Psychological, Physical, and Heat Stress Indicators Prior to and after a 15-Minute Structural Firefighting Task
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Data Collection
2.3. Scenario
2.4. Testing Protocol
2.4.1. Tympanic Membrane Temperature
2.4.2. Physical and Mental Effort Scale
- Physical effort (rate of perceived exertion, RPE [20]): firefighters were asked to rate their level of physical exertion on a scale of 6 to 20, where 6 means “no exertion at all” and 20 means “maximal exertion”. The 6–20 RPE scale has a linear relationship with heart rate, providing an estimate of physical effort and exertion during physical work [21].
- Mental effort: using the Task Effort and Awareness (TEA) score [22], firefighters were requested to think back to when they were fighting the fire and asked to rate the psychological and mental effort required to fight the fire. The TEA scale ranges from −4 to 10, where −4 mean unawareness of any mental effort and 10 constant awareness of a severe effort required to continue at the current pace and need to slow down. Different to the RPE, the TEA provides information on the psychological effort needed to continue to produce the required workload [22].
2.4.3. General Motivation and Fatigue Scale
2.4.4. Speed and Accuracy Test
2.4.5. Logical Reasoning Test
2.4.6. Memory Recall
2.5. Data Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, D.L.; Petruzzello, S.J.; Chludzinski, M.A.; Reed, J.J.; Woods, J.A. Effect of strenuous live-fire fire fighting drills on hematological, blood chemistry and psychological measures. J. Therm. Biol. 2001, 26, 375–379. [Google Scholar] [CrossRef]
- Barr, D.; Reilly, T.; Gregson, W. The impact of different cooling modalities on the physiological responses in firefighters during strenuous work performed in high environmental temperatures. Eur. J. Appl. Physiol. 2011, 111, 959–967. [Google Scholar] [CrossRef]
- Holmér, I.; Gavhed, D. Classification of metabolic and respiratory demands in fire fighting activity with extreme workloads. Appl. Ergon. 2007, 38, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Cheung, S.S.; Petersen, S.R.; McLellan, T.M. Physiological strain and countermeasures with firefighting. Scand. J. Med. Sci. Sports 2010, 20, 103–116. [Google Scholar] [CrossRef] [PubMed]
- Dorman, L.E.; Havenith, G. The effects of protective clothing on energy consumption during different activities. Eur. J. Appl. Physiol. 2009, 105, 463–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruce-Low, S.S.; Cotterrell, D.; Jones, G.E. Effect of wearing personal protective clothing and self-contained breathing apparatus on heart rate, temperature and oxygen consumption during stepping exercise and live fire training exercises. Ergonomics 2007, 50, 80–98. [Google Scholar] [CrossRef]
- Baker, S.J.; Grice, J.; Roby, L.; Matthews, C. Cardiorespiratory and thermoregulatory response of working in fire-fighter protective clothing in a temperate environment. Ergonomics 2000, 43, 1350–1358. [Google Scholar] [CrossRef] [PubMed]
- Angerer, P.; Kadlez-Gebhardt, S.; Delius, M.; Raluca, P.; Nowak, D. Comparison of Cardiocirculatory and Thermal Strain of Male Firefighters During Fire Suppression to Exercise Stress Test and Aerobic Exercise Testing. Am. J. Cardiol. 2008, 102, 1551–1556. [Google Scholar] [CrossRef]
- Holsworth, R.E., Jr.; Cho, Y.I.; Weidman, J. Effect of hydration on whole blood viscosity in firefighters. Altern. Ther. Health Med. 2013, 19, 44–49. [Google Scholar]
