The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis)
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample Collection
2.3. RNA Extraction, Library Preparation and Transcriptome Sequencing
2.4. Identification of the Differentially Expressed Genes (DEGs)
2.5. GO and KEGG Pathway Enrichment Analysis of DEGs
2.6. Validation of the Transcriptome with RT-qPCR
2.7. Expression Patterns of Sox Family Genes during Sex Reversal
3. Results
3.1. Quality Assessment of the Sequencing Data
3.2. Analysis of DEGs
3.3. GO and KEGG Enrichment Analysis of DEGs
3.4. Screening of Candidate DEGs Related to Sex Reversal and Gonadal Development
3.5. DEGs Were Verified with RT-qPCR
3.6. Identification of Sex-Related Sox Genes in Different Gonads
3.7. Expression Patterns of Sox Genes in the Embryonic Sex Reversal after E2 Treatment
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liang, H.W.; Wang, L.H.; Sha, H.; Zou, G.W. Development and Validation of Sex-Specific Markers in Pelodiscus Sinensis Using Restriction Site-Associated DNA Sequencing. Genes 2019, 10, 302. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.W.; Cao, L.H.; Li, X.; Tong, M.M.; Jiang, Y.L.; Li, Z.; Luo, X.Z.; Zou, G.W. Morphological differences analysis of three strains of Pelodiscus sinensis. Freshw. Fish. 2017, 47, 91–96. [Google Scholar]
- Mu, Y.; Zhao, B.; Tang, W.Q.; Sun, B.J.; Zeng, Z.G.; Valenzuela, N.; Du, W.G. Temperature-dependent sex determination ruled out in the Chinese soft-shelled turtle (Pelodiscus sinensis) via molecular cytogenetics and incubation experiments across populations. Sex. Dev. 2015, 9, 111–117. [Google Scholar] [CrossRef]
- Kim, S.; Kettlewell, J.R.; Anderson, R.C.; Bardwell, V.J.; Zarkower, D. Sexually dimorphic expression of multiple doublesex-related genes in the embryonic mouse gonad. Gene Expr. Patterns GEP 2003, 3, 77–82. [Google Scholar] [CrossRef]
- Kawagoshi, T.; Uno, Y.; Matsubara, K.; Matsuda, Y.; Nishida, C. The ZW micro-sex chromosomes of the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae, Testudines) have the same origin as chicken chromosome 15. Cytogenet. Genome Res. 2009, 125, 125–131. [Google Scholar] [CrossRef]
- Liang, H.W.; Meng, Y.; Cao, L.H.; Li, X.; Zou, G.W. Effect of exogenous hormones on R-spondin 1 (RSPO1) gene expression and embryo development in Pelodiscus sinensis. Reprod. Fertil. Dev. 2019, 31, 1425–1433. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.; Wang, X.; Wan, Q.H.; Fang, S.G. Identification of sex using SBNO1 gene in the Chinese softshell turtle, Pelodiscus sinensis (Trionychidae). J. Genet. 2019, 98, 36. [Google Scholar] [CrossRef]
- Wang, L. The Effect of DMRT1 Gene on Male Gonadal Development in Pelodiscus sinensis. Master’s Thesis, Shanghai Ocean University, Shanghai, China, 2014. [Google Scholar]
- Toyota, K.; Masuda, S.; Sugita, S.; Miyaoku, K.; Yamagishi, G.; Akashi, H.; Miyagawa, S. Estrogen Receptor 1 (ESR1) Agonist Induces Ovarian Differentiation and Aberrant Mullerian Duct Development in the Chinese Soft-shelled Turtle, Pelodiscus sinensi. Zool. Stud. 2020, 59, e54. [Google Scholar] [CrossRef]
- Bao, H.S.; Cai, H.; Han, W.; Zhang, H.Y.; Sun, W.; Ge, C.T.; Qian, G.Y. Functional characterization of Cyp19a1 in female sexual differentiation in Pelodiscus sinensis. Sci. Sin. Vitae 2017, 47, 640–649. [Google Scholar]
