Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin (Strongylocentrotus purpuratus) Coelomic Fluid—Novel Insights into Echinodermata Biology
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Coelomic Fluid Sampling from Purple Sea Urchin
2.2. Isolation of Extracellular Vesicles (EVs) and Nanoparticle Tracking Analysis (NTA)
2.3. Transmission Electron Microscopy (TEM)
2.4. Isolation of Deiminated Proteins Using F95-Enrichment
2.5. Western Blotting Analysis
2.6. Silver Staining
2.7. Liquid Chromatography with Tandem Mass Spectrometry (LC-MS/MS) Analysis of EV Protein Cargo and Deiminated Protein Hits in Sea Urchin Coelomic Fluid and EVs
2.8. Protein–Protein Interaction Network Analysis
2.9. Statistical Analysis
2.10. Echinoderm Genome and Transcriptome Data Mining for PAD Orthologs
3. Results
3.1. Characterisation of Sea Urchin Coelomic Fluid EVs
3.2. LC-MS/MS Analysis of Total EV Cargo from Purple Sea Urchin
3.3. Protein–Protein Interaction Networks for Total EV Protein Cargo from Purple Sea Urchin
3.4. PAD Protein Homologue and Deiminated Proteins in Purple Sea Urchin Coelomic Fluid and EVs
3.5. LC-MS/MS Analysis of Deiminated Proteins in Purple Sea Urchin Coelomic Fluid and EVs
3.6. Protein–Protein Interaction Network Identification of Deiminated Proteins in Purple Sea Urchin Coelomic Fluid and EVs
3.7. FoldIndex© Analysis of Deiminated Protein Hits in Sea Urchin Coelomic Fluid and EVs
3.8. PADs Identified from Mining Echinoderm Genomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dheilly, N.M.; Raftos, D.A.; Haynes, P.A.; Smith, L.C.; Nair, S.V. Shotgun proteomics of coelomic fluid from the purple sea urchin, Strongylocentrotus purpuratus. Dev. Comp. Immunol. 2013, 40, 35–50. [Google Scholar] [CrossRef] [PubMed]
- Sea Urchin Genome Sequencing Consortium; Sodergren, E.; Weinstock, G.M.; Davidson, E.H.; Cameron, R.A.; Gibbs, R.A.; Angerer, R.C.; Angerer, L.M.; Arnone, M.I.; Burgess, D.R.; et al. The genome of the sea urchin Strongylocentrotus purpuratus. Science 2006, 314, 941–952. [Google Scholar] [PubMed] [Green Version]
- Amir, Y.; Insler, M.; Giller, A.; Gutman, D.; Atzmon, G. Senescence and Longevity of Sea Urchins. Genes 2020, 11, 573. [Google Scholar] [CrossRef] [PubMed]
- Hibino, T.; Loza-Coll, M.; Messier, C.; Majeske, A.J.; Cohen, A.H.; Terwilliger, D.P.; Buckley, K.M.; Brockton, V.; Nair, S.V.; Berney, K.; et al. The immune gene repertoire encoded in the purple sea urchin genome. Dev. Biol. 2006, 300, 349–365. [Google Scholar] [CrossRef] [Green Version]
- Smith, A.B.; Kroh, A. Phylogeny of Sea Urchins. In Sea Urchins: Biology and Ecology; Developments in Aquaculture and Fisheries Science Chapter 1; Lawrence, J.M., Ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013; Volume 38, pp. 1–14. ISSN 0167-9309. [Google Scholar] [CrossRef]
- Chiaramonte, M.; Russo, R. The echinoderm innate humoral immune response. Ital. J. Zool. 2015, 82, 300–308. [Google Scholar] [CrossRef]
- Gross, P.S.; Clow, L.A.; Smith, L.C. SpC3, the complement homologue from the purple sea urchin, Strongylocentrotus purpuratus, is expressed in two subpopulations of the phagocytic coelomocytes. Immunogenetics 2000, 51, 1034–1044. [Google Scholar] [CrossRef]
- Smith, L.C.; Clow, L.A.; Terwilliger, D.P. The ancestral complement system in sea urchins. Immunol. Rev. 2001, 180, 16–34. [Google Scholar] [CrossRef] [Green Version]
