Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Analysis of the Fight
- n—number of attacks scoring 1 point.
- * In K1 rules, each clean hit of the opponent scores 1 point
- N—sum of observed bouts (N = 1 in this study)
- An effective attack is a technical action awarded a point
- Number of all attacks is a number of all offensive actions
2.2. Acid–Base Balance Analysis
2.3. Bioethics Committee
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
- The disturbances in ABB and changes in blood oxygen and carbon dioxide saturation observed immediately after a bout indicate that anaerobic metabolism plays a large part in kickboxing fights. Anaerobic training should be included in strength and conditioning programs for kickboxers to prepare the athletes for the physiological requirements of sports combat.
- K1 kickboxers must be characterized by good metabolic acidosis tolerance and the ability to fight effectively despite ABB disturbances, and show good post-exercise recovery.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hamm, L.L.; Nakhoul, N.; Hering-Smith, K.S. Acid-Base Homeostasis. Clin. J. Am. Soc. Nephrol. 2015, 10, 2232–2242. [Google Scholar] [CrossRef] [Green Version]
- Seifter, J.L.; Chang, H.-Y. Disorders of Acid-Base Balance: New Perspectives. Kidney Dis. 2016, 2, 170–186. [Google Scholar] [CrossRef] [PubMed]
- Seifter, J.L.; Chang, H.-Y. Extracellular Acid-Base Balance and Ion Transport Between Body Fluid Compartments. Physiology 2017, 32, 367–379. [Google Scholar] [CrossRef]
- Belfry, G.R.; Raymer, G.H.; Marsh, G.D.; Paterson, D.H.; Thompson, R.T.; Thomas, S.G. Muscle metabolic status and acid-base balance during 10-s work: 5-s recovery intermittent and continuous exercise. J. Appl. Physiol. 2012, 113, 410–417. [Google Scholar] [CrossRef] [Green Version]
- Duffin, J. Role of acid-base balance in the chemoreflex control of breathing. J. Appl. Physiol. 2005, 99, 2255–2265. [Google Scholar] [CrossRef]
- Langer, T.; Zanella, A.; Caironi, P. Understanding the role of the cerebrospinal fluid in acid–base disorders. Intensive Care Med. 2016, 42, 436–439. [Google Scholar] [CrossRef]
- Wiecek, M.; Maciejczyk, M.; Szymura, J.; Szygula, Z. Changes in oxidative stress and acid-base balance in men and women following maximal-intensity physical exercise. Physiol. Res. 2015, 64, 93–102. [Google Scholar] [CrossRef]
- Wiecek, M.; Szymura, J.; Maciejczyk, M.; Kantorowicz, M.; Szygula, Z. Anaerobic Exercise-Induced Activation of Antioxidant Enzymes in the Blood of Women and Men. Front. Physiol. 2018, 9, 1006. [Google Scholar] [CrossRef] [PubMed]
- Russell, M.; Kingsley, M.I.C. Changes in Acid-Base Balance During Simulated Soccer Match Play. J. Strength Cond. Res. 2012, 26, 2593–2599. [Google Scholar] [CrossRef]
- Vilmi, N.; AyrAma, S. Oxygen Uptake, Acid-Base Balance and Anaerobic Energy System Contribution in Maximal 300–400 M Running In Child, Adolescent and Adult Athletes. J. Athl. Enhanc. 2016, 5. [Google Scholar] [CrossRef]
