Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of the Fight
- n—number of attacks scoring 1 point.
- * In K1 rules, each clean hit of the opponent scores 1 point
- N—sum of observed bouts (N = 1 in this study)
- An effective attack is a technical action awarded a point
- Number of all attacks is a number of all offensive actions
2.2. Acid–Base Balance Analysis
2.3. Bioethics Committee
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The disturbances in ABB and changes in blood oxygen and carbon dioxide saturation observed immediately after a bout indicate that anaerobic metabolism plays a large part in kickboxing fights. Anaerobic training should be included in strength and conditioning programs for kickboxers to prepare the athletes for the physiological requirements of sports combat.
- K1 kickboxers must be characterized by good metabolic acidosis tolerance and the ability to fight effectively despite ABB disturbances, and show good post-exercise recovery.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamm, L.L.; Nakhoul, N.; Hering-Smith, K.S. Acid-Base Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2232–2242. [Google Scholar] [CrossRef]
- Seifter, J.L.; Chang, H.-Y. Disorders of Acid-Base Balance: New Perspectives. Kidney Dis. 2016, 2, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Seifter, J.L.; Chang, H.-Y. Extracellular Acid-Base Balance and Ion Transport Between Body Fluid Compartments. Physiology 2017, 32, 367–379. [Google Scholar] [CrossRef]
- Belfry, G.R.; Raymer, G.H.; Marsh, G.D.; Paterson, D.H.; Thompson, R.T.; Thomas, S.G. Muscle metabolic status and acid-base balance during 10-s work: 5-s recovery intermittent and continuous exercise. J. Appl. Physiol. 2012, 113, 410–417. [Google Scholar] [CrossRef][Green Version]
- Duffin, J. Role of acid-base balance in the chemoreflex control of breathing. J. Appl. Physiol. 2005, 99, 2255–2265. [Google Scholar] [CrossRef]
- Langer, T.; Zanella, A.; Caironi, P. Understanding the role of the cerebrospinal fluid in acid–base disorders. Intensive Care Med. 2016, 42, 436–439. [Google Scholar] [CrossRef]
- Wiecek, M.; Maciejczyk, M.; Szymura, J.; Szygula, Z. Changes in oxidative stress and acid-base balance in men and women following maximal-intensity physical exercise. Physiol. Res. 2015, 64, 93–102. [Google Scholar] [CrossRef]
- Wiecek, M.; Szymura, J.; Maciejczyk, M.; Kantorowicz, M.; Szygula, Z. Anaerobic Exercise-Induced Activation of Antioxidant Enzymes in the Blood of Women and Men. Front. Physiol. 2018, 9, 1006. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Kingsley, M.I.C. Changes in Acid-Base Balance During Simulated Soccer Match Play. J. Strength Cond. Res. 2012, 26, 2593–2599. [Google Scholar] [CrossRef]
- Vilmi, N.; AyrAma, S. Oxygen Uptake, Acid-Base Balance and Anaerobic Energy System Contribution in Maximal 300–400 M Running In Child, Adolescent and Adult Athletes. J. Athl. Enhanc. 2016, 5. [Google Scholar] [CrossRef]
- Ratel, S.; Duche, P.; Hennegrave, A.; Van Praagh, E.; Bedu, M. Acid-base balance during repeated cycling sprints in boys and men. J. Appl. Physiol. 2002, 92, 479–485. [Google Scholar] [CrossRef]
- Beneke, R.; Hütler, M.; Jung, M.; Leithäuser, R.M. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J. Appl. Physiol. 2005, 99, 499–504. [Google Scholar] [CrossRef]
- Hanon, C.; Savarino, J.; Thomas, C. Blood Lactate and Acid-Base Balance of World-Class Amateur Boxers After Three 3-Minute Rounds in International Competition. J. Strength Cond. Res. 2015, 29, 942–946. [Google Scholar] [CrossRef]