- Smith, L.C.; Ghosh, J.; Buckley, K.M.; Clow, L.A.; Dheilly, N.M.; Haug, T.; Henson, J.H.; Li, C.; Lun, C.M.; Majeske, A.J.; et al. Echinoderm immunity. Adv. Exp. Med. Biol. 2010, 708, 260–301. [Google Scholar] [PubMed]
- Buckley, K.M.; Rast, J.P. Dynamic evolution of toll-like receptor multigene families in echinoderms. Front. Immunol. 2012, 3, 136. [Google Scholar] [CrossRef] [Green Version]
- Buckley, K.M.; Rast, J.P. Diversity of animal immune receptors and the origins of recognition complexity in the deuterostomes. Dev. Comp. Immunol. 2015, 49, 179–189. [Google Scholar] [CrossRef]
- Pinsino, A.; Matranga, V. Sea urchin immune cells as sentinels of environmental stress. Dev. Comp. Immunol. 2015, 49, 198–205. [Google Scholar] [CrossRef]
- Han, K.K.; Martinage, A. Post-translational chemical modifications of proteins--III. Current developments in analytical procedures of identification and quantitation of post-translational chemically modified amino acid(s) and its derivatives. Int. J. Biochem. 1993, 25, 957–970. [Google Scholar] [CrossRef]
- Green, G.R.; Collas, P.; Burrell, A.; Poccia, D.L. Histone phosphorylation during sea urchin development. Semin. Cell Biol. 1995, 6, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Pomin, V.H.; Mourão, P.A. Specific sulfation and glycosylation-a structural combination for the anticoagulation of marine carbohydrates. Front. Cell Infect. Microbiol. 2014, 4, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pierce, M.; Stanley, P. Deuterostomes. In Essentials of Glycobiolog, 3rd ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Darvill, A.G., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017; pp. 351–360. [Google Scholar]
- Vossenaar, E.R.; Zendman, A.J.; van Venrooij, W.J.; Pruijn, G.J. PAD, a growing family of citrullinating enzymes: Genes, features and involvement in disease. Bioessays 2003, 25, 1106–1118. [Google Scholar] [CrossRef]
- Bicker, K.L.; Thompson, P.R. The protein arginine deiminases: Structure, function, inhibition, and disease. Biopolymers 2013, 99, 155–163. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Y. Peptidylarginine deiminases in citrullination, gene regulation, health and pathogenesis. Biochim. Biophys. Acta 2013, 1829, 1126–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, S.; Gallagher, M.; Kholia, S.; Kosgodage, U.S.; Hristova, M.; Hardy, J.; Inal, J.M. Peptidylarginine deiminases-roles in cancer and neurodegeneration and possible avenues for therapeutic intervention via modulation of exosome and microvesicle (EMV) release? Int. J. Mol. Sci. 2017, 18, 1196. [Google Scholar] [CrossRef]
- Rebl, A.; Köllner, B.; Anders, E.; Wimmers, K.; Goldammer, T. Peptidylarginine deiminase gene is differentially expressed in freshwater and brackish water rainbow trout. Mol. Biol. Rep. 2010, 37, 2333–2339. [Google Scholar] [CrossRef]
- Magnadottir, B.; Hayes, P.; Hristova, M.; Bragason, B.T.; Nicholas, A.P.; Dodds, A.W.; Guðmundsdóttir, S.; Lange, S. Post-translational protein deimination in cod (Gadus morhua L.) ontogeny–novel roles in tissue remodelling and mucosal immune defences? Dev. Comp. Immunol. 2018, 87, 157–170. [Google Scholar] [CrossRef]
- Magnadottir, B.; Bragason, B.T.; Bricknell, I.R.; Bowden, T.; Nicholas, A.P.; Hristova, M.; Guðmundsdóttir, S.; Dodds, A.W.; Lange, S. Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny-complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.). Dev. Comp. Immunol. 2019, 92, 1–19. [Google Scholar] [CrossRef]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Deiminated proteins in extracellular vesicles and plasma of nurse shark (Ginglymostoma cirratum)-Novel insights into shark immunity. Fish Shellfish Immunol. 2019, 92, 249–255. [Google Scholar] [CrossRef]