- Sun, W.; Cai, H.; Zhang, G.; Zhang, H.; Bao, H.; Wang, L.; Ye, J.; Qian, G.; Ge, C. Dmrt1 is required for primary male sexual differentiation in Chinese soft-shelled turtle Pelodiscus sinensis. Sci. Rep. 2017, 7, 4433. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Shi, S.R.; Cai, H.; Mi, M.D.; Qian, G.Y.; Ge, C.T. Function Analysis of Dmrt1 in Male Sexual Differentiation in Pelodiscus sinensis. Sci. Sin. Vitae 2015, 45, 881–889. [Google Scholar]
- Liang, H.W.; Meng, Y.; Cao, L.H.; Li, X.; Zou, G.W. Expression and characterization of the cyp19a gene and its responses to estradiol/letrozole exposure in Chinese soft-shelled turtle (Pelodiscus sinensis). Mol. Reprod. Dev. 2019, 86, 480–490. [Google Scholar] [CrossRef]
- Gao, L.L.; Diao, X.M.; Li, Y.; Zhai, X.L.; Zhou, C.L. Molecular cloning and expression of FOXL2 gene induced by exogenous hormone in the Pelodiscus sinensis. Acta Hydrobiol. Sin. 2019, 43, 45–51. [Google Scholar]
- Zhang, Y.; Xiao, L.; Sun, W.; Li, P.; Zhou, Y.; Qian, G.; Ge, C. Knockdown of R-spondin1 leads to partial sex reversal in genetic female Chinese soft-shelled turtle Pelodiscus sinensis. Gen. Comp. Endocrinol. 2021, 309, 113788. [Google Scholar] [CrossRef]
- Wang, L.; Hu, T.; Mi, M.D.; Yang, K.Z.; Qian, G.Y.; Ge, C.T. The effects of estrogen on gonadal differentiation and expressions of DMRT1 and SOX9 in Pelodiscus sinensis. Acta Hydrobiol. Sin. 2014, 38, 467–473. [Google Scholar]
- Denny, P.; Swift, S.; Brand, N.; Dabhade, N.; Barton, P.; Ashworth, A. A conserved family of genes related to the testis determining gene, SRY. Nucleic Acids Res. 1992, 20, 2887. [Google Scholar] [CrossRef] [Green Version]
- Gubbay, J.; Collignon, J.; Koopman, P.; Capel, B.; Economou, A.; Münsterberg, A.; Vivian, N.; Goodfellow, P.; Lovell-Badge, R. A gene mapping to the sex-determining region of the mouse Y chromosome is a member of a novel family of embryonically expressed genes. Nature 1990, 346, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, W.; Chu, J.Q.; Liu, Y.; Shi, S.R.; Ge, C.T.; Qian, G.Y. The expression pattern of SOX9 gene during embryonic development and its expression changes in sex reversal in Pelodiscus sinensis. J. Fish. China 2014, 38, 1286–1293. [Google Scholar]
- Bishop, C.E.; Whitworth, D.J.; Qin, Y.; Agoulnik, A.I.; Agoulnik, I.U.; Harrison, W.R.; Behringer, R.R.; Overbeek, P.A. A transgenic insertion upstream of sox9 is associated with dominant XX sex reversal in the mouse. Nat. Genet. 2000, 26, 490–494. [Google Scholar] [CrossRef]
- Koyano, S.; Ito, M.; Takamatsu, N.; Takiguchi, S.; Shiba, T. The Xenopus Sox3 gene expressed in oocytes of early stages. Gene 1997, 188, 101–107. [Google Scholar] [CrossRef]
- Takehana, Y.; Matsuda, M.; Myosho, T.; Suster, M.L.; Kawakami, K.; Shin, I.T.; Kohara, Y.; Kuroki, Y.; Toyoda, A.; Fujiyama, A.; et al. Co-option of Sox3 as the male-determining factor on the Y chromosome in the fish Oryzias dancena. Nat. Commun. 2014, 5, 4157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oshima, Y.; Naruse, K.; Nakamura, Y.; Nakamura, M. Sox3: A transcription factor for Cyp19 expression in the frog Rana rugosa. Gene 2009, 445, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, D.E.; Young, M.; Albrecht, K.H.; Eicher, E.M. Related function of mouse SOX3, SOX9, and SRY HMG domains assayed by male sex determination. Genesis 2000, 28, 111–124. [Google Scholar] [CrossRef]
