Long-Term Combined Effects of Citrulline and Nitrate-Rich Beetroot Extract Supplementation on Recovery Status in Trained Male Triathletes: A Randomized, Double-Blind, Placebo-Controlled Trial
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol and Evaluation Plan
2.3. Blood Collection
2.4. Cooper Test
2.5. Anthropometry
2.6. Dietary Assessment
2.7. Statistical Analysis
3. Results
4. Discussion
4.1. Limitations, Strengths and Future Research
4.2. Practical Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Del Coso, J.; González, C.; Abian-Vicen, J.; Salinero Martín, J.J.; Soriano, L.; Areces, F.; Ruiz, D.; Gallo, C.; Lara, B.; Calleja-González, J. Relationship between physiological parameters and performance during a half-ironman triathlon in the heat. J. Sports Sci. 2014, 32, 1680–1687. [Google Scholar] [CrossRef]
- Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Córdova, A.; León-Guereño, P.; Mielgo-Ayuso, J. Long-Term Effect of Combination of Creatine Monohydrate Plus β-Hydroxy β-Methylbutyrate (HMB) on Exercise-Induced Muscle Damage and Anabolic/Catabolic Hormones in Elite Male Endurance Athletes. Biomolecules 2020, 10, 140. [Google Scholar] [CrossRef] [Green Version]
- Neubauer, O.; König, D.; Wagner, K.H. Recovery after an Ironman triathlon: Sustained inflammatory responses and muscular stress. Eur. J. Appl. Physiol. 2008, 104, 417–426. [Google Scholar] [CrossRef]
- Meeusen, R.; Duclos, M.; Foster, C.; Fry, A.; Gleeson, M.; Nieman, D.; Raglin, J.; Rietjens, G.; Steinacker, J.; Urhausen, A. Prevention, diagnosis and treatment of the overtraining syndrome: Joint consensus statement of the European College of Sport Science (ECSS) and the American College of Sports Medicine (ACSM). Eur. J. Sport Sci. 2013, 13, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Del Coso, J.; Areces, F.; Salinero, J.J.; González-Millán, C.; Abián-Vicén, J.; Soriano, L.; Ruiz, D.; Gallo, C.; Lara, B.; Calleja-Gonzalez, J. Compression stockings do not improve muscular performance during a half-ironman triathlon race. Eur. J. Appl. Physiol. 2014, 114, 587–595. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Zourdos, M.C.; Urdampilleta, A.; Calleja-González, J.; Seco, J.; Córdova, A. Relationship of long-term macronutrients intake on anabolic-catabolic hormones in female elite volleyball players. Nutr. Hosp. 2017, 34, 1155–1162. [Google Scholar] [CrossRef] [Green Version]
- Hotfiel, T.; Mayer, I.; Huettel, M.; Hoppe, M.W.; Engelhardt, M.; Lutter, C.; Pöttgen, K.; Heiss, R.; Kastner, T.; Grim, C. Accelerating Recovery from Exercise-Induced Muscle Injuries in Triathletes: Considerations for Olympic Distance Races. Sports 2019, 7, 143. [Google Scholar] [CrossRef] [Green Version]
- Bescós, R.; Sureda, A.; Tur, J.A.; Pons, A. The effect of nitric-oxide-related supplements on human performance. Sports Med. 2012, 42, 99–117. [Google Scholar] [CrossRef]