- Criscitiello, M.F.; Kraev, I.; Petersen, L.H.; Lange, S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-specific Signatures Relating to Immunity, Metabolic Function and Gene Regulation. Front. Immunol. 2020, 11, 651. [Google Scholar] [CrossRef] [PubMed]
- Bielecka, E.; Scavenius, C.; Kantyka, T.; Jusko, M.; Mizgalska, D.; Szmigielski, B.; Potempa, B.; Enghild, J.J.; Prossnitz, E.R.; Blom, A.M.; et al. Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity. J. Biol. Chem. 2014, 289, 32481–32487. [Google Scholar] [CrossRef] [Green Version]
- Novák, L.; Zubáčová, Z.; Karnkowska, A.; Kolisko, M.; Hroudová, M.; Stairs, C.W.; Simpson, A.G.; Keeling, P.J.; Roger, A.J.; Čepička, I.; et al. Arginine deiminase pathway enzymes: Evolutionary history in metamonads and other eukaryotes. BMC Evol. Biol. 2016, 16, 197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosgodage, U.S.; Matewele, P.; Mastroianni, G.; Kraev, I.; Brotherton, D.; Awamaria, B.; Nicholas, A.P.; Lange, S.; Inal, J.M. Peptidylarginine Deiminase Inhibitors Reduce Bacterial Membrane Vesicle Release and Sensitize Bacteria to Antibiotic Treatment. Front. Cell Infect. Microbiol. 2019, 9, 227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Sayed, A.S.A.; Shindia, A.A.; AbouZaid, A.A.; Yassin, A.M.; Ali, G.S.; Sitohy, M.Z. Biochemical characterization of peptidylarginine deiminase-like orthologs from thermotolerant Emericella dentata and Aspergillus nidulans. Enzyme Microb. Technol. 2019, 124, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Gavinho, B.; Sabatke, B.; Feijoli, V.; Rossi, I.V.; da Silva, J.M.; Evans-Osses, I.; Palmisano, G.; Lange, S.; Ramirez, M.I. Peptidylarginine Deiminase Inhibition Abolishes the Production of Large Extracellular Vesicles From Giardia intestinalis, Affecting Host-Pathogen Interactions by Hindering Adhesion to Host Cells. Front. Cell Infect. Microbiol. 2020, 10, 417. [Google Scholar] [CrossRef]
- Kristmundsson, Á.; Erlingsdóttir, Á.; Lange, S. Peptidylarginine Deiminase (PAD) and Post-Translational Protein Deimination-Novel Insights into Alveolata Metabolism, Epigenetic Regulation and Host-Pathogen Interactions. Biology 2021, 10, 177. [Google Scholar]
- Romanenko, L.A.; Uchino, M.; Frolova, G.M.; Mikhailov, V.V. Marixanthomonas ophiurae gen. nov., sp. nov., a marine bacterium of the family Flavobacteriaceae isolated from a deep-sea brittle star. Int. J. Syst. Evol. Microbiol. 2007, 57 Pt 3, 457–462. [Google Scholar] [CrossRef]
- Tarcsa, E.; Marekov, L.N.; Mei, G.; Melino, G.; Lee, S.C.; Steinert, P.M. Protein unfolding by peptidylarginine deiminase. Substrate specificity and structural relationships of the natural substrates trichohyalin and filaggrin. J. Biol. Chem. 1996, 271, 30709–30716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- György, B.; Toth, E.; Tarcsa, E.; Falus, A.; Buzas, E.I. Citrullination: A posttranslational modification in health and disease. Int. J. Biochem. Cell Biol. 2006, 38, 1662–1677. [Google Scholar] [CrossRef] [PubMed]
- Mondal, S.; Thompson, P.R. Protein arginine deiminases (PADs): Biochemistry and chemical biology of protein citrullination. Acc. Chem. Res. 2019, 52, 818–832. [Google Scholar] [CrossRef] [PubMed]