- Schartl, M.; Schories, S.; Wakamatsu, Y.; Nagao, Y.; Hashimoto, H.; Bertin, C.; Mourot, B.; Schmidt, C.; Wilhelm, D.; Centanin, L.; et al. Sox5 is involved in germ-cell regulation and sex determination in medaka following co-option of nested transposable elements. BMC Biol. 2018, 16, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Butler, A.M.; Owens, D.A.; Wang, L.; King, M.L. A novel role for sox7 in Xenopus early primordial germ cell development: Mining the PGC transcriptome. Development 2018, 145, dev155978. [Google Scholar] [CrossRef] [Green Version]
- O’Bryan, M.K.; Takada, S.; Kennedy, C.L.; Scott, G.; Harada, S.; Ray, M.K.; Dai, Q.; Wilhelm, D.; de Kretser, D.M.; Eddy, E.M.; et al. Sox8 is a critical regulator of adult Sertoli cell function and male fertility. Dev. Biol. 2008, 316, 359–370. [Google Scholar] [CrossRef] [Green Version]
- Polanco, J.C.; Wilhelm, D.; Davidson, T.L.; Knight, D.; Koopman, P. Sox10 gain-of-function causes XX sex reversal in mice: Implications for human 22q-linked disorders of sex development. Hum. Mol. Genet. 2010, 19, 506–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Yu, P.; Liu, T.T.; Qiao, D.; Hu, Q.T.; Su, S.P. Identification and functional analysis of SOX transcription factors in the genome of the Chinese soft-shell turtle (Pelodiscus sinensis). Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2020, 242, 110407. [Google Scholar] [CrossRef]
- Navarro-Martín, L.; Galay-Burgos, M.; Sweeney, G.; Piferrer, F. Different sox17 transcripts during sex differentiation in sea bass, Dicentrarchus labrax. Mol. Cell. Endocrinol. 2009, 299, 240–251. [Google Scholar] [CrossRef]
- Anitha, A.; Senthilkumaran, B. Role of sox30 in regulating testicular steroidogenesis of common carp. J. Steroid Biochem. Mol. Biol. 2020, 204, 105769. [Google Scholar] [CrossRef]
- Lin, G.; Gao, D.; Lu, J.; Sun, X. Transcriptome Profiling Reveals the Sexual Dimorphism of Gene Expression Patterns during Gonad Differentiation in the Half-Smooth Tongue Sole (Cynoglossus semilaevis). Mar. Biotechnol. 2021, 23, 18–30. [Google Scholar] [CrossRef] [PubMed]
- Teng, J.; Zhao, Y.; Chen, H.J.; Wang, H.; Ji, X.S. Transcriptome Profiling and Analysis of Genes Associated with High Temperature-Induced Masculinization in Sex-Undifferentiated Nile Tilapia Gonad. Mar. Biotechnol. 2020, 22, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Tong, Z.F.; Hu, Y.Z.; Tan, J.; Wang, P.; Chen, Z.N.; Tian, Y.; Wang, X.Q. Comparative Analysis Transcriptome of Spleen of Chinese Soft-shelled Turtle Pelodiscus sinensis. Genom. Appl. Biol. 2020, 39, 5449–5456. [Google Scholar]
- Zhang, H.Q.; Xu, X.J.; He, Z.Y.; Zheng, T.L.; Shao, J.Z. De novo transcriptome analysis reveals insights into different mechanisms of growth and immunity in a Chinese soft-shelled turtle hybrid and the parental varieties. Gene 2017, 605, 54–62. [Google Scholar] [CrossRef]
- Wang, L.H.; Zhang, Y.P.; Li, C.; Zou, G.W.; Liang, H.W. Chinese Softshelled Turtle Pelodiscus sinensis: Embryonic Development and Embryo Staging. Chin. Agric. Sci. Bull. 2020, 36, 152–158. [Google Scholar]
- Zhou, T.; Sha, H.; Chen, M.; Chen, G.B.; Zou, G.W.; Liang, H.W. MicroRNAs May Play an Important Role in Sexual Reversal Process of Chinese Soft-Shelled Turtle, Pelodiscus sinensis. Genes 2021, 12, 1696. [Google Scholar] [CrossRef]