- Westerblad, H. Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue. Med. Sci. Sport. Exerc. 2016, 48, 2339–2342. [Google Scholar] [CrossRef]
- Hietavala, E.-M.; Stout, J.R.; Hulmi, J.J.; Suominen, H.; Pitkänen, H.; Puurtinen, R.; Selänne, H.; Kainulainen, H.; Mero, A.A. Effect of diet composition on acid–base balance in adolescents, young adults and elderly at rest and during exercise. Eur. J. Clin. Nutr. 2015, 69, 399–404. [Google Scholar] [CrossRef]
- Gough, L.A.; Brown, D.; Deb, S.K.; Sparks, S.A.; McNaughton, L.R. The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions. Eur. J. Appl. Physiol. 2018, 118, 2489–2498. [Google Scholar] [CrossRef]
- Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018, 10, 1610. [Google Scholar] [CrossRef] [PubMed]
- Chycki, J.; Kurylas, A.; Maszczyk, A.; Golas, A.; Zajac, A. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS ONE 2018, 13, e0205708. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; De Smet, S.; Geuns, W.; Van Rompaye, B.; Hespel, P.; Koppo, K. Effect of Stacked Sodium Bicarbonate Loading on Repeated All-out Exercise. Int. J. Sports Med. 2019, 40, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Adrian, J.; Kamińska, J.; Podgórski, T. The influence of progressive-chronic and acute sodium bicarbonate supplementation on anaerobic power and specific performance in team sports: A randomized, double-blind, placebo-controlled crossover study. Nutr. Metab. (Lond.) 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Kamińska, J.; Podgórski, T.; Rachwalski, K.; Pawlak, M. Does the Minerals Content and Osmolarity of the Fluids Taken during Exercise by Female Field Hockey Players Influence on the Indicators of Water-Electrolyte and Acid-Basic Balance? Nutrients 2021, 13, 505. [Google Scholar] [CrossRef]
- Siegler, J.C.; Hirscher, K. Sodium Bicarbonate Ingestion and Boxing Performance. J. Strength Cond. Res. 2010, 24, 103–108. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Da Silva Santos, J.F.; Artioli, G.G.; Loturco, I.; Abbiss, C.; Franchini, E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur. J. Sport Sci. 2018, 18, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Durkalec–Michalski, K.; Zawieja, E.E.; Zawieja, B.E.; Michałowska, P.; Podgórski, T. The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Guerrera, C.S.; Di Corrado, D.; Cavallari, P.; Zappalà, A.; Di Nuovo, S.; Parenti, R.; Maci, T.; Razza, G.; et al. Effects of a Bout of Intense Exercise on Some Executive Functions. Int. J. Environ. Res. Public Health 2020, 17, 898. [Google Scholar] [CrossRef]
- Obmiński, Z.; Mroczkowska, H.; Tomaszewski, W. Relationships between personality traits, resting serum hormones and visuomotor ability in male judokas. Ann. Agric. Environ. Med. 2016, 23, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Darby, D.; Moriarity, J.; Pietrzak, R.; Kutcher, J.; McAward, K.; McCrory, P. Prediction of winning amateur boxers using pretournament reaction times. J. Sport. Med. Phys. Fit. 2014, 54, 509–519. [Google Scholar] [CrossRef]
- Gierczuk, D.; Bujak, Z.; Cieśliński, I.; Lyakh, V.; Sadowski, J. Response Time and Effectiveness in Elite Greco-Roman Wrestlers Under Simulated Fight Conditions. J. Strength Cond. Res. 2018, 32, 3433–3440. [Google Scholar] [CrossRef]