- Beck, K.L.; Thomson, J.S.; Swift, R.J.; von Hurst, P.R. Role of nutrition in performance enhancement and postexercise recovery. Open Access J. Sport. Med. 2015, 6, 259. [Google Scholar] [CrossRef] [Green Version]
- Bryan, N.S. Safe and Effective Use of Nitric Oxide-Based Supplements and Nutrition for Sports Performance, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Gonzalez, A.M.; Trexler, E.T. Effects of Citrulline Supplementation on Exercise Performance in Humans: A Review of the Current Literature. J. Strength Cond. Res. 2020, 34, 1480–1495. [Google Scholar] [CrossRef]
- Gilligan, D.M.; Panza, J.A.; Kilcoyne, C.M.; Waclawiw, M.A.; Casino, P.R.; Quyyumi, A.A. Contribution of endothelium-derived nitric oxide to exercise-induced vasodilation. Circulation 1994, 90, 2853–2858. [Google Scholar] [CrossRef] [Green Version]
- Anderson, J.E. A Role for Nitric Oxide in Muscle Repair: Nitric Oxide-Mediated Activation of Muscle Satellite Cells. Mol. Biol. Cell 2000, 11, 1859–1874. [Google Scholar] [CrossRef] [Green Version]
- Arazi, H.; Eghbali, E. Possible Effects of beetroot Supplementation on Physical Performance Through Metabolic, Neuroendocrine, and Antioxidant Mechanisms: A Narrative Review of the Literature. Front. Nutr. 2021, 8, 660150. [Google Scholar] [CrossRef]
- Viribay, A.; Arribalzaga, S.; Mielgo-Ayuso, J.; Castañeda-Babarro, A.; Seco-Calvo, J.; Urdampilleta, A. Effects of 120 g/h of carbohydrates intake during a mountain marathon on exercise-induced muscle damage in elite runners. Nutrients 2020, 12, 1367. [Google Scholar] [CrossRef]
- Urdampilleta, A.; Arribalzaga, S.; Viribay, A.; Castañeda-Babarro, A.; Seco-Calvo, J.; Mielgo-Ayuso, J. Effects of 120 vs. 60 and 90 g/h Carbohydrate Intake during a Trail Marathon on Neuromuscular Function and High Intensity Run Capacity Recovery. Nutrients 2020, 12, 94. [Google Scholar] [CrossRef]
- Wang, J.M.; Gu, C.H.; Tao, L.; Wu, X.L. Effect of surgery and efferent duct ligation on testicular blood flow and testicular steroidogenesis in the rat. J. Reprod. Fertil. 1985, 73, 191–196. [Google Scholar] [CrossRef]
- Monau, T.R.; Vargas, V.E.; Zhang, L.; Myers, D.A.; Ducsay, C.A. Nitric oxide inhibits ACTH-induced cortisol production in near-term, long-term hypoxic ovine fetal adrenocortical cells. Reprod. Sci. 2010, 17, 955–962. [Google Scholar] [CrossRef] [Green Version]
- Banihani, S.A. Biomolecules Testosterone in Males as Enhanced by Onion (Allium Cepa, L.). Biomolecules 2019, 9, 75. [Google Scholar] [CrossRef] [Green Version]
- Hernández, A.; Schiffer, T.A.; Ivarsson, N.; Cheng, A.J.; Bruton, J.D.; Lundberg, J.O.; Weitzberg, E.; Westerblad, H. Dietary nitrate increases tetanic [Ca 2+] i and contractile force in mouse fast-twitch muscle. J. Physiol. 2012, 590, 3575–3583. [Google Scholar] [CrossRef]
- Milton-Laskibar, I.; Alfredo Martínez, J.; Portillo, M.P. Current knowledge on BRroot bioactive compounds: Role of nitrate and betalains in health and disease. Foods 2021, 10, 1314. [Google Scholar] [CrossRef]
