Ł. Confirmation of Ranunculus illyricus (Ranunculaceae) locality in Skorocice (Małopolska Upland). Fragm. Flor. Geobot Pol. 2015, 22, 381–384. (In Polish) [Google Scholar]
- Towpasz, K.; Cwener, A. New locality of Ranunculus illyricus (Ranunculaceae) in Poland. Fragm. Flor. Geobot Pol. 2002, 9, 370–372. (In Polish) [Google Scholar]
- Ellenberg, H. Zeigerwerte der Gefässpflanzen Mitteleuropas. Scr. Geobot. 1974, 9, 1–166. (In German) [Google Scholar]
- Alexander, M. P. Differential staining of aborted and non-aborted pollen. Stain Technol. 1969, 44, 117–122. [Google Scholar] [CrossRef]
- Martin, F.W. Staining and observing pollen tubes by means of fluorescence. Stain Technol. 1959, 34, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Peters, J. Tetrazolium Testing Handbook: Contribution No. 29 to the Handbook on Seed Testing, Revised 2000; AOSA: Las Cruces, NM, USA, 2000. [Google Scholar]
- International Seed Testing Association (ISTA). International rules for seed testing. Seed Sci. Technol. 1999, 27, 1–333. [Google Scholar]
- Perje, A.M. Some causes of variation in Ranunculus ficaria L. Ark. Bot. Ser. 1952, 2, 251–264. [Google Scholar]
- Hörandl, E. The evolution of self-fertility in apomictic plants. Sex. Plant Reprod. 2010, 23, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Syngelaki, E.; Daubert, M.; Klatt, S.; Hörandl, E. Phenotypic responses, reproduction mode and epigenetic patterns under temperature treatments in the Alpine plant species Ranunculus kuepferi (Ranunculaceae). Biology 2020, 9, 315. [Google Scholar] [CrossRef]
- Kumar, S.; Saxena, S.; Rai, A.; Radhakrishna, A.; Kaushal, P. Ecological, genetic, and reproductive features of Cenchrus species indicate evolutionary superiority of apomixis under environmental stresses. Ecol. Indic. 2019, 105, 126–136. [Google Scholar] [CrossRef]
- Skubacz, A.; Daszkowska-Golec, A. Seed dormancy: The complex process regulated by abscisic acid, gibberellins, and other phytohormones that makes seed germination work. In Phytohormones—Signaling Mechanisms and Crosstalk in Plant Development and Stress Responses; El-Elsawi, M., Ed.; InTech: Rijeka, Croatia, 2017; pp. 77–100. [Google Scholar] [CrossRef]
- Penfield, S. Seed dormancy and germination. Curr. Biol. 2017, 27, R874–R878. [Google Scholar] [CrossRef] [Green Version]
- Song, Q.; Cheng, S.; Chen, Z.; Nie, G.; Xu, F.; Zhang, J.; Zhou, M.; Zhang, W.; Liao, Y.; Ye, J. Comparative transcriptome analysis revealing the potential mechanism of seed germination stimulated by exogenous gibberellin in Fraxinus hupehensis. BMC Plant Biol. 2019, 19, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izydorczyk, C.; Nguyen, T.N.; Jo, S.; Son, S.; Tuan, P.A.; Ayele, B.T. Spatiotemporal modulation of abscisic acid and gibberellin metabolism and signalling mediates the effects of suboptimal and supraoptimal temperatures on seed germination in wheat (Triticum aestivum L.). Plant Cell Environ. 2018, 41, 1022–1037. [Google Scholar] [CrossRef]
- Arslan, H.; Kirmizi, S.; Güleryüz, G.; Sakar, F. Germination requirements of Androsace villosa L. (Primulaceae). Acta Biol. Crac. Ser. Bot. 2011, 53, 32–36. [Google Scholar] [CrossRef]