- Supiński, J.; Obmiński, Z.; Kubacki, R.; Kosa, J.; Moska, W. Usefulness of the psychomotor tests for distinguishing the skill levels among older and younger judo athletes. Arch. Budo 2014, 10, 315–322. [Google Scholar]
- Obminski, Z.; Litwiniuk, A.; Staniak, Z.; Zdanowicz, R.; Weimo, Z. Intensive specific maximal judo drills improve psycho-motor ability but may impair hand grip isometric strength. Ido Mov. Cult. 2015, 15, 52–58. [Google Scholar] [CrossRef]
- Obmiński, Z.; Supiński, J.; Mroczkowska, H.; Borkowski, L.; Zdanowicz, R. The effect of aerobic fitness on acute changes in cognitive functions and blood hormones after an exhaustive effort. Pol. J. Sport Med. 2017, 33, 97–106. [Google Scholar]
- Tanriverdi, F.; Suer, C.; Yapislar, H.; Kocyigit, I.; Selcuklu, A.; Unluhizarci, K.; Casanueva, F.F.; Kelestimur, F. Growth hormone deficiency due to sports-related head trauma is associated with impaired cognitive performance in amateur boxers and kickboxers as revealed by P300 auditory event-related potentials. Clin. Endocrinol. (Oxf.) 2013, 78, 730–737. [Google Scholar] [CrossRef]
- Kim, G.H.; Kang, I.; Jeong, H.; Park, S.; Hong, H.; Kim, J.; Kim, J.Y.; Edden, R.A.E.; Lyoo, I.K.; Yoon, S. Low Prefrontal GABA Levels Are Associated With Poor Cognitive Functions in Professional Boxers. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef]
- Russo, G.; Ottoboni, G. The perceptual–Cognitive skills of combat sports athletes: A systematic review. Psychol. Sport Exerc. 2019, 44, 60–78. [Google Scholar] [CrossRef]
- Chmura, J.; Nazar, K.; Kaciuba-Uścilko, H. Choice Reaction Time During Graded Exercise in Relation to Blood Lactate and Plasma Catecholamine Thresholds. Int. J. Sports Med. 1994, 15, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Chmura, J.; Nazar, K. Parallel changes in the onset of blood lactate accumulation (OBLA) and threshold of psychomotor performance deterioration during incremental exercise after training in athletes. Int. J. Psychophysiol. 2010, 75, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Labelle, V.; Bosquet, L.; Mekary, S.; Bherer, L. Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain Cogn. 2013, 81, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Bae, S.-S.; Han, J.-T.; Byun, S.-D.; Chang, J.-S. The Effect of Motor Learning of Serial Reaction Time Task (SRTT) Through Action Observation on Mu Rhythm and Improvement of Behavior Abilities. J. Clin. Med. Res. 2012, 4, 114–118. [Google Scholar] [CrossRef] [PubMed]
- Rydzik, Ł.; Niewczas, M.; Kędra, A.; Grymanowski, J.; Czarny, W.; Ambroży, T. Relation of indicators of technical and tactical training to demerits of kickboxers fighting in K1 formula. Arch. Budo Sci. Martial Arts Extrem. Sport. 2020, 16, 1–5. [Google Scholar]
- Rydzik, Ł.; Ambroży, T. Physical fitness and the level of technical and tactical training of kickboxers. Int. J. Environ. Res. Public Health 2021, 18, 3088. [Google Scholar] [CrossRef]
- Di Russo, F.; Spinelli, D. Sport is not always healthy: Executive brain dysfunction in professional boxers. Psychophysiology 2010, 47, 425–434. [Google Scholar] [CrossRef]
- Di Virgilio, T.G.; Ietswaart, M.; Wilson, L.; Donaldson, D.I.; Hunter, A.M. Understanding the Consequences of Repetitive Subconcussive Head Impacts in Sport: Brain Changes and Dampened Motor Control Are Seen After Boxing Practice. Front. Hum. Neurosci. 2019, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Hammouda, O.; Chtourou, H.; Gmada, N.; Franchini, E. Effects of recovery type after a kickboxing match on blood lactate and performance in anaerobic tests. Asian J. Sports Med. 2014, 5, 99–107. [Google Scholar]