- Jones, L.; Bailey, S.J.; Rowland, S.N.; Alsharif, N.; Shannon, O.M.; Clifford, T. The Effect of Nitrate-Rich BRroot Juice on Markers of Exercise-Induced Muscle Damage: A Systematic Review and Meta-Analysis of Human Intervention Trials. J. Diet. Suppl. 2021. [Google Scholar] [CrossRef]
- Clifford, T.; Bell, O.; West, D.J.; Howatson, G.; Stevenson, E.J. The effects of BRroot juice supplementation on indices of muscle damage following eccentric exercise. Eur. J. Appl. Physiol. 2016, 116, 353–362. [Google Scholar] [CrossRef]
- Sarfaraz, S.; Ikram, R.; Osama, M.; Anser, H. Effect of different doses of lyophilized BRroot on fertility and reproductive hormones. Pak. J. Pharm. Sci. 2020, 33, 2505–2510. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; Palau-Salvà, G.; Serra-Payá, N.; Ruiz-Hermosel, M.; Berbell, M.; Viñals, X.; Bataller, M.G.; Carbonell, T.; Vilches-Saez, S.; Cobo, E.P.; et al. Understanding the effects of BRroot juice intake on CrossFit performance by assessing hormonal, metabolic and mechanical response: A randomized, double-blind, crossover design. J. Int. Soc. Sports Nutr. 2020, 17. [Google Scholar] [CrossRef]
- Larsen, F.J.; Schiffer, T.A.; Borniquel, S.; Sahlin, K.; Ekblom, B.; Lundberg, J.O.; Weitzberg, E. Dietary Inorganic Nitrate Improves Mitochondrial Efficiency in Humans. Cell Metab. 2011, 13, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, D.K.; Jacinto, J.L.; de Andrade, W.B.; Roveratti, M.C.; Estoche, J.M.; Balvedi, M.C.W.; de Oliveira, D.B.; da Silva, R.A.; Aguiar, A.F. Citrulline malate does not improve muscle recovery after resistance exercise in untrained young adult men. Nutrients 2017, 9, 1132. [Google Scholar] [CrossRef] [Green Version]
- Haider, G.; Folland, J.P. Nitrate supplementation enhances the contractile properties of human skeletal muscle. Med. Sci. Sports Exerc. 2014, 46, 2234–2243. [Google Scholar] [CrossRef]
- Radak, Z.; Naito, H.; Taylor, A.W.; Goto, S. Nitric oxide: Is it the cause of muscle soreness? Nitric Oxide Biol. Chem. 2012, 26, 89–94. [Google Scholar] [CrossRef]
- Bahri, S.; Zerrouk, N.; Aussel, C.; Moinard, C.; Crenn, P.; Curis, E.; Chaumeil, J.C.; Cynober, L.; Sfar, S. Citrulline: From metabolism to therapeutic use. Nutrition 2013, 29, 479–484. [Google Scholar] [CrossRef] [Green Version]
- Rhim, H.C.; Kim, S.J.; Park, J.; Jang, K.M. Effect of citrulline on post-exercise rating of perceived exertion, muscle soreness, and blood lactate levels: A systematic review and meta-analysis. J. Sport Health Sci. 2020, 9, 553–561. [Google Scholar] [CrossRef]
- Mathiowetz, V.; Weber, K.; Volland, G.; Kashman, N. Reliability and validity of grip and pinch strength evaluations. J. Hand Surg. 1984, 9, 222–226. [Google Scholar] [CrossRef]
- Fernández-Landa, J.; Fernández-Lázaro, D.; Calleja-González, J.; Caballero-García, A.; Martínez, A.C.; León-Guereño, P.; Mielgo-Ayuso, J. Effect of ten weeks of creatine monohydrate plus HMB supplementation on athletic performance tests in elite male endurance athletes. Nutrients 2020, 12, 193. [Google Scholar] [CrossRef] [Green Version]