- Golmohammadzadeh, S.; Zaefarian, F.; Rezvani, M. Effects of some chemical factors, prechilling treatments and interactions on the seed dormancy-breaking of two Papaver species. Weed Biol. Manag. 2015, 15, 11–19. [Google Scholar] [CrossRef]
- Amini, V.; Zaefarian, F.; Rezvani, M. Effect of pre-chilling and environmental factors on breaking seed dormancy and germination of three foxtail species. Acta Agric. Slov. 2015, 105, 269–278. [Google Scholar] [CrossRef]
- Hammami, H.; Saadatian, B.; Aliverdi, A. Geographical variation in breaking the seed dormancy of Persian cumin (Carum carvi L.) ecotypes and their physiological responses to salinity and drought stresses. Ind. Crops Prod. 2018, 124, 600–606. [Google Scholar] [CrossRef]
- Mekenian, M.R.; Willemsen, R.W. Germination characteristics of Raphanus raphanistrum. I. Laboratory studies. Bull. Torrey Bot. Club 1975, 102, 243–252. [Google Scholar] [CrossRef]
- Baskin, J.M.; Baskin, C.C. Delayed germination in seeds of Phacelia dubia var. dubia. Can. J. Bot. 1973, 51, 2481–2486. [Google Scholar] [CrossRef]
- Hawkins, K.K.; Allen, P.S.; Meyer, S.E. Secondary dormancy induction and release in Bromus tectorum seeds: The role of temperature, water potential and hydrothermal time. Seed Sci. Res. 2017, 27, 12–25. [Google Scholar] [CrossRef] [Green Version]
- Baskin, J.M.; Baskin, C.C. Ecological life cycle of Helenium amarum in central Tennessee. Bull. Torrey Bot. Club 1973, 100, 117–124. [Google Scholar] [CrossRef]
Species | Section a | Ploidy Level and Chromosome Number b | Reproduction Type c | Breeding System d |
---|---|---|---|---|
Ficaria verna Huds. | Ficaria | 4x = 32 | G, Cl | FAl |
Ranunculus illyricus L. | Ranunculastrum | 4x = 32 | G, Cl | Al, SI |
Ranunculus bulbosus L. | Ranunculus | 2x = 16 | G | Al, SI |
Ranunculus lanuginosus L. | Ranunculus | 4x = 28 | G | FAl |
Ranunculus auricomus L. | Auricomus | 4(2,5,6)x = 16–48 | G | Al, SI, FAp |
Ranunculus cassubicus L. | Auricomus | 4x = 32 | G | FAp |
Species | Collection Locality | GPS Coordinates | Collection Date | |
---|---|---|---|---|
Flowers | Fruits | |||
F. verna | oak hornbeam forest, Bielany, Kraków (Kraków Gate mezoregion) | 50°02′54.6″ N 019°50′15.0” E | 21 April 2017 10 April 2019 | 15 May 2017 1 May 2019 |
R. illyricus | pot cultivation, collection of University of Agriculture in Kraków (Kraków-Częstochowa Upland) | 50°05′03.6″ N 019°57′01.3″ E | 7 June 2017 10 June 2019 | 12 July 2017 10 July 2019 |
R. bulbosus | grasslands from Festuco-Brometea, Mydlniki, Kraków (Kraków-Częstochowa Upland) | 50°05′03.8″ N 019°51′34.7″ E | 13 May 2017 20 May 2019 | 20 June 2017 26 June 2019 |
R. lanuginosus | oak hornbeam forest, Bielany, Kraków (Kraków Gate mezoregion) | 50°02′54.6″ N 019°50′15.0″ E | 8 May 2017 1 May 2019 | 22 May 2017 29 May 2019 |
R. auricomus | moist meadow from Molinietalia coeruleae, Wola Radziszowska, Wieliczka Foothills (Western Carpathians) | 49°53′51.1″ N 019°46′16.8″ E | 19 May 2017 12 May 2019 | 16 June 2017 6 June 2019 |
R. cassubicus | oak hornbeam forest, Uniejów-Rędziny, Miechów Upland (Małopolska Upland) | 50°26′39.5″ N 019°58′43.7″ E | 19 May 2017 22 May 2019 | 10 June 2017 12 June 2019 |