- Henderson, B.; Martin, A.C. Protein moonlighting: A new factor in biology and medicine. Biochem. Soc. Trans. 2014, 42, 1671–1678. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, C.J. Protein moonlighting: What is it, and why is it important? Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373, 20160523. [Google Scholar] [CrossRef] [PubMed]
- Bowden, T.J.; Kraev, I.; Lange, S. Extracellular Vesicles and Post-Translational Protein Deimination Signatures in Mollusca-The Blue Mussel (Mytilus edulis), Soft Shell Clam (Mya arenaria), Eastern Oyster (Crassostrea virginica) and Atlantic Jacknife Clam (Ensis leei). Biology 2020, 9, 416. [Google Scholar]
- Bowden, T.J.; Kraev, I.; Lange, S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). Fish Shellfish Immunol. 2020, 106, 79–102. [Google Scholar] [CrossRef] [PubMed]
- Bowden, T.J.; Kraev, I.; Lange, S. Post-translational protein deimination signatures and extracellular vesicles (EVs) in the Atlantic horseshoe crab (Limulus polyphemus). Dev. Comp. Immunol. 2020, 110, 103714. [Google Scholar] [CrossRef]
- Rast, J.P.; D’Alessio, S.; Kraev, I.; Lange, S. Post-translational Protein Deimination Signatures in Sea Lamprey (Petromyzon marinus) Plasma and Plasma-Extracellular Vesicles. Dev. Comp. Immunol. 2021, 125, 104225. [Google Scholar] [CrossRef]
- Magnadottir, B.; Kraev, I.; Guðmundsdóttir, S.; Dodds, A.W.; Lange, S. Extracellular vesicles from cod (Gadus morhua L.) mucus contain innate immune factors and deiminated protein cargo. Dev. Comp. Immunol. 2019, 99, 103397. [Google Scholar] [CrossRef]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Dodds, A.W.; Gudmundsdottir, S.; Lange, S. Extracellular vesicles, deiminated protein cargo and microRNAs are novel serum biomarkers for environmental rearing temperature in Atlantic cod (Gadus morhua L.). Aquac. Rep. 2020, 16, 100245. [Google Scholar] [CrossRef]
- Magnadottir, B.; Kraev, I.; Dodds, A.W.; Lange, S. The Proteome and Citrullinome of Hippoglossus hippoglossus Extracellular Vesicles-Novel Insights into Roles of the Serum Secretome in Immune, Gene Regulatory and Metabolic Pathways. Int. J. Mol. Sci. 2021, 22, 875. [Google Scholar] [CrossRef] [PubMed]
- Magnadottir, B.; Hayes, P.; Gísladóttir, B.; Bragason, B.Þ.; Hristova, M.; Nicholas, A.P.; Guðmundsdóttir, S.; Lange, S. Pentraxins CRP-I and CRP-II are post-translationally deiminated and differ in tissue specificity in cod (Gadus morhua L.) ontogeny. Dev. Comp. Immunol. 2018, 87, 1–11. [Google Scholar] [CrossRef]
- Lange, S.; Kraev, I.; Magnadóttir, B.; Dodds, A.W. Complement component C4-like protein in Atlantic cod (Gadus morhua L.)-Detection in ontogeny and identification of post-translational deimination in serum and extracellular vesicles. Dev. Comp. Immunol. 2019, 101, 103437. [Google Scholar] [CrossRef]
- Phillips, R.A.; Kraev, I.; Lange, S. Protein deimination and extracellular vesicle profiles in Antarctic seabirds. Biology 2020, 9, 15. [Google Scholar] [CrossRef] [Green Version]
- Pamenter, M.E.; Uysal-Onganer, P.; Huynh, K.W.; Kraev, I.; Lange, S. Post-translational deimination of immunological and metabolic protein markers in plasma and extracellular vesicles of naked mole-rat (Heterocephalus glaber). Int. J. Mol. Sci. 2019, 20, 5378. [Google Scholar] [CrossRef] [Green Version]