- Allen, A.E.; Dupont, C.L.; Oborník, M.; Horák, A.; Nunes-Nesi, A.; McCrow, J.P.; Zheng, H.; Johnson, D.A.; Hu, H.; Fernie, A.R.; et al. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 2011, 473, 203–207. [Google Scholar] [CrossRef]
- Alvares, T.S.; Conte-Junior, C.A.; Silva, J.T.; Paschoalin, V.M.F. L-arginine does not improve biochemical and hormonal response in trained runners after 4 weeks of supplementation. Nutr. Res. 2014, 34, 31–39. [Google Scholar] [CrossRef]
- Le Roux-Mallouf, T.; Pelen, F.; Vallejo, A.; Halimaoui, I.; Doutreleau, S.; Verges, S. Effect of chronic nitrate and citrulline supplementation on vascular function and exercise performance in older individuals. Aging 2019, 11, 3315. [Google Scholar] [CrossRef]
- Thomas, D.; Erdman, K.; Burke, L. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Pruna, R.; Lizarraga, A.; Domínguez, D. Medical assessment in athletes. Med. Clin. 2018, 150, 268–274. [Google Scholar] [CrossRef]
- Wax, B.; Kavazis, A.N.; Luckett, W. Effects of Supplemental Citrulline-Malate Ingestion on Blood Lactate, Cardiovascular Dynamics, and Resistance Exercise Performance in Trained Males. J. Diet. Suppl. 2016, 13, 269–282. [Google Scholar] [CrossRef]
- Pérez-Guisado, J.; Jakeman, P.M. Citrulline malate enhances athletic anaerobic performance and relieves muscle soreness. J. Strength Cond. Res. 2010, 24, 1215–1222. [Google Scholar] [CrossRef]
- Robineau, J.; Marrier, B.; Le Meur, Y.; Piscione, J.; Peeters, A.; Lacome, M. Road to Rio: A Case Study of Workload Periodization Strategy in Rugby-7s During an Olympic Season. Front. Sports Act. Living 2020, 1, 72. [Google Scholar] [CrossRef]
- Anderson, O.K.; Martinez-Ferran, M.; Lorenzo-Calvo, J.; Jiménez, S.L.; Pareja-Galeano, H. Effects of Nitrate Supplementation on Muscle Strength and Mass: A Systematic Review. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef]
- Hoon, M.W.; Johnson, N.A.; Chapman, P.G.; Burke, L.M. The effect of nitrate supplementation on exercise performance in healthy individuals: A systematic review and meta-analysis. Int. J. Sports Nutr. Exerc. Metab. 2013, 23, 522–532. [Google Scholar] [CrossRef] [Green Version]
- Trexler, E.T.; Persky, A.M.; Ryan, E.D.; Schwartz, T.A.; Stoner, L.; Smith-Ryan, A.E. Acute Effects of Citrulline Supplementation on High-Intensity Strength and Power Performance: A Systematic Review and Meta-Analysis. Sports Med. 2019, 49, 707–718. [Google Scholar] [CrossRef]
- Jones, A.M.; Thompson, C.; Wylie, L.J.; Vanhatalo, A. Dietary nitrate and physical performance. Ann. Rev. Nutr. 2018, 38, 303–328. [Google Scholar] [CrossRef]
- Wehrens, S.M.T.; Christou, S.; Isherwood, C.; Middleton, B.; Gibbs, M.A.; Archer, S.N.; Skene, D.J.; Johnston, J.D. Meal Timing Regulates the Human Circadian System. Curr. Biol. 2017, 27, 1768. [Google Scholar] [CrossRef] [Green Version]
- Nowatzke, W.; Sarno, M.J.; Birch, N.C.; Stickle, D.F.; Eden, T.; Cole, T.G. Evaluation of an assay for serum 1,5-anhydroglucitol (GlycoMarkTM) and determination of reference intervals on the Hitachi 917 analyzer. Clin. Chim. Acta 2004, 350, 201–209. [Google Scholar] [CrossRef]