- Horn, G.P.; Deblois, J.; Shalmyeva, I.; Smith, D.L. Quantifying Dehydration in the Fire Service Using Field Methods and Novel Devices. Prehospital Emerg. Care 2012, 16, 347–355. [Google Scholar] [CrossRef]
- Walker, A.; Argus, C.; Driller, M.; Rattray, B. Repeat work bouts increase thermal strain for Australian firefighters working in the heat. Int. J. Occup. Environ. Health 2015, 21, 285–293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hancock, P.A.; Ross, J.M.; Szalma, J.L. A Meta-Analysis of Performance Response Under Thermal Stressors. Hum. Factors 2007, 49, 851–877. [Google Scholar] [CrossRef]
- Rayson, M.P.; Wilkinson, D.M.; Carter, J.M.; Richmond, V.L.; Blacker, S.D.; Bullock, N.; Jones, D.A. Physiological Assessment of Firefighting in the Built Up Environment; Optimal Performance Ltd.: Wetherby, UK, 2005. [Google Scholar]
- Robinson, S.J.; Leach, J.; Owen-Lynch, P.J.; Sünram-Lea, S.I. Stress Reactivity and Cognitive Performance in a Simulated Firefighting Emergency. Aviat. Space Environ. Med. 2013, 84, 592–599. [Google Scholar] [CrossRef]
- Williams-Bell, F.M.; Aisbett, B.; Murphy, B.A.; Larsen, B. The Effects of Simulated Wildland Firefighting Tasks on Core Temperature and Cognitive Function under Very Hot Conditions. Front. Physiol. 2017, 8. [Google Scholar] [CrossRef] [Green Version]
- Fullagar, H.H.K.; Schwarz, E.; Richardson, A.; Notley, S.R.; Lu, D.; Duffield, R. Australian firefighters perceptions of heat stress, fatigue and recovery practices during fire-fighting tasks in extreme environments. Appl. Ergon. 2021, 95, 103449. [Google Scholar] [CrossRef] [PubMed]
- Eglin, C.M.; Coles, S.; Tipton, M.J. Physiological responses of fire-fighter instructors during training exercises. Ergonomics 2004, 47, 483–494. [Google Scholar] [CrossRef] [PubMed]
- Walker, A.; Pope, R.; Schram, B.; Gorey, R.; Orr, R. The Impact of Occupational Tasks on Firefighter Hydration during a Live Structural Fire. Safety 2019, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Dickinson, E.T.; Bevilacqua, J.J.; Hill, J.D.; Sites, F.D.; Wurster, F.W.; Mechem, C.C. The utility of tympanic versus oral temperature measurements of firefighters in emergency incident rehabilitation operations. Prehospital Emerg. Care 2003, 7, 363. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Gamberale, F. Perceived exertion, heart rate, oxygen uptake and blood lactate in different work operations. Ergonomics 1972, 15, 545–554. [Google Scholar] [CrossRef]
- Swart, J.; Lindsay, T.R.; Lambert, M.I.; Brown, J.C.; Noakes, T.D. Perceptual cues in the regulation of exercise performance—Physical sensations of exercise and awareness of effort interact as separate cues. Br. J. Sports Med. 2012, 46, 42. [Google Scholar] [CrossRef] [Green Version]
- Åhsberg, E. Dimensions of fatigue in different working populations. Scand. J. Psychol. 2000, 41, 231–241. [Google Scholar] [CrossRef] [PubMed]
- Ruff, R.M.; Evans, R.W.; Light, R.H. Automatic detection vs controlled search: A paper-and-pencil approach. Percept. Mot. Skills 1986, 62, 407–416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baddeley, A.D. A 3 min reasoning test based on grammatical transformation. Psychon. Sci. 1968, 10, 341–342. [Google Scholar] [CrossRef]
- Baden-Powell, R.S.S. Indoor Games. In Scouting Games; Baden-Powell, R.S.S., Ed.; C Arthur Perason Ltd.: London, UK, 1921; p. 146. [Google Scholar]
- Casa, D.J.; Armstrong, L.E.; Hillman, S.K.; Montain, S.J.; Reiff, R.V.; Rich, B.S.; Roberts, W.O.; Stone, J.A. National athletic trainers’ association position statement: Fluid replacement for athletes. J. Athl. Train. 2000, 35, 212. [Google Scholar]