- Ratel, S.; Duche, P.; Hennegrave, A.; Van Praagh, E.; Bedu, M. Acid-base balance during repeated cycling sprints in boys and men. J. Appl. Physiol. 2002, 92, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Beneke, R.; Hütler, M.; Jung, M.; Leithäuser, R.M. Modeling the blood lactate kinetics at maximal short-term exercise conditions in children, adolescents, and adults. J. Appl. Physiol. 2005, 99, 499–504. [Google Scholar] [CrossRef]
- Hanon, C.; Savarino, J.; Thomas, C. Blood Lactate and Acid-Base Balance of World-Class Amateur Boxers After Three 3-Minute Rounds in International Competition. J. Strength Cond. Res. 2015, 29, 942–946. [Google Scholar] [CrossRef]
- Westerblad, H. Acidosis Is Not a Significant Cause of Skeletal Muscle Fatigue. Med. Sci. Sport. Exerc. 2016, 48, 2339–2342. [Google Scholar] [CrossRef]
- Hietavala, E.-M.; Stout, J.R.; Hulmi, J.J.; Suominen, H.; Pitkänen, H.; Puurtinen, R.; Selänne, H.; Kainulainen, H.; Mero, A.A. Effect of diet composition on acid–base balance in adolescents, young adults and elderly at rest and during exercise. Eur. J. Clin. Nutr. 2015, 69, 399–404. [Google Scholar] [CrossRef]
- Gough, L.A.; Brown, D.; Deb, S.K.; Sparks, S.A.; McNaughton, L.R. The influence of alkalosis on repeated high-intensity exercise performance and acid–base balance recovery in acute moderate hypoxic conditions. Eur. J. Appl. Physiol. 2018, 118, 2489–2498. [Google Scholar] [CrossRef] [Green Version]
- Chycki, J.; Golas, A.; Halz, M.; Maszczyk, A.; Toborek, M.; Zajac, A. Chronic Ingestion of Sodium and Potassium Bicarbonate, with Potassium, Magnesium and Calcium Citrate Improves Anaerobic Performance in Elite Soccer Players. Nutrients 2018, 10, 1610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chycki, J.; Kurylas, A.; Maszczyk, A.; Golas, A.; Zajac, A. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS ONE 2018, 13, e0205708. [Google Scholar] [CrossRef] [PubMed]
- Dalle, S.; De Smet, S.; Geuns, W.; Van Rompaye, B.; Hespel, P.; Koppo, K. Effect of Stacked Sodium Bicarbonate Loading on Repeated All-out Exercise. Int. J. Sports Med. 2019, 40, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Durkalec-Michalski, K.; Nowaczyk, P.M.; Adrian, J.; Kamińska, J.; Podgórski, T. The influence of progressive-chronic and acute sodium bicarbonate supplementation on anaerobic power and specific performance in team sports: A randomized, double-blind, placebo-controlled crossover study. Nutr. Metab. (Lond.) 2020, 17, 1–15. [Google Scholar] [CrossRef]
- Kamińska, J.; Podgórski, T.; Rachwalski, K.; Pawlak, M. Does the Minerals Content and Osmolarity of the Fluids Taken during Exercise by Female Field Hockey Players Influence on the Indicators of Water-Electrolyte and Acid-Basic Balance? Nutrients 2021, 13, 505. [Google Scholar] [CrossRef]
- Siegler, J.C.; Hirscher, K. Sodium Bicarbonate Ingestion and Boxing Performance. J. Strength Cond. Res. 2010, 24, 103–108. [Google Scholar] [CrossRef]
- Lopes-Silva, J.P.; Da Silva Santos, J.F.; Artioli, G.G.; Loturco, I.; Abbiss, C.; Franchini, E. Sodium bicarbonate ingestion increases glycolytic contribution and improves performance during simulated taekwondo combat. Eur. J. Sport Sci. 2018, 18, 431–440. [Google Scholar] [CrossRef] [PubMed]