- Mehta, P.H.; Welker, K.M.; Zilioli, S.; Carré, J.M. Testosterone and cortisol jointly modulate risk-taking. Psychoneuroendocrinology 2015, 56, 88–99. [Google Scholar] [CrossRef]
- Penry, J.T.; Wilcox, A.R.; Yun, J. Validity and reliability analysis of Cooper’s 12-minute run and the multistage shuttle run in healthy adults. J. Strength Cond. Res. 2011, 25, 597–605. [Google Scholar] [CrossRef]
- Alvero-Cruz, J.R.; Carnero, E.A.; Giráldez García, M.A.; Alacid, F.; Rosemann, T.; Nikolaidis, P.T.; Knechtle, B. Cooper Test Provides Better Half-Marathon Performance Prediction in Recreational Runners Than Laboratory Tests. Front. Physiol. 2019, 10, 1349. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, V.S.; Vieira, M.F.S. International society for the advancement of kinanthropometry (Isak) global: International accreditation scheme of the competent anthropometrist. Revista Brasileira de Cineantropometria Desempenho Humano 2020, 22, 1–6. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Maroto-Sánchez, B.; Luzardo-Socorro, R.; Palacios, G.; Gil-Antuñano, N.P.; González-Gross, M. EXERNET Study Group Evaluation of nutritional status and energy expenditure in athletes. Nutr. Hosp. 2015, 31, 227–236. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Zourdos, M.C.; Calleja-González, J.; Urdampilleta, A.; Ostojic, S.M. Dietary intake habits and controlled training on body composition and strength in elite female volleyball players during the season. Appl. Physiol. Nutr. Metab. 2015, 40, 827–834. [Google Scholar] [CrossRef]
- Russolillo Femenías, G.; Marques-Lopes, I. Láminas de Porciones de Alimentos a Tamaño Real; Librería Proteo: Málaga, Spain, 2011. [Google Scholar]
- Valensise, H.; Andreoli, A.; Lello, S.; Magnani, F.; Romanini, C.; De Lorenzo, A. Total-body skeletal muscle mass: Development and cross-validation of anthropometric prediction models. Am. J. Clin. Nutr. 2000, 72, 796–803. [Google Scholar] [CrossRef]
- Ferguson, C.J. An Effect Size Primer: A Guide for Clinicians and Researchers. Prof. Psychol. Res. Pract. 2009, 40, 532–538. [Google Scholar] [CrossRef] [Green Version]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic Markers in Sports Medicine, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; Volume 56. [Google Scholar]
- Baur, D.A.; Bach, C.W.; Hyder, W.J.; Ormsbee, M.J. Fluid retention, muscle damage, and altered body composition at the Ultraman triathlon. Eur. J. Appl. Physiol. 2016, 116, 447–458. [Google Scholar] [CrossRef]
- Danielsson, T.; Rg Carlsson, J.; Schreyer, H.; Ahnesjö, J.; Ten Siethoff, L.; Ragnarsson, T.; Tugetam, Å.; Bergman, P. Blood biomarkers in male and female participants after an Ironman-distance triathlon. PLoS ONE 2017, 12, e0179324. [Google Scholar] [CrossRef] [Green Version]
- Požgain, I.; Požgain, Z.; Degmečić, D. Placebo and Nocebo Effect: A Mini-Review; Medicinska naklada: Zagreb, Croatia, 2014; Volume 26. [Google Scholar]