- Karadağ, M. Compare the Values of Blood Lactate and Heart Rate of Kickboxers during Kickboxing Matches. J. Educ. Train. Stud. 2017, 5, 13–19. [Google Scholar] [CrossRef][Green Version]
- Ouergui, I.; Hssin, N.; Haddad, M.; Franchini, E.; Behm, D.G.; Wong, D.P.; Gmada, N.; Bouhlel, E. Time-Motion Analysis of Elite Male Kickboxing Competition. J. Strength Cond. Res. 2014, 28, 3537–3543. [Google Scholar] [CrossRef] [PubMed]
- Ambroży, T.; Rydzik, Ł.; Obmiński, Z.; Klimek, A.T.; Serafin, N.; Litwiniuk, A.; Czaja, R.; Czarny, W. The Impact of Reduced Training Activity of Elite Kickboxers on Physical Fitness, Body Build, and Performance during Competitions. Int. J. Environ. Res. Public Health 2021, 18, 4342. [Google Scholar] [CrossRef] [PubMed]
- Rydzik, Ł.; Maciejczyk, M.; Czarny, W.; Kędra, A.; Ambroży, T. Physiological Responses and Bout Analysis in Elite Kickboxers During International K1 Competitions. Front. Physiol. 2021, 12, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Salci, Y. The metabolic demands and ability to sustain work outputs during kickboxing competitions. J. Perform. Anal. Sport 2015, 15, 39–52. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Coertjens, M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front. Physiol. 2018, 9, 1789. [Google Scholar] [CrossRef]
- Diniz, R.; Del Vecchio, F.B.; Schaun, G.Z.; Oliveira, H.B.; Portella, E.G.; da Silva, E.S.; Formalioni, A.; Campelo, P.C.C.; Peyré-Tartaruga, L.A.; Pinto, S.S. Kinematic Comparison of the Roundhouse Kick Between Taekwondo, Karate, and Muaythai. J. Strength Cond. Res. 2021, 35, 198–204. [Google Scholar] [CrossRef]
- Gavagan, C.J.; Sayers, M.G.L. A biomechanical analysis of the roundhouse kicking technique of expert practitioners: A comparison between the martial arts disciplines of Muay Thai, Karate, and Taekwondo. PLoS ONE 2017, 12, e0182645. [Google Scholar] [CrossRef]
- Péronnet, F.; Aguilaniu, B. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: A critical reappraisal. Respir. Physiol. Neurobiol. 2006, 150, 4–18. [Google Scholar] [CrossRef]
- Stickland, M.K.; Lindinger, M.I.; Olfert, I.M.; Heigenhauser, G.J.F.; Hopkins, S.R. Pulmonary Gas Exchange and Acid-Base Balance During Exercise. In Comprehensive Physiology; 2013; pp. 693–739. [Google Scholar]
- Chin, L.M.K.; Leigh, R.J.; Heigenhauser, G.J.F.; Rossiter, H.B.; Paterson, D.H.; Kowalchuk, J.M. Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise. J. Physiol. 2007, 583, 351–364. [Google Scholar] [CrossRef]
- Sakamoto, A.; Naito, H.; Chow, C.-M. Hyperventilation as a Strategy for Improved Repeated Sprint Performance. J. Strength Cond. Res. 2014, 28, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Keyrouz, C.; Bideau, N.; Nicolas, G.; El Hage, R.; Bideau, B.; Zouhal, H. Pre-exercise hyperventilation can significantly increase performance in the 50-meter front crawl. Sci. Sports 2015, 30, 173–176. [Google Scholar] [CrossRef]
- Meyer, T. Is lactic acidosis a cause of exercise induced hyperventilation at the respiratory compensation point? Br. J. Sports Med. 2004, 38, 622–625. [Google Scholar] [CrossRef] [PubMed]
- Çetin, M.Ç.; Taşǧm, Ö.; Arslan, F. The relationship between reaction time and decision-making in elite kickboxing athletes. World Appl. Sci. J. 2011, 12, 1826–1831. [Google Scholar]