- Sancandi, M.; Uysal-Onganer, P.; Kraev, I.; Mercer, A.; Lange, S. Protein Deimination Signatures in Plasma and Plasma-EVs and Protein Deimination in the Brain Vasculature in a Rat Model of Pre-Motor Parkinson’s Disease. Int. J. Mol. Sci. 2020, 21, 2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Svansson, V.; Hayes, P.; Lange, S. Deiminated proteins and extracellular vesicles-novel serum biomarkers in whales and orca. Comp. Biochem. Physiol. Part D Genom. Proteom. 2020, 34, 100676. [Google Scholar] [CrossRef] [PubMed]
- Magnadottir, B.; Uysal-Onganer, P.; Kraev, I.; Svansson, V.; Skírnisson, K.; Lange, S. Deiminated proteins and extracellular vesicles as novel biomarkers in pinnipeds: Grey seal (Halichoerus gryptus) and harbour seal (Phoca vitulina). Biochimie 2020, 171–172, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination. Int. J. Mol. Sci. 2020, 21, 2861. [Google Scholar] [CrossRef]
- D’Alessio, S.; Thorgeirsdóttir, S.; Kraev, I.; Skírnisson, K.; Lange, S. Post-Translational Protein Deimination Signatures in Plasma and Plasma EVs of Reindeer (Rangifer tarandus). Biology 2021, 10, 222. [Google Scholar]
- Criscitiello, M.F.; Kraev, I.; Lange, S. Deiminated proteins in extracellular vesicles and serum of llama (Lama glama)-Novel insights into camelid immunity. Mol. Immunol. 2020, 117, 37–53. [Google Scholar] [CrossRef]
- Turchinovich, A.; Drapkina, O.; Tonevitsky, A. Transcriptome of extracellular vesicles: State-of-the-art. Front. Immunol. 2019, 10, 202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Antwi-Baffour, S.; Malibha-Pinchbeck, M.; Stratton, D.; Jorfi, S.; Lange, S.; Inal, J. Plasma mEV levels in Ghanain malaria patients with low parasitaemia are higher than those of healthy controls, raising the potential for parasite markers in mEVs as diagnostic targets. J. Extracell. Vesicles 2019, 9, 1697124. [Google Scholar] [CrossRef] [PubMed]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles 2018, 7, 1535750. [Google Scholar] [CrossRef] [Green Version]
- Nicholas, A.P.; Whitaker, J.N. Preparation of a monoclonal antibody to citrullinated epitopes: Its characterization and some applications to immunohistochemistry in human brain. Glia 2002, 37, 328–336. [Google Scholar] [CrossRef]
- Prilusky, J.; Felder, C.E.; Zeev-Ben-Mordehai, T.; Rydberg, E.H.; Man, O.; Beckmann, J.S.; Silman, I.; Sussman, J.L. FoldIndex: A simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 2005, 21, 3435–3438. [Google Scholar] [CrossRef]
- Francois, C.M.; Durand, F.; Figuet EGaltier, N. Prevalence and Implications of Contamination in Public Genomic Resources: A Case Study of 43 Reference Arthropod Assemblies. G3 Genes Genomes Genet. 2020, 10, 721–730. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.M.; Wessel, G.M. Selective transport and packaging of the major yolk protein in the sea urchin. Dev. Biol. 2003, 261, 353–370. [Google Scholar] [CrossRef] [Green Version]
- Brooks, J.M.; Wessel, G.M. The major yolk protein in sea urchins is a transferrin-like, iron binding protein. Dev. Biol. 2002, 245, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Unuma, T.; Nakamura, A.; Yamano, K.; Yokota, Y. The sea urchin major yolk protein is synthesized mainly in the gut inner epithelium and the gonadal nutritive phagocytes before and during gametogenesis. Mol. Reprod. Dev. 2010, 77, 59–68. [Google Scholar] [CrossRef]