- Durkalec–Michalski, K.; Zawieja, E.E.; Zawieja, B.E.; Michałowska, P.; Podgórski, T. The gender dependent influence of sodium bicarbonate supplementation on anaerobic power and specific performance in female and male wrestlers. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Coco, M.; Buscemi, A.; Guerrera, C.S.; Di Corrado, D.; Cavallari, P.; Zappalà, A.; Di Nuovo, S.; Parenti, R.; Maci, T.; Razza, G.; et al. Effects of a Bout of Intense Exercise on Some Executive Functions. Int. J. Environ. Res. Public Health 2020, 17, 898. [Google Scholar] [CrossRef] [Green Version]
- Obmiński, Z.; Mroczkowska, H.; Tomaszewski, W. Relationships between personality traits, resting serum hormones and visuomotor ability in male judokas. Ann. Agric. Environ. Med. 2016, 23, 79–83. [Google Scholar] [CrossRef] [PubMed]
- Darby, D.; Moriarity, J.; Pietrzak, R.; Kutcher, J.; McAward, K.; McCrory, P. Prediction of winning amateur boxers using pretournament reaction times. J. Sport. Med. Phys. Fit. 2014, 54, 509–519. [Google Scholar] [CrossRef]
- Gierczuk, D.; Bujak, Z.; Cieśliński, I.; Lyakh, V.; Sadowski, J. Response Time and Effectiveness in Elite Greco-Roman Wrestlers Under Simulated Fight Conditions. J. Strength Cond. Res. 2018, 32, 3433–3440. [Google Scholar] [CrossRef]
- Supiński, J.; Obmiński, Z.; Kubacki, R.; Kosa, J.; Moska, W. Usefulness of the psychomotor tests for distinguishing the skill levels among older and younger judo athletes. Arch. Budo 2014, 10, 315–322. [Google Scholar]
- Obminski, Z.; Litwiniuk, A.; Staniak, Z.; Zdanowicz, R.; Weimo, Z. Intensive specific maximal judo drills improve psycho-motor ability but may impair hand grip isometric strength. Ido Mov. Cult. 2015, 15, 52–58. [Google Scholar] [CrossRef]
- Obmiński, Z.; Supiński, J.; Mroczkowska, H.; Borkowski, L.; Zdanowicz, R. The effect of aerobic fitness on acute changes in cognitive functions and blood hormones after an exhaustive effort. Pol. J. Sport Med. 2017, 33, 97–106. [Google Scholar]
- Tanriverdi, F.; Suer, C.; Yapislar, H.; Kocyigit, I.; Selcuklu, A.; Unluhizarci, K.; Casanueva, F.F.; Kelestimur, F. Growth hormone deficiency due to sports-related head trauma is associated with impaired cognitive performance in amateur boxers and kickboxers as revealed by P300 auditory event-related potentials. Clin. Endocrinol. (Oxf.) 2013, 78, 730–737. [Google Scholar] [CrossRef]
- Kim, G.H.; Kang, I.; Jeong, H.; Park, S.; Hong, H.; Kim, J.; Kim, J.Y.; Edden, R.A.E.; Lyoo, I.K.; Yoon, S. Low Prefrontal GABA Levels Are Associated With Poor Cognitive Functions in Professional Boxers. Front. Hum. Neurosci. 2019, 13. [Google Scholar] [CrossRef]
- Russo, G.; Ottoboni, G. The perceptual–Cognitive skills of combat sports athletes: A systematic review. Psychol. Sport Exerc. 2019, 44, 60–78. [Google Scholar] [CrossRef]
- Chmura, J.; Nazar, K.; Kaciuba-Uścilko, H. Choice Reaction Time During Graded Exercise in Relation to Blood Lactate and Plasma Catecholamine Thresholds. Int. J. Sports Med. 1994, 15, 172–176. [Google Scholar] [CrossRef] [PubMed]