- Greenham, G.; Buckley, J.D.; Garrett, J.; Eston, R.; Norton, K. Biomarkers of Physiological Responses to Periods of Intensified, Non-Resistance-Based Exercise Training in Well-Trained Male Athletes: A Systematic Review and Meta-Analysis; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; Volume 48. [Google Scholar]
- Grossmann, M.; Wittert, G.A. Dysregulation of the Hypothalamic-Pituitary-Testicular Axis due to Energy Deficit. J. Clin. Endocrinol. Metab. 2021, 106, e4861–e4871. [Google Scholar] [CrossRef]
- Casto, K.V.; Edwards, D.A. Testosterone, cortisol, and human competition. Horm. Behav. 2016, 82, 21–37. [Google Scholar] [CrossRef]
- Hotta, Y.; Kataoka, T.; Kimura, K. Testosterone Deficiency and Endothelial Dysfunction: Nitric Oxide, Asymmetric Dimethylarginine, and Endothelial Progenitor Cells. Sex. Med. Rev. 2019, 7, 661–668. [Google Scholar] [CrossRef]
- Habib, S.; Moinuddin; Ali, A. Role of Nitric Oxide in Sports Nutrition, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Rammos, C. Potential of dietary nitrate in angiogenesis. World J. Cardiol. 2015, 7, 652. [Google Scholar] [CrossRef]
- Huerta Ojeda, Á. Efecto de la suplementación de L-arginina y L-citrulina sobre el rendimiento físico: Una revisión sistemática. Nutr. Hosp. 2019, 36, 1389–1402. [Google Scholar]
- Nyakayiru, J.; van Loon, L.J.C.; Verdijk, L.B. Could intramuscular storage of dietary nitrate contribute to its ergogenic effect? A mini-review. Free Radic. Biol. Med. 2020, 152, 295–300. [Google Scholar] [CrossRef]
- Brownlee, K.K.; Moore, A.W.; Hackney, A.C. Relationship between circulating cortisol and testosterone: Influence of physical exercise. J. Sports Sci. Med. 2005, 4, 76–83. [Google Scholar] [CrossRef]
- Markus, I.; Constantini, K.; Hoffman, J.R.; Bartolomei, S.; Gepner, Y. Exercise-induced muscle damage: Mechanism, assessment and nutritional factors to accelerate recovery. Eur. J. Appl. Physiol. 2021, 121, 969–992. [Google Scholar] [CrossRef]
- Le Plénier, S.; Goron, A.; Sotiropoulos, A.; Archambault, E.; Guihenneuc, C.; Walrand, S.; Salles, J.; Jourdan, M.; Neveux, N.; Cynober, L.; et al. Citrulline directly modulates muscle protein synthesis via the PI3K/MAPK/4E-BP1 pathway in a malnourished state: Evidence from in vivo, ex vivo, and in vitro studies. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E27–E36. [Google Scholar] [CrossRef]
- Botchlett, R.; Lawler, J.M.; Wu, G. l-Arginine and l-Citrulline in Sports Nutrition and Health, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Wylie, L.J.; Park, J.W.; Vanhatalo, A.; Kadach, S.; Black, M.I.; Stoyanov, Z.; Schechter, A.N.; Jones, A.M.; Piknova, B. Human skeletal muscle nitrate store: Influence of dietary nitrate supplementation and exercise. J. Physiol. 2019, 597, 5565–5576. [Google Scholar] [CrossRef] [Green Version]
- Daab, W.; Bouzid, M.A.; Lajri, M.; Bouchiba, M.; Saafi, M.A.; Rebai, H. Chronic BRroot Juice Supplementation Accelerates Recovery Kinetics following Simulated Match Play in Soccer Players. J. Am. Coll. Nutr. 2021, 40, 61–69. [Google Scholar] [CrossRef]