- Figueiredo, D.; Santos, W.S.; Montoni, F.; Iwai, L.K.; Silva Junior, P.I. Toposome: Source of antimicrobial molecules in the gonads of the sea urchin Lytechinus variegatus (Lamarck, 1816). Fish Shellfish Immunol. 2021, 109, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Lv, Z.; Li, C.; Guo, M.; Shao, Y.; Zhang, W.; Zhao, X. Major yolk protein and HSC70 are essential for the activation of the TLR pathway via interacting with MyD88 in Apostichopus japonicus. Arch. Biochem. Biophys. 2019, 665, 57–68. [Google Scholar] [CrossRef] [PubMed]
- Gerst, J.E. Pimp My Ribosome: Ribosomal Protein Paralogs Specify Translational Control. Trends Genet. 2018, 34, 832–845. [Google Scholar] [CrossRef] [PubMed]
- Baßler, J.; Hurt, E. Eukaryotic Ribosome Assembly. Annu. Rev. Biochem. 2019, 88, 281–306. [Google Scholar] [CrossRef]
- Moon, Y. Mucosal injuries due to ribosome-inactivating stress and the compensatory responses of the intestinal epithelial barrier. Toxins 2011, 3, 1263–1277. [Google Scholar] [CrossRef] [PubMed]
- Moon, Y. Ribosomal alteration-derived signals for cytokine induction in mucosal and systemic inflammation: Noncanonical pathways by ribosomal inactivation. Mediat. Inflamm. 2014, 2014, 708193. [Google Scholar] [CrossRef] [Green Version]
- Nuding, S.; Antoni, L.; Stange, E.F. The host and the flora. Dig. Dis. 2013, 31, 286–292. [Google Scholar] [CrossRef]
- Seo, J.K.; Kim, D.G.; Oh, R.; Park, K.S.; Lee, I.A.; Cho, S.M.; Lee, K.Y.; Nam, B.H. Antimicrobial effect of the 60S ribosomal protein L29 (cgRPL29), purified from the gill of pacific oyster, Crassostrea gigas. Fish Shellfish Immunol. 2017, 67, 675–683. [Google Scholar] [CrossRef]
- Zhan, Y.; Li, J.; Sun, J.; Zhang, W.; Li, Y.; Cui, D.; Hu, W.; Chang, Y. The Impact of Chronic Heat Stress on the Growth, Survival, Feeding, and Differential Gene Expression in the Sea Urchin Strongylocentrotus intermedius. Front. Genet. 2019, 10, 301. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Wang, J. Ribosome heterogeneity in stem cells and development. J. Cell Biol. 2020, 219, e202001108. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Bedford, M.T.; Fast, W. Discovery of peptidylarginine deiminase-4 substrates by protein array: Antagonistic citrullination and methylation of human ribosomal protein S2. Mol. Biosyst. 2011, 7, 2286–2295. [Google Scholar] [CrossRef] [Green Version]
- DePina, A.S.; Langford, G.M. Vesicle transport: The role of actin filaments and myosin motors. Microsc. Res. Tech. 1999, 47, 93–106. [Google Scholar] [CrossRef]
- Bonder, E.M.; Fishkind, D.J. Actin-membrane cytoskeletal dynamics in early sea urchin development. Curr. Top. Dev. Biol. 1995, 31, 101–137. [Google Scholar] [PubMed]
- Chun, J.T.; Vasilev, F.; Limatola, N.; Santella, L. Fertilization in Starfish and Sea Urchin: Roles of Actin. Results Probl. Cell Differ. 2018, 65, 33–47. [Google Scholar]
- Alijagic, A.; Benada, O.; Kofroňová, O.; Cigna, D.; Pinsino, A. Sea Urchin Extracellular Proteins Design a Complex Protein Corona on Titanium Dioxide Nanoparticle Surface Influencing Immune Cell Behavior. Front. Immunol. 2019, 10, 2261. [Google Scholar] [CrossRef]
- Kholia, S.; Jorfi, S.; Thompson, P.R.; Causey, C.P.; Nicholas, A.P.; Inal, J.M.; Lange, S. A novel role for peptidylarginine deiminases (PADs) in microvesicle release: A therapeutic potential for PAD inhibitors to sensitize prostate cancer cells to chemotherapy. J. Extracell. Vesicles 2015, 4, 26192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marzluff, W.F.; Sakallah, S.; Kelkar, H. The sea urchin histone gene complement. Dev. Biol. 2006, 300, 308–320. [Google Scholar] [CrossRef]