- Trapnell, C.; Pachter, L.; Salzberg, S.L. TopHat: Discovering splice junctions with RNA-Seq. Bioinformatics 2009, 25, 1105–1111. [Google Scholar] [CrossRef] [PubMed]
- Langmead, B. Aligning short sequencing reads with Bowtie. Curr. Protoc. Bioinform. 2010, 32, 11.7.1–11.7.14. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [Green Version]
- Trapnell, C.; Williams, B.A.; Pertea, G.; Mortazavi, A.; Kwan, G.; van Baren, M.J.; Salzberg, S.L.; Wold, B.J.; Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat. Biotechnol. 2010, 28, 511–515. [Google Scholar] [CrossRef] [Green Version]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef] [Green Version]
- Schmittgen, T.D.; Livak, K.J. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 2008, 3, 1101–1108. [Google Scholar] [CrossRef]
- Pan, Z.; Zhu, C.; Chang, G.; Wu, N.; Ding, H.; Wang, H. Differential expression analysis and identification of sex-related genes by gonad transcriptome sequencing in estradiol-treated and non-treated Ussuri catfish Pseudobagrus ussuriensis. Fish Physiol. Biochem. 2021, 47, 565–581. [Google Scholar] [CrossRef]
- Akhavan, S.R.; Salati, A.P.; Jalali, A.H.; Falahatkar, B. Expression profile of star and cyp19 and plasma sex steroid during gonad development from previtellogenesis to early atresia in captive Sterlet sturgeon, Acipenser ruthenus. J. Appl. Ichthyol. 2018, 35, 249–256. [Google Scholar] [CrossRef]
- Katsu, Y.; Ichikawa, R.; Ikeuchi, T.; Kohno, S.; Guillette, L.J.J.; Iguchi, T. Molecular cloning and characterization of estrogen, androgen, and progesterone nuclear receptors from a freshwater turtle (Pseudemys nelsoni). Endocrinology 2008, 149, 161–173. [Google Scholar] [CrossRef] [Green Version]
- Schroeder, A.; Rhen, T. Role for androgens in determination of ovarian fate in the common snapping turtle, Chelydra serpentina. Gen. Comp. Endocrinol. 2019, 281, 7–16. [Google Scholar] [CrossRef]
- Hsu, H.J.; Lin, J.C.; Chung, B.C. Zebrafish cyp11a1 and hsd3b genes: Structure, expression and steroidogenic development during embryogenesis. Mol. Cell. Endocrinol. 2009, 312, 31–34. [Google Scholar] [CrossRef] [PubMed]
- Nakamoto, M.; Fukasawa, M.; Tanaka, S.; Shimamori, K.; Suzuki, A.; Matsuda, M.; Kobayashi, T.; Nagahama, Y.; Shibata, N. Expression of 3β-hydroxysteroid dehydrogenase (hsd3b), star and ad4bp/sf-1 during gonadal development in medaka (Oryzias latipes). Gen. Comp. Endocrinol. 2012, 176, 222–230. [Google Scholar] [CrossRef]
- Peng, C.; Wang, Q.; Shi, H.; Chen, J.; Li, S.; Zhao, H.; Lin, H.; Yang, J.; Zhang, Y. Natural sex change in mature protogynous orange-spotted grouper (Epinephelus coioides): Gonadal restructuring, sex hormone shifts and gene profiles. J. Fish Biol. 2020, 97, 785–793. [Google Scholar] [CrossRef]
- Hao, X.C.; Feng, B.; Shao, C.W.; Wang, Q. Molecular Characterization and Expression Patterns of hsd11b1l and hsd11b2 and Their Response to High Temperature Stress in Chinese Tongue Sole Cynoglossus semilaevis. Prog. Fish. Sci. 2021, 42, 45–54. [Google Scholar]