Species | Pollen Viability Per Sample (%/Sample) | Pollen Diameter (µm) | Number of Pistils Per Flower (pcs/Flower) | Efficiency of Fruit Set (%) | Viability of Seeds (%) | Germination of Seeds Per Plate (%/Plate) |
---|---|---|---|---|---|---|
F. verna | 84 ± 3.1 bc | 37 ± 0.2 | 12 ± 0.3 a | 22 ± 1 b | 7 | 0 ± 0 a |
R. illyricus | 59 ± 2.1 abc | 36 ± 0.4 | 146 ± 3.2 e | 11 ± 1.2 a | 100 | 16 ± 2.1 a |
R. bulbosus | 91 ± 2.2 c | 36 ± 1.7 | 32 ± 0.8 c | 64 ± 3.2 d | 97 | 68 ± 2.8 b |
R. lanuginosus | 85 ± 2.7 bc | 41 ± 0.2 | 22 ± 0.6 b | 51 ± 3.2 cd | 67 | 67 ± 4.7 b |
R. auricomus | 38 ± 1.9 a | 35 ± 0.7 | 49 ± 2.6 cd | 35 ± 1.8 c | 35 | 24 ± 6.4 a |
R. cassubicus | 54 ± 2 ab | 36 ± 0.5 | 84 ± 2.8 d | 33 ± 1.6 c | 48 | 22 ± 5.8 a |
Test | Kruskal–Wallis test | Kruskal–Wallis test | Kruskal–Wallis test | Kruskal–Wallis test | Chi-square | Kruskal–Wallis test |
p-value | 0.0000 | 0.1036 | 0.000 | 0.000 | 0.00000 | 0.0000 |
Species | Pollinated Pistils(%) | Pistils with Nongerminating Pollen | Pistils with Germinating Pollen Not Entering Ovary | Pistils with Pollen Tubes Entering Ovary |
---|---|---|---|---|
% of Pollinated Pistils | ||||
F. verna | 100.0 | 6.5 | 45.1 | 48.4 |
R. illyricus | 91.0 | 55.5 | 54.5 | 0 |
R. bulbosus | 86.2 | 4 | 68 | 28 |
R. lanuginosus | 80.0 | 0 | 93.7 | 6.3 |
R. auricomus | 78.6 | 31.8 | 59.1 | 9.1 |
R. cassubicus | 95.2 | 15 | 80 | 5 |
Parameter | Cluster 1 | Cluster 2 | Cluster 3 | Cluster 4 | Test | p Value |
---|---|---|---|---|---|---|
R. lanuginosusR. bulbosus | R. auricomusR. cassubicus | R. illyricus | F. verna | |||
Pollen viability (%) | 88 ± 1.9 c | 46 ± 2.7 a | 59 ± 2.1 b | 84 ± 3.1 c | ANOVA, LSD Fisher’s test | 0.000000 |
Number of pistils per flower | 27 ± 0.6 b | 68 ± 2.5 c | 145 ± 3.2 d | 12 ± 0.3 a | Kruskal–Wallis test | 0.000 |
Efficiency of fruit set (%) | 58 ± 2.3 d | 34 ± 1.2 c | 11 ± 1.2 a | 22 ± 1 b | Kruskal–Wallis test | 0.000 |
Viability of seeds (%) | 82 | 42 | 100 | 7 | Chi-square | 0.00000 |
Germination of seeds per plate (%) | 67 ± 2.7 b | 23 ± 4.3 a | 16 ± 2.1 a | 0 ± 0 a | Kruskal–Wallis test | 0.0000 |
Pollen diameter (µm) | 39 ± 1.5 a | 36 ± 0.4 a | 36 ± 0.4 a | 37 ± 0.2 a | Kruskal–Wallis test | 0.4439 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kocot, D.; Sitek, E.; Nowak, B.; Kołton, A.; Stachurska-Swakoń, A.; Towpasz, K. The Effectiveness of the Sexual Reproduction in Selected Clonal and Nonclonal Species of the Genus Ranunculus. Biology 2022, 11, 85. https://doi.org/10.3390/biology11010085
Kocot D, Sitek E, Nowak B, Kołton A, Stachurska-Swakoń A, Towpasz K. The Effectiveness of the Sexual Reproduction in Selected Clonal and Nonclonal Species of the Genus Ranunculus. Biology. 2022; 11(1):85. https://doi.org/10.3390/biology11010085
Chicago/Turabian StyleKocot, Dawid, Ewa Sitek, Barbara Nowak, Anna Kołton, Alina Stachurska-Swakoń, and Krystyna Towpasz. 2022. "The Effectiveness of the Sexual Reproduction in Selected Clonal and Nonclonal Species of the Genus Ranunculus" Biology 11, no. 1: 85. https://doi.org/10.3390/biology11010085
APA StyleKocot, D., Sitek, E., Nowak, B., Kołton, A., Stachurska-Swakoń, A., & Towpasz, K. (2022). The Effectiveness of the Sexual Reproduction in Selected Clonal and Nonclonal Species of the Genus Ranunculus. Biology, 11(1), 85. https://doi.org/10.3390/biology11010085