- Fuhrmann, J.; Thompson, P.R. Protein Arginine Methylation and Citrullination in Epigenetic Regulation. ACS Chem. Biol. 2016, 11, 654–668. [Google Scholar] [CrossRef] [Green Version]
- Beato, M.; Sharma, P. Peptidyl Arginine Deiminase 2 (PADI2)-Mediated Arginine Citrullination Modulates Transcription in Cancer. Int. J. Mol. Sci. 2020, 21, 1351. [Google Scholar] [CrossRef] [Green Version]
- Jasinskiene, N.; Jasinskas, A.; Langmore, J.P. Embryonic regulation of histone ubiquitination in the sea urchin. Dev. Genet. 1995, 16, 278–290. [Google Scholar] [CrossRef] [Green Version]
- Tessarz, P.; Kouzarides, T. Histone core modifications regulating nucleosome structure and dynamics. Nat. Rev. Mol. Cell Biol. 2014, 15, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Burgener, S.S.; Schroder, K. Neutrophil Extracellular Traps in Host Defense. Cold Spring Harb. Perspect. Biol. 2020, 12, a037028. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Huang, C.M.; Nakatsuji, T.; Thiboutot, D.; Kang, S.A.; Monestier, M.; Gallo, R.L. Histone H4 is a major component of the antimicrobial action of human sebocytes. J. Investig. Dermatol. 2009, 129, 2489–2496. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Song, L.; Zhao, J.; Zhu, L.; Zou, H.; Zhang, H.; Wang, H.; Cai, Z. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellfish Immunol. 2007, 22, 663–672. [Google Scholar] [CrossRef] [PubMed]
- De Zoysa, M.; Nikapitiya, C.; Whang, I.; Lee, J.S.; Lee, J. Abhisin: A potential antimicrobial peptide derived from histone H2A of disk abalone (Haliotis discus discus). Fish Shellfish Immunol. 2009, 27, 639–646. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.K.; Stephenson, J.; Noga, E.J. Multiple antibacterial histone H2B proteins are expressed in tissues of American oyster. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2011, 158, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Dorrington, T.; Villamil, L.; Gómez-Chiarri, M. Upregulation in response to infection and antibacterial activity of oyster histone H4. Fish Shellfish Immunol. 2011, 30, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Smith, V.J.; Dyrynda, E.A. Antimicrobial proteins: From old proteins, new tricks. Mol. Immunol. 2015, 68 Pt B, 383–398. [Google Scholar] [CrossRef] [Green Version]
- Sruthy, K.S.; Nair, A.; Antony, S.P.; Puthumana, J.; Singh, I.S.B.; Philip, R. A histone H2A derived antimicrobial peptide, Fi-Histin from the Indian White shrimp, Fenneropenaeus indicus: Molecular and functional characterization. Fish Shellfish Immunol. 2019, 92, 667–679. [Google Scholar] [CrossRef]
- Cho, J.H.; Sung, B.H.; Kim, S.C. Buforins: Histone H2A-derived antimicrobial peptides from toad stomach. Biochim. Biophys. Acta 2009, 1788, 1564–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, J.M.; Kemp, G.D.; Molle, M.G.; Smith, V.J. Anti-microbial properties of histone H2A from skin secretions of rainbow trout, Oncorhynchus mykiss. Biochem. J. 2002, 368 Pt 2, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Kozlowski, H.N.; Lai, E.T.; Havugimana, P.C.; White, C.; Emili, A.; Sakac, D.; Binnington, B.; Neschadim, A.; McCarthy, S.D.; Branch, D.R. Extracellular histones identified in crocodile blood inhibit in-vitro HIV-1 infection. AIDS 2016, 30, 2043–2052. [Google Scholar] [CrossRef] [PubMed]