- Slimani, M.; Chaabene, H.; Miarka, B.; Franchini, E.; Chamari, K.; Cheour, F. Kickboxing review: Anthropometric, psychophysiological and activity profiles and injury epidemiology. Biol. Sport 2017, 34, 185. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Hssin, N.; Franchini, E.; Gmada, N.; Bouhlel, E. Technical and tactical analysis of high level kickboxing matches. Int. J. Perform. Anal. Sport 2013, 13, 294–309. [Google Scholar] [CrossRef]
Variables | No | M | Me | Min | Max | Q1 | Q3 | SD |
---|---|---|---|---|---|---|---|---|
Body mass | 14 | 84.90 | 85.50 | 75.00 | 90.00 | 83.00 | 88.50 | 4.93 |
Body height | 14 | 181.05 | 180.00 | 175.00 | 189.00 | 179.00 | 183.50 | 3.39 |
BMI | 14 | 26.04 | 25.99 | 24.12 | 28.64 | 25.15 | 26.73 | 1.24 |
Parameter | Measurement | Friedman’s ANOVA | Post-Hoc (Dunn’s Test) | Effect Size | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I (n = 14) | II (n = 14) | III (n = 14) | |||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | Chi2 | p | I-II | I-II | |
H+ (nmol/L) | 37.9 | 37.0 | 3.3 | 54.0 | 49.0 | 9.8 | 41.1 | 40.0 | 3.9 | 22.29 | <0.001 | <0.05 | 0.80 |
pCO2 (mmHg) | 37.2 | 37.3 | 3.3 | 31.8 | 31.9 | 2.6 | 35.2 | 35.0 | 0.7 | 7.43 | 0.024 | <0.05 | 0.27 |
pO2 (mmHg) | 77.2 | 75.2 | 6.0 | 85.6 | 85.1 | 8.5 | 73.9 | 75.8 | 4.5 | 16.15 | <0.001 | <0.05 | 0.58 |
HCO3− (mmol/L) | 24.6 | 25.3 | 1.3 | 14.9 | 15.4 | 1.6 | 21.3 | 21.6 | 1.8 | 24.57 | <0.001 | <0.05 | 0.88 |
BE mmol/L | 0.5 | 0.9 | 1.2 | −11.9 | −10.6 | 2.7 | −3.7 | −3.2 | 2.4 | 28.00 | <0.001 | <0.05 | 1.00 |
TCO2(mmol/L) | 24.1 | 25.1 | 1.3 | 15.8 | 16.1 | 1.4 | 21.5 | 21.7 | 1.1 | 24.50 | <0.001 | <0.05 | 0.88 |
Variables | No | M | Me | Min | Max | Q1 | Q3 | SD |
---|---|---|---|---|---|---|---|---|
Activeness of the attack | 14 | 96.9 | 79.0 | 68.0 | 198.0 | 76.0 | 96.0 | 43.6 |
Efficiency of the attack | 14 | 50.1 | 47.0 | 37.0 | 79.0 | 45.0 | 49.0 | 12.8 |
Effectiveness of the attack | 14 | 54.5 | 54.4 | 39.9 | 64.5 | 49.0 | 60.8 | 7.9 |
Variables | Activeness of the Attack | Efficiency of the Attack | Effectiveness of the Attack | ||||
---|---|---|---|---|---|---|---|
R | p | R | p | R | p | ||
∆ = I-II | [H+] | 0.11 | 0.62 | 0.07 | 0.81 | 0.07 | 0.808 |
pCO2 (mmHg) | 0.14 | 0.14 | −0.03 | 0.90 | 0.00 | 1.00 | |
pO2 (mmHg) | 0.14 | 0.62 | −0.32 | 0.26 | −0.03 | 0.90 | |
HCO3− (mmol/L) | −0.21 | 0.46 | −0.25 | 0.38 | 0.32 | 0.26 | |
BE (ecf) mmol/L | −0.10 | 0.71 | −0.01 | 0.95 | −0.41 | 0.13 | |
TCO2 mmol/L | 0.64 | 0.01 | −0.32 | 0.26 | −0.17 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydzik, Ł.; Mardyła, M.; Obmiński, Z.; Więcek, M.; Maciejczyk, M.; Czarny, W.; Jaszczur-Nowicki, J.; Ambroży, T. Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology 2022, 11, 65. https://doi.org/10.3390/biology11010065
Rydzik Ł, Mardyła M, Obmiński Z, Więcek M, Maciejczyk M, Czarny W, Jaszczur-Nowicki J, Ambroży T. Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology. 2022; 11(1):65. https://doi.org/10.3390/biology11010065
Chicago/Turabian StyleRydzik, Łukasz, Mateusz Mardyła, Zbigniew Obmiński, Magdalena Więcek, Marcin Maciejczyk, Wojciech Czarny, Jarosław Jaszczur-Nowicki, and Tadeusz Ambroży. 2022. "Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules" Biology 11, no. 1: 65. https://doi.org/10.3390/biology11010065
APA StyleRydzik, Ł., Mardyła, M., Obmiński, Z., Więcek, M., Maciejczyk, M., Czarny, W., Jaszczur-Nowicki, J., & Ambroży, T. (2022). Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology, 11(1), 65. https://doi.org/10.3390/biology11010065