- Chmura, J.; Nazar, K. Parallel changes in the onset of blood lactate accumulation (OBLA) and threshold of psychomotor performance deterioration during incremental exercise after training in athletes. Int. J. Psychophysiol. 2010, 75, 287–290. [Google Scholar] [CrossRef] [PubMed]
- Labelle, V.; Bosquet, L.; Mekary, S.; Bherer, L. Decline in executive control during acute bouts of exercise as a function of exercise intensity and fitness level. Brain Cogn. 2013, 81, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.-Y.; Bae, S.-S.; Han, J.-T.; Byun, S.-D.; Chang, J.-S. The Effect of Motor Learning of Serial Reaction Time Task (SRTT) Through Action Observation on Mu Rhythm and Improvement of Behavior Abilities. J. Clin. Med. Res. 2012, 4, 114–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rydzik, Ł.; Niewczas, M.; Kędra, A.; Grymanowski, J.; Czarny, W.; Ambroży, T. Relation of indicators of technical and tactical training to demerits of kickboxers fighting in K1 formula. Arch. Budo Sci. Martial Arts Extrem. Sport. 2020, 16, 1–5. [Google Scholar]
- Rydzik, Ł.; Ambroży, T. Physical fitness and the level of technical and tactical training of kickboxers. Int. J. Environ. Res. Public Health 2021, 18, 3088. [Google Scholar] [CrossRef]
- Di Russo, F.; Spinelli, D. Sport is not always healthy: Executive brain dysfunction in professional boxers. Psychophysiology 2010, 47, 425–434. [Google Scholar] [CrossRef]
- Di Virgilio, T.G.; Ietswaart, M.; Wilson, L.; Donaldson, D.I.; Hunter, A.M. Understanding the Consequences of Repetitive Subconcussive Head Impacts in Sport: Brain Changes and Dampened Motor Control Are Seen After Boxing Practice. Front. Hum. Neurosci. 2019, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Ouergui, I.; Hammouda, O.; Chtourou, H.; Gmada, N.; Franchini, E. Effects of recovery type after a kickboxing match on blood lactate and performance in anaerobic tests. Asian J. Sports Med. 2014, 5, 99–107. [Google Scholar]
- Karadağ, M. Compare the Values of Blood Lactate and Heart Rate of Kickboxers during Kickboxing Matches. J. Educ. Train. Stud. 2017, 5, 13–19. [Google Scholar] [CrossRef] [Green Version]
- Ouergui, I.; Hssin, N.; Haddad, M.; Franchini, E.; Behm, D.G.; Wong, D.P.; Gmada, N.; Bouhlel, E. Time-Motion Analysis of Elite Male Kickboxing Competition. J. Strength Cond. Res. 2014, 28, 3537–3543. [Google Scholar] [CrossRef] [PubMed]
- Ambroży, T.; Rydzik, Ł.; Obmiński, Z.; Klimek, A.T.; Serafin, N.; Litwiniuk, A.; Czaja, R.; Czarny, W. The Impact of Reduced Training Activity of Elite Kickboxers on Physical Fitness, Body Build, and Performance during Competitions. Int. J. Environ. Res. Public Health 2021, 18, 4342. [Google Scholar] [CrossRef] [PubMed]
- Rydzik, Ł.; Maciejczyk, M.; Czarny, W.; Kędra, A.; Ambroży, T. Physiological Responses and Bout Analysis in Elite Kickboxers During International K1 Competitions. Front. Physiol. 2021, 12, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Salci, Y. The metabolic demands and ability to sustain work outputs during kickboxing competitions. J. Perform. Anal. Sport 2015, 15, 39–52. [Google Scholar] [CrossRef]