- Shehu, A.; Mao, J.; Gibori, G.B.; Halperin, G.B.; Le, J.; Devi, Y.S.; Merrill, B.; Kiyokawa, H.; Gibori, G. Prolactin receptor-associated protein/17beta-hydroxysteroid dehydrogenase type 7 gene (Hsd17b7) plays a crucial role in embryonic development and fetal survival. Mol. Endocrinol. 2008, 22, 2268–2277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Li, Z.; Wang, Y.; Huang, H.; Yang, X.; Li, S.; Yang, W.; Li, G. Comparison of Gonadal Transcriptomes Uncovers Reproduction-Related Genes with Sexually Dimorphic Expression Patterns in Diodon hystrix. Animals 2021, 11, 1042. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Kobayashi, A.; Sekido, R.; DiNapoli, L.; Brennan, J.; Chaboissier, M.C.; Poulat, F.; Behringer, R.R.; Lovell-Badge, R.; Capel, B. Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol. 2006, 4, e187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cen, C.H.; Chen, M.; Jiang, L.; Hou, X.H.; Gao, F. The regulation of gonadal somatic cell differentiation during sex determination in mice. Acta Physiol. Sin. 2020, 72, 20–30. [Google Scholar]
- Price, C.A. Mechanisms of fibroblast growth factor signaling in the ovarian follicle. J. Endocrinol. 2016, 228, R31–R43. [Google Scholar] [CrossRef] [Green Version]
- Li, S.F.; Li, Y.P. Roles of SOX Transcription Factors on Fate Decision of Germ Cells. Chin. J. Cell Biol. 2019, 41, 961–966. [Google Scholar]
- Anitha, A.; Senthilkumaran, B. Role of sox family genes in teleostean reproduction-an overview. Reprod. Breed. 2021, 1, 22–31. [Google Scholar] [CrossRef]
- Zhao, L.; Arsenault, M.; Ng, E.T.; Longmuss, E.; Chau, T.C.; Hartwig, S.; Koopman, P. SOX4 regulates gonad morphogenesis and promotes male germ cell differentiation in mice. Dev. Biol. 2017, 423, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hu, Y.C.; Han, J.L.; Xiao, K.; Liu, X.Q.; Tan, C.; Zeng, Q.K.; Du, H.J. Genome-wide analysis of the Chinese sturgeon sox gene family: Identification, characterisation and expression profiles of different tissues. J. Fish Biol. 2020, 96, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Barrionuevo, F.; Georg, I.; Scherthan, H.; Lécureuil, C.; Guillou, F.; Wegner, M.; Scherer, G. Testis cord differentiation after the sex determination stage is independent of Sox9 but fails in the combined absence of Sox9 and Sox8. Dev. Biol. 2009, 327, 301–312. [Google Scholar] [CrossRef] [Green Version]
Sample | Clean Reads | Clean Bases | Clean Reads Pair | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|
F-1 | 43,494,664 | 6,524,199,600 | 21,747,332 | 97 | 93 | 48 |
F-2 | 48,689,394 | 7,303,409,100 | 24,344,697 | 97 | 92 | 51 |
F-3 | 50,909,630 | 7,636,444,500 | 25,454,815 | 97 | 92 | 48 |
M-1 | 48,936,618 | 7,340,492,700 | 24,468,309 | 97 | 92 | 48 |
M-2 | 44,953,598 | 6,743,039,700 | 22,476,799 | 97 | 93 | 49 |
M-3 | 42,130,694 | 6,319,604,100 | 21,065,347 | 97 | 92 | 48 |
PF-1 | 45,059,436 | 6,758,915,400 | 22,529,718 | 97 | 92 | 48 |
PF-2 | 49,918,734 | 7,487,810,100 | 24,959,367 | 97 | 93 | 48 |
PF-3 | 49,677,990 | 7,451,698,500 | 24,838,995 | 97 | 93 | 49 |
Sample | Clean Reads Pair | Mapped Reads | Uniquely Mapped Reads | Multiple Mapped Reads |
---|---|---|---|---|
F-1 | 21,747,332 (100.00%) | 15,704,473 (72.21%) | 13,724,054 (63.11%) | 1,980,419 (9.11%) |
F-2 | 24,344,697 (100.00%) | 16,394,180 (67.34%) | 14,155,999 (58.15%) | 2,238,181 (9.19%) |
F-3 | 25,454,815 (100.00%) | 18,295,164 (71.87%) | 15,903,317 (62.48%) | 2,391,847 (9.40%) |
M-1 | 24,468,309 (100.00%) | 17,785,438 (72.69%) | 15,500,943 (63.35%) | 2,284,495 (9.34%) |