- Cheuvront, S.N.; Ely, B.R.; Kenefick, R.W.; Sawka, M.N. Biological variation and diagnostic accuracy of dehydration assessment markers. Am. J. Clin. Nutr. 2010, 92, 565. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganio, M.S.; Armstrong, L.E.; Casa, D.J.; McDermott, B.P.; Lee, E.C.; Yamamoto, L.M.; Marzano, S.; Lopez, R.M.; Jimenez, L.; Le Bellego, L.; et al. Mild dehydration impairs cognitive performance and mood of men. Br. J. Nutr. 2011, 106, 1535–1543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawka, M.N.; Young, A.J.; Latzka, W.A.; Neufer, P.D.; Quigley, M.D.; Pandolf, K.B. Human tolerance to heat strain during exercise: Influence of hydration. J. Appl. Physiol. 1992, 73, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Hillman, A.R.; Vince, R.V.; Taylor, L.; McNaughton, L.; Mitchell, N.; Siegler, J. Exercise-induced dehydration with and without environmental heat stress results in increased oxidative stress. Appl. Physiol. Nutry Metab. 2011, 36, 698. [Google Scholar] [CrossRef]
- Maughan, R.J.; Shirreffs, S.M. Development of individual hydration strategies for athletes. Int. J. Sport Nutr. Exerc. Metab. 2008, 18, 457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawka, M.N.; Montain, S.J. Fluid and electrolyte supplementation for exercise heat stress. Am. J. Clin. Nutr. 2000, 72, 564S–572S. [Google Scholar] [CrossRef] [Green Version]
- Hemmatjo, R.; Hajaghazadeh, M.; Allahyari, T.; Zare, S.; Kazemi, R. The Effects of Live-Fire Drills on Visual and Auditory Cognitive Performance among Firefighters. Ann. Glob. Health 2020, 86, 144. [Google Scholar] [CrossRef]
- Simon, J.; Takács, E.; Orosz, G.; Berki, B.; Winkler, I. Short-term cognitive fatigue effect on auditory temporal order judgments. Exp. Brain Res. 2020, 238, 305–319. [Google Scholar] [CrossRef] [Green Version]
- Slimani, M.; Znazen, H.; Bragazzi, N.L.; Zguira, M.S.; Tod, D. The Effect of Mental Fatigue on Cognitive and Aerobic Performance in Adolescent Active Endurance Athletes: Insights from a Randomized Counterbalanced, Cross-Over Trial. J. Clin. Med. 2018, 7, 510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeklin, A.T.; Davies, H.W.; Bredin, S.S.D.; Hives, B.A.; Meanwell, L.E.; Perrotta, A.S.; Warburton, D.E.R. Fatigue and sleep patterns among Canadian wildland firefighters during a 17-day fire line deployment. J. Occup. Environ. Hyg. 2020, 17, 364–371. [Google Scholar] [CrossRef] [PubMed]
- Williamson, A.; Lombardi, D.A.; Folkard, S.; Stutts, J.; Courtney, T.K.; Connor, J.L. The link between fatigue and safety. Accid. Anal. Prev. 2011, 43, 498–515. [Google Scholar] [CrossRef] [PubMed]
- Abbott, N.; Schulman, S. Protection from fire: Nonflammable fabrics and coatings. J. Coat. Fabr. 1976, 6, 48–64. [Google Scholar] [CrossRef]
- Mazlomi, A.; Golbabaei, F.; Farhang Dehghan, S.; Abbasinia, M.; Mahmoud Khani, S.; Ansari, M.; Hosseini, M. The influence of occupational heat exposure on cognitive performance and blood level of stress hormones: A field study report. Int. J. Occup. Saf. Ergon. 2017, 23, 431–439. [Google Scholar] [CrossRef] [PubMed]
- McMorris, T.; Swain, J.; Smith, M.; Corbett, J.; Delves, S.; Sale, C.; Harris, R.C.; Potter, J. Heat stress, plasma concentrations of adrenaline, noradrenaline, 5-hydroxytryptamine and cortisol, mood state and cognitive performance. Int. J. Psychophysiol. 2006, 61, 204–215. [Google Scholar] [CrossRef] [PubMed]