- Peyré-Tartaruga, L.A.; Coertjens, M. Locomotion as a Powerful Model to Study Integrative Physiology: Efficiency, Economy, and Power Relationship. Front. Physiol. 2018, 9, 1789. [Google Scholar] [CrossRef]
- Diniz, R.; Del Vecchio, F.B.; Schaun, G.Z.; Oliveira, H.B.; Portella, E.G.; da Silva, E.S.; Formalioni, A.; Campelo, P.C.C.; Peyré-Tartaruga, L.A.; Pinto, S.S. Kinematic Comparison of the Roundhouse Kick Between Taekwondo, Karate, and Muaythai. J. Strength Cond. Res. 2021, 35, 198–204. [Google Scholar] [CrossRef]
- Gavagan, C.J.; Sayers, M.G.L. A biomechanical analysis of the roundhouse kicking technique of expert practitioners: A comparison between the martial arts disciplines of Muay Thai, Karate, and Taekwondo. PLoS ONE 2017, 12, e0182645. [Google Scholar] [CrossRef] [Green Version]
- Péronnet, F.; Aguilaniu, B. Lactic acid buffering, nonmetabolic CO2 and exercise hyperventilation: A critical reappraisal. Respir. Physiol. Neurobiol. 2006, 150, 4–18. [Google Scholar] [CrossRef]
- Stickland, M.K.; Lindinger, M.I.; Olfert, I.M.; Heigenhauser, G.J.F.; Hopkins, S.R. Pulmonary Gas Exchange and Acid-Base Balance During Exercise. In Comprehensive Physiology; 2013; pp. 693–739. [Google Scholar]
- Chin, L.M.K.; Leigh, R.J.; Heigenhauser, G.J.F.; Rossiter, H.B.; Paterson, D.H.; Kowalchuk, J.M. Hyperventilation-induced hypocapnic alkalosis slows the adaptation of pulmonary O2 uptake during the transition to moderate-intensity exercise. J. Physiol. 2007, 583, 351–364. [Google Scholar] [CrossRef]
- Sakamoto, A.; Naito, H.; Chow, C.-M. Hyperventilation as a Strategy for Improved Repeated Sprint Performance. J. Strength Cond. Res. 2014, 28, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Jacob, C.; Keyrouz, C.; Bideau, N.; Nicolas, G.; El Hage, R.; Bideau, B.; Zouhal, H. Pre-exercise hyperventilation can significantly increase performance in the 50-meter front crawl. Sci. Sports 2015, 30, 173–176. [Google Scholar] [CrossRef]
- Meyer, T. Is lactic acidosis a cause of exercise induced hyperventilation at the respiratory compensation point? Br. J. Sports Med. 2004, 38, 622–625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Çetin, M.Ç.; Taşǧm, Ö.; Arslan, F. The relationship between reaction time and decision-making in elite kickboxing athletes. World Appl. Sci. J. 2011, 12, 1826–1831. [Google Scholar]
- Slimani, M.; Chaabene, H.; Miarka, B.; Franchini, E.; Chamari, K.; Cheour, F. Kickboxing review: Anthropometric, psychophysiological and activity profiles and injury epidemiology. Biol. Sport 2017, 34, 185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ouergui, I.; Hssin, N.; Franchini, E.; Gmada, N.; Bouhlel, E. Technical and tactical analysis of high level kickboxing matches. Int. J. Perform. Anal. Sport 2013, 13, 294–309. [Google Scholar] [CrossRef]
Variables | No | M | Me | Min | Max | Q1 | Q3 | SD |
---|---|---|---|---|---|---|---|---|