M-2 | 22,476,799 (100.00%) | 16,292,285 (72.48%) | 14,220,854 (63.27%) | 2,071,431 (9.22%) |
M-3 | 21,065,347 (100.00%) | 15,184,447 (72.08%) | 13,244,886 (62.88%) | 1,939,561 (9.21%) |
PF-1 | 22,529,718 (100.00%) | 16,110,869 (71.51%) | 14,009,770 (62.18%) | 2,101,099 (9.33%) |
PF-2 | 24,959,367 (100.00%) | 17,777,029 (71.22%) | 15,329,064 (61.42%) | 2,447,965 (9.81%) |
PF-3 | 24,838,995 (100.00%) | 18,011,332 (72.51%) | 15,716,312 (63.27%) | 2,295,020 (9.24%) |
Gene | Description | Log2FoldChange | ||
---|---|---|---|---|
F vs. PF | M vs. F | M vs. PF | ||
dmrt1 | Double sex and mad-3 related transcription factor 1 | −2.97 | 9.92 | 6.96 |
sox8 | Sry-like HMG box 8 | 1.64 | 0.04 | −0.88 |
sox30 | Sry-like HMG box 30 | −1.65 | 7.39 | 5.74 |
klhl10 | Kelch-like protein 10 | 0.12 | 13.98 | 14.11 |
fam71d | Family with sequence similarity 71, member D | −1.35 | 12.74 | 11.38 |
theg | Testicular haploid expressed gene protein | 2.03 | 8.56 | 10.58 |
hsd11b2 | Corticosteroid 11-β-dehydrogenase isozyme 2 | −0.98 | 3.97 | 2.99 |
hsd17b7 | 17-β-Hydroxysteroid dehydrogenase type 7 | 0.55 | 2.10 | 2.65 |
LOC106731888 | 17-β-Hydroxysteroid dehydrogenase type 8 like (hsd17b8) | 0.62 | 3.09 | 3.71 |
LOC102455057 | Cytochrome P450 cholesterol side-chain cleavage (cyp11a) | −2.81 | 3.99 | 1.16 |
LOC102453952 | 3-β-hydroxysteroid dehydrogenase/Delta 5 (hsd3b) | 1.24 | 4.34 | 5.57 |
LOC102459111 | Cytochrome P450 1A1 (cyp19a1) | −1.55 | −6.93 | −8.48 |
LOC112546066 | Bone morphogenetic protein 15-like (bmp15) | −1.51 | −9.91 | −11.42 |
sox1 | Sry-like HMG box 1 | −0.34 | 0.82 | −1.53 |
sox2 | Sry-like HMG box 2 | −0.24 | 0.84 | −1.60 |
sox3 | Sry-like HMG box 3 | −0.78 | −4.09 | −4.87 |
sox11 | Sry-like HMG box 11 | −0.71 | −1.33 | −2.04 |
sox12 | Sry-like HMG box 12 | 0.21 | 0.97 | −2.49 |
sox17 | Sry-like HMG box 17 | −0.13 | −2.00 | −2.13 |
foxl2 | Forkhead box L2 | 0.31 | −7.43 | −7.12 |
fgf8 | Fibroblast growth factor 8 | −5.80 | −0.73 | −6.53 |
fgf9 | Fibroblast growth factor 9 | −1.79 | −0.73 | −2.52 |
gdf9 | Growth/differentiation factor 9 | −2.61 | −10.57 | −13.17 |
wnt1 | Wingless-type MMTV integration site family, member 1 | −2.00 | −3.20 | −5.18 |
wnt2 | Wingless-type MMTV integration site family, member 2 | −1.38 | −3.59 | −4.97 |
rspo2 | R-spondin-2 | −0.46 | −1.26 | −1.72 |
rspo3 | R-spondin-3 | −0.78 | −1.47 | −2.25 |
hsd17b1 | 17-β-Hydroxysteroid dehydrogenase type 1 | −2.71 | −5.42 | −8.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Luo, X.; Qu, C.; Xu, T.; Zou, G.; Liang, H. The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biology 2022, 11, 83. https://doi.org/10.3390/biology11010083
Wang Y, Luo X, Qu C, Xu T, Zou G, Liang H. The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biology. 2022; 11(1):83. https://doi.org/10.3390/biology11010083
Chicago/Turabian StyleWang, Yubin, Xiangzhong Luo, Chunjuan Qu, Tao Xu, Guiwei Zou, and Hongwei Liang. 2022. "The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis)" Biology 11, no. 1: 83. https://doi.org/10.3390/biology11010083
APA StyleWang, Y., Luo, X., Qu, C., Xu, T., Zou, G., & Liang, H. (2022). The Important Role of Sex-Related Sox Family Genes in the Sex Reversal of the Chinese Soft-Shelled Turtle (Pelodiscus sinensis). Biology, 11(1), 83. https://doi.org/10.3390/biology11010083