- Shibasaki, M.; Namba, M.; Oshiro, M.; Kakigi, R.; Nakata, H. Suppression of cognitive function in hyperthermia; From the viewpoint of executive and inhibitive cognitive processing. Sci. Rep. 2017, 7, 43528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakata, H.; Kakigi, R.; Shibasaki, M. Effects of passive heat stress and recovery on human cognitive function: An ERP study. PLoS ONE 2021, 16, e0254769. [Google Scholar] [CrossRef]
- Shibasaki, M.; Namba, M.; Kamijo, Y.-I.; Ito, T.; Kakigi, R.; Nakata, H. Effects of repetitive exercise and thermal stress on human cognitive processing. Physiol. Rep. 2019, 7, e14003. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kok, A. On the utility of P3 amplitude as a measure of processing capacity. Psychophysiology 2001, 38, 557–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amin, H.U.; Malik, A.S.; Kamel, N.; Chooi, W.-T.; Hussain, M. P300 correlates with learning & memory abilities and fluid intelligence. J. NeuroEngineering Rehabil. 2015, 12, 87. [Google Scholar] [CrossRef] [Green Version]
- Song, G.; Mandal, S.; Rossi, R.M. Fires and thermal environments. In Thermal Protective Clothing for Firefighters; Song, G., Mandal, S., Rossi, R.M., Eds.; Woodhead Publishing: Sawston, UK, 2017; pp. 5–15. [Google Scholar]
- Oka, T.; Oka, K.; Hori, T. Mechanisms and Mediators of Psychological Stress-Induced Rise in Core Temperature. Psychosom. Med. 2001, 63, 476–486. [Google Scholar] [CrossRef] [PubMed]
- Briese, E. Emotional hyperthermia and performance in humans. Physiol. Behav. 1995, 58, 615–618. [Google Scholar] [CrossRef]
- Adriaan Bouwknecht, J.; Olivier, B.; Paylor, R.E. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: A review of pharmacological and genetic studies in the mouse. Neurosci. Biobehav. Rev. 2007, 31, 41–59. [Google Scholar] [CrossRef] [PubMed]
Participant | Sex | Age (yrs) | Experience (yrs) | Weight (kg) |
---|---|---|---|---|
1 | M | 43 | 14 | 126.6 |
2 | F | 39 | 5 | 62.4 |
3 | M | 48 | 6 | 96.8 |
4 | M | 36 | 2 | 88.1 |
5 | F | 30 | 1 | 68.5 |
6 | M | 29 | 11 | 76.2 |
7 | M | 44 | 16 | 85.4 |
8 | M | 36 | 6 | 118.7 |
9 | M | 48 | 10 | 91.0 |
Mean | - | 39.2 | 7.9 | 90.4 |
Pre | 0 Post | 20 Post | F * | p | Partial η2 | ||||
---|---|---|---|---|---|---|---|---|---|
Mean | SD | Mean | SD | Mean | SD | ||||
Tympanic temperature (°C) | 36.5 | 0.3 | 38.9 | 0.4 | 37.8 | 0.5 | 192.13 | <0.001 | 0.97 |
Speed and accuracy score | 62.7 | 4.4 | 64.1 | 2.5 | 65.3 | 0.8 | 2.03 | 0.174 | 0.25 |
Logical reasoning score | 12.4 | 5.1 | 13.9 | 4.6 | 12.9 | 4.5 | 0.53 | 0.602 | 0.08 |
Memory recall score | 6.6 | 1.0 | 8.9 | 1.7 | 3.9 | 1.3 | 19.06 | <0.001 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Canetti, E.F.D.; Gayton, S.; Schram, B.; Pope, R.; Orr, R.M. Psychological, Physical, and Heat Stress Indicators Prior to and after a 15-Minute Structural Firefighting Task. Biology 2022, 11, 104. https://doi.org/10.3390/biology11010104
Canetti EFD, Gayton S, Schram B, Pope R, Orr RM. Psychological, Physical, and Heat Stress Indicators Prior to and after a 15-Minute Structural Firefighting Task. Biology. 2022; 11(1):104. https://doi.org/10.3390/biology11010104
Chicago/Turabian StyleCanetti, Elisa F. D., Scott Gayton, Ben Schram, Rodney Pope, and Robin M. Orr. 2022. "Psychological, Physical, and Heat Stress Indicators Prior to and after a 15-Minute Structural Firefighting Task" Biology 11, no. 1: 104. https://doi.org/10.3390/biology11010104
APA StyleCanetti, E. F. D., Gayton, S., Schram, B., Pope, R., & Orr, R. M. (2022). Psychological, Physical, and Heat Stress Indicators Prior to and after a 15-Minute Structural Firefighting Task. Biology, 11(1), 104. https://doi.org/10.3390/biology11010104