Body mass | 14 | 84.90 | 85.50 | 75.00 | 90.00 | 83.00 | 88.50 | 4.93 |
Body height | 14 | 181.05 | 180.00 | 175.00 | 189.00 | 179.00 | 183.50 | 3.39 |
BMI | 14 | 26.04 | 25.99 | 24.12 | 28.64 | 25.15 | 26.73 | 1.24 |
Parameter | Measurement | Friedman’s ANOVA | Post-Hoc (Dunn’s Test) | Effect Size | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
I (n = 14) | II (n = 14) | III (n = 14) | |||||||||||
M | Me | SD | M | Me | SD | M | Me | SD | Chi2 | p | I-II | I-II | |
H+ (nmol/L) | 37.9 | 37.0 | 3.3 | 54.0 | 49.0 | 9.8 | 41.1 | 40.0 | 3.9 | 22.29 | <0.001 | <0.05 | 0.80 |
pCO2 (mmHg) | 37.2 | 37.3 | 3.3 | 31.8 | 31.9 | 2.6 | 35.2 | 35.0 | 0.7 | 7.43 | 0.024 | <0.05 | 0.27 |
pO2 (mmHg) | 77.2 | 75.2 | 6.0 | 85.6 | 85.1 | 8.5 | 73.9 | 75.8 | 4.5 | 16.15 | <0.001 | <0.05 | 0.58 |
HCO3− (mmol/L) | 24.6 | 25.3 | 1.3 | 14.9 | 15.4 | 1.6 | 21.3 | 21.6 | 1.8 | 24.57 | <0.001 | <0.05 | 0.88 |
BE mmol/L | 0.5 | 0.9 | 1.2 | −11.9 | −10.6 | 2.7 | −3.7 | −3.2 | 2.4 | 28.00 | <0.001 | <0.05 | 1.00 |
TCO2(mmol/L) | 24.1 | 25.1 | 1.3 | 15.8 | 16.1 | 1.4 | 21.5 | 21.7 | 1.1 | 24.50 | <0.001 | <0.05 | 0.88 |
Variables | No | M | Me | Min | Max | Q1 | Q3 | SD |
---|---|---|---|---|---|---|---|---|
Activeness of the attack | 14 | 96.9 | 79.0 | 68.0 | 198.0 | 76.0 | 96.0 | 43.6 |
Efficiency of the attack | 14 | 50.1 | 47.0 | 37.0 | 79.0 | 45.0 | 49.0 | 12.8 |
Effectiveness of the attack | 14 | 54.5 | 54.4 | 39.9 | 64.5 | 49.0 | 60.8 | 7.9 |
Variables | Activeness of the Attack | Efficiency of the Attack | Effectiveness of the Attack | ||||
---|---|---|---|---|---|---|---|
R | p | R | p | R | p | ||
∆ = I-II | [H+] | 0.11 | 0.62 | 0.07 | 0.81 | 0.07 | 0.808 |
pCO2 (mmHg) | 0.14 | 0.14 | −0.03 | 0.90 | 0.00 | 1.00 | |
pO2 (mmHg) | 0.14 | 0.62 | −0.32 | 0.26 | −0.03 | 0.90 | |
HCO3− (mmol/L) | −0.21 | 0.46 | −0.25 | 0.38 | 0.32 | 0.26 | |
BE (ecf) mmol/L | −0.10 | 0.71 | −0.01 | 0.95 | −0.41 | 0.13 | |
TCO2 mmol/L | 0.64 | 0.01 | −0.32 | 0.26 | −0.17 | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rydzik, Ł.; Mardyła, M.; Obmiński, Z.; Więcek, M.; Maciejczyk, M.; Czarny, W.; Jaszczur-Nowicki, J.; Ambroży, T. Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology 2022, 11, 65. https://doi.org/10.3390/biology11010065
Rydzik Ł, Mardyła M, Obmiński Z, Więcek M, Maciejczyk M, Czarny W, Jaszczur-Nowicki J, Ambroży T. Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology. 2022; 11(1):65. https://doi.org/10.3390/biology11010065
Chicago/Turabian StyleRydzik, Łukasz, Mateusz Mardyła, Zbigniew Obmiński, Magdalena Więcek, Marcin Maciejczyk, Wojciech Czarny, Jarosław Jaszczur-Nowicki, and Tadeusz Ambroży. 2022. "Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules" Biology 11, no. 1: 65. https://doi.org/10.3390/biology11010065
APA StyleRydzik, Ł., Mardyła, M., Obmiński, Z., Więcek, M., Maciejczyk, M., Czarny, W., Jaszczur-Nowicki, J., & Ambroży, T. (2022). Acid–Base Balance, Blood Gases Saturation, and Technical Tactical Skills in Kickboxing Bouts According to K1 Rules. Biology, 11(1), 65. https://doi.org/10.3390/biology11010065