- Liao, Y.; Su, R.; Zhang, P.; Yuan, B.; Li, L. Cortisol inhibits mTOR signaling in avascular necrosis of the femoral head. J. Orthop. Surg. Res. 2017, 12, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Morley, J.E. The mTOR Conundrum: Essential for Muscle Function, but Dangerous for Survival. J. Am. Med. Dir. Assoc. 2016, 17, 963–966. [Google Scholar] [CrossRef]
- Jones, R.D.; Jones, T.H.; Channer, K.S. The influence of testosterone upon vascular reactivity. Eur. J. Endocrinol. 2004, 151, 29–37. [Google Scholar] [CrossRef] [Green Version]
Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday | |
---|---|---|---|---|---|---|---|
1st session |
|
|
|
|
|
|
|
2nd session | REST |
| REST |
| REST |
|
|
PLG (n = 8) | CITG (n = 8) | BRG (n = 8) | CIT-BRG (n = 8) | |
---|---|---|---|---|
Age (years) | 34.01 ± 7.03 | 32.75 ± 7.01 | 32.67 ± 6.54 | 34.35 ± 7.95 |
Height (cm) | 179 ± 8 cm | 180 ± 9 cm | 178 ± 8 cm | 181 ± 6 cm |
PLG | CITG | BRG | CIT + BRG | |
---|---|---|---|---|
Energy (kcal/kg) | 45 ± 6.4 | 45.2 ± 6.8 | 44.9 ± 6.5 | 45.3 ± 7.2 |
Protein (g/kg) | 1.4 ± 0.5 | 1.5 ± 0.7 | 1.4 ± 0.8 | 1.4 ± 0.5 |
Fat (g/kg) | 1.4 ± 0.4 | 1.5 ± 0.5 | 1.4 ± 0.6 | 1.5 ± 0.6 |
Carbohydrates (g/kg) | 7.0 ± 1.0 | 7.1 ± 1.2 | 7.1 ± 1.4 | 7.0 ± 1.3 |
Group | T1 | T2 | p (T × G) | ƞ2p |
---|---|---|---|---|
Body mass (Kg) | ||||
PLG | 76.36 ± 7.03 | 76.31 ± 6.76 | 0.582 | 0.074 |
CITG | 79.08 ± 7.36 | 77.70 ± 7.09 | ||
BRG | 74.11 ± 6.93 | 74.00 ± 6.90 | ||
CIT + BRG | 74.19 ± 11.26 | 74.29 ± 11.38 | ||
BMI (kg/m2) | ||||
PLG | 24.01 ± 1.89 | 23.98 ± 2.03 | 0.407 | 0.115 |
CITG | 24.52 ± 2.53 | 23.99 ± 2.25 | ||
BRG | 23.25 ± 1.86 | 23.25 ± 1.85 | ||
CIT + BRG | 22.54 ± 1.63 | 22.53 ± 1.59 | ||
Muscle mass (kg) | ||||
PLG | 69.39 ± 5.42 | 69.65 ± 5.73 | 0.406 | 0.112 |
CITG | 72.35 ± 6.21 | 66.05 ± 5.77 | ||
BRG | 67.38 ± 6.46 | 67.95 ± 6.31 | ||
CIT + BRG | 68.49 ± 9.49 | 68.49 ± 9.20 | ||
Fat mass (%) | ||||
PLG | 9.01 ± 2.05 | 8.66 ± 2.14 | 0.121 | 0.203 |
CITG | 8.45 ± 1.44 | 7.77 ± 1.32 | ||
BRG | 9.07 ± 2.09 | 8.18 ± 0.96 | ||
CIT + BRG | 7.52 ± 1.66 | 7.58 ± 2.17 |
Group | T1 | T2 | p (T × G) | η2p |
---|---|---|---|---|
Urea (mg/dL) | ||||
PLG | 37.38 ± 6.63 | 38.00 ± 4.81 | 0.260 | 0.131 |
CITG | 37.06 ± 6.92 | 34.58 ± 8.72 | ||
BRG | 38.38 ± 4.03 | 37.50 ± 2.83 | ||
CIT + BRG | 36.75 ± 8.55 | 41.13 ± 6.06 | ||
Creatinine (mg/dL) | ||||
PLG | 0.91 ± 0.10 | 0.92 ± 0.10 | 0.601 | 0.063 |
CITG | 0.93 ± 0.57 | 0.92 ± 0.11 | ||
BRG | 0.92 ± 0.11 | 0.88 ± 0.09 | ||
CIT + BRG | 0.91 ± 0.09 | 0.91 ± 0.11 | ||
AST (UI/L) | ||||
PLG | 33.50 ± 9.06 | 37.13 ± 16.31 | 0.321 | 0.115 |
CITG | 30.50 ± 9.09 | 24.38 ± 3.93 | ||
BRG | 39.38 ± 17.39 | 29.36 ± 4.79 | ||
CIT + BRG | 37.38 ± 12.02 | 29.75 ± 7.91 | ||
ALT (UI/L) | ||||
PLG | 28.00 ± 14.25 | 29.63 ± 13.76 | 0.327 | 0.114 |
CITG | 25.88 ± 9.43 | 22.00 ± 5.40 | ||
BRG | 36.25 ± 29.36 | 23.38 ± 8.45 | ||
CIT + BRG | 33.25 ± 19.83 | 22.63 ± 7.65 | ||
GGT (UI/L) | ||||
PLG | 16.88 ± 4.55 | 18.50 ± 6.37 | 0.699 | 0.049 |
CITG | 18.88 ± 8.04 | 19.88 ± 8.94 | ||
BRG | 15.50 ± 3.46 | 18.63 ± 6.41 | ||
CIT + BRG | 19.75 ± 5.92 | 20.25 ± 8.78 | ||
LDH (UI/L) | ||||
PLG | 438.86 ± 48.13 | 367.38 ± 77.77 | 0.498 | 0.083 |
CITG | 330.88 ± 90.99 a | 324.00 ± 71.97 | ||
BRG | 445.38 ± 247.59 b | 393.88 ± 35.79 * | ||
CIT + BRG | 431.00 ± 75.05 | 411.88 ± 63.37 | ||
CK (UI/L) | ||||
PLG | 319.50 ± 297.34 | 175.00 ± 51.77 | 0.238 | 0.138 |
CITG | 327.63 ± 287.07 | 157.25 ± 60.78 | ||
BRG | 328.38 ± 247.59 | 208.88 ± 98.22 | ||
CIT + BRG | 379.38 ± 336.75 | 288.25 ± 209.86 |
Group | T1 | T2 | p (T × G) | η2p |
---|---|---|---|---|
Testosterone (ng/mL) | ||||
PLG | 7.66 ± 2.26 | 4.51 ± 1.21 * | 0.116 | 0.188 |
CITG | 7.77 ± 1.10 | 5.50 ± 1.36 * | ||
BRG | 7.11 ± 1.26 | 4.92 ± 1.16 * | ||
CIT + BRG | 7.55 ± 1.06 | 6.69 ± 2.50 | ||
Cortisol (μg/dL) | ||||
PLG | 15.76 ± 1.34 | 20.37 ± 3.47 * | 0.044 | 0.247 |
CITG | 16.03 ± 2.48 | 18.20 ± 3.80 | ||
BRG | 15.89 ± 3.19 | 17.84 ± 3.76 | ||
CIT + BRG | 16.94 ± 2.33 | 15.30 ± 5.53 | ||
Testosterone/cortisol ratio | ||||
PLG | 49.07 ± 15.92 | 22.87 ± 8.12 * | 0.005 | 0.359 |
CITG | 49.13 ± 7.84 | 31.25 ± 11.02 * | ||
BRG | 46.95 ± 13.83 | 28.63 ± 8.38 * | ||
CIT + BRG | 45.97 ± 13.16 | 51.66 ± 30.00 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burgos, J.; Viribay, A.; Calleja-González, J.; Fernández-Lázaro, D.; Olasagasti-Ibargoien, J.; Seco-Calvo, J.; Mielgo-Ayuso, J. Long-Term Combined Effects of Citrulline and Nitrate-Rich Beetroot Extract Supplementation on Recovery Status in Trained Male Triathletes: A Randomized, Double-Blind, Placebo-Controlled Trial. Biology 2022, 11, 75. https://doi.org/10.3390/biology11010075
Burgos J, Viribay A, Calleja-González J, Fernández-Lázaro D, Olasagasti-Ibargoien J, Seco-Calvo J, Mielgo-Ayuso J. Long-Term Combined Effects of Citrulline and Nitrate-Rich Beetroot Extract Supplementation on Recovery Status in Trained Male Triathletes: A Randomized, Double-Blind, Placebo-Controlled Trial. Biology. 2022; 11(1):75. https://doi.org/10.3390/biology11010075
Chicago/Turabian StyleBurgos, José, Aitor Viribay, Julio Calleja-González, Diego Fernández-Lázaro, Jurgi Olasagasti-Ibargoien, Jesús Seco-Calvo, and Juan Mielgo-Ayuso. 2022. "Long-Term Combined Effects of Citrulline and Nitrate-Rich Beetroot Extract Supplementation on Recovery Status in Trained Male Triathletes: A Randomized, Double-Blind, Placebo-Controlled Trial" Biology 11, no. 1: 75. https://doi.org/10.3390/biology11010075
APA StyleBurgos, J., Viribay, A., Calleja-González, J., Fernández-Lázaro, D., Olasagasti-Ibargoien, J., Seco-Calvo, J., & Mielgo-Ayuso, J. (2022). Long-Term Combined Effects of Citrulline and Nitrate-Rich Beetroot Extract Supplementation on Recovery Status in Trained Male Triathletes: A Randomized, Double-Blind, Placebo-Controlled Trial. Biology, 11(1), 75. https://doi.org/10.3390/biology11010075