- Villagra-Blanco, R.; Silva, L.M.R.; Conejeros, I.; Taubert, A.; Hermosilla, C. Pinniped-and Cetacean-Derived ETosis Contributes to Combating Emerging Apicomplexan Parasites (Toxoplasma gondii, Neospora caninum) Circulating in Marine Environments. Biology 2019, 8, 12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanner, L.; Bhongir, R.; Karlsson, C.; Le, S.; Ljungberg, J.K.; Andersson, P.; Andersson, C.; Malmström, J.; Egesten, A.; Single, A.B. Citrullination of extracellular histone H3.1 reduces antibacterial activity and exacerbates its proteolytic degradation. J. Cyst. Fibros. 2021, 20, 346–355. [Google Scholar] [CrossRef]
- Christophorou, M.A.; Castelo-Branco, G.; Halley-Stott, R.P.; Oliveira, C.S.; Loos, R.; Radzisheuskaya, A.; Mowen, K.A.; Bertone, P.; Silva, J.C.; Zernicka-Goetz, M.; et al. Citrullination regulates pluripotency and histone H1 binding to chromatin. Nature 2014, 507, 104–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kan, R.; Jin, M.; Subramanian, V.; Causey, C.P.; Thompson, P.R.; Coonrod, S.A. Potential role for PADI-mediated histone citrullination in preimplantation development. BMC Dev. Biol. 2012, 12, 19. [Google Scholar] [CrossRef] [Green Version]
- Witalison, E.E.; Thompson, P.R.; Hofseth, L.J. Protein arginine deiminases and associated citrullination: Physiological functions and diseases associated with dysregulation. Curr. Drug Targets 2015, 16, 700–710. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xin, M.; Li, Y.; Zhang, P.; Zhang, M. The Functions of Histone Modification Enzymes in Cancer. Curr. Protein Pept. Sci. 2016, 17, 438–445. [Google Scholar] [CrossRef] [PubMed]
- Lange, S.; Gögel, S.; Leung, K.Y.; Vernay, B.; Nicholas, A.P.; Causey, C.P.; Thompson, P.R.; Greene, N.D.; Ferretti, P. Protein deiminases: New players in the developmentally regulated loss of neural regenerative ability. Dev. Biol. 2011, 355, 205–214. [Google Scholar] [CrossRef] [Green Version]
- Lange, S.; Rocha-Ferreira, E.; Thei, L.; Mawjee, P.; Bennett, K.; Thompson, P.R.; Subramanian, V.; Nicholas, A.P.; Peebles, D.; Hristova, M.; et al. Peptidylarginine deiminases: Novel drug targets for prevention of neuronal damage following hypoxic ischemic insult (HI) in neonates. J. Neurochem. 2014, 130, 555–562. [Google Scholar] [CrossRef]
- Feizbakhsh, O.; Pontheaux, F.; Glippa, V.; Morales, J.; Ruchaud, S.; Cormier, P.; Roch, F. A Peak of H3T3 Phosphorylation Occurs in Synchrony with Mitosis in Sea Urchin Early Embryos. Cells 2020, 9, 898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Du, Y.; Zhang, Y.; Ji, N. Immunotherapy with heat shock protein 96 to treat gliomas. Chin. Neurosurg. J. 2020, 6, 31. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.Y.; Wang, Z.X.; Lei, Q.N.; Huang, R.L.; Deng, Y.W.; Wang, Q.H.; Jiao, Y.; Du, X.D. Molecular cloning and expression analysis of a pearl oyster (Pinctada martensii) heat shock protein 90 (HSP90). Genet. Mol. Res. 2015, 14, 18778–18791. [Google Scholar] [CrossRef]
- Liu, H.; Wu, J.; Xu, M.; He, J. A novel biomarker for marine environmental pollution of HSP90 from Mytilus coruscus. Mar. Pollut. Bull. 2016, 111, 428–434. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.A.; Brown, I.R.; Youson, J.H. Characterization of the heat shock response in the gills of sea lampreys and a brook lamprey at different intervals of their life cycles. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 1998, 120, 509–518. [Google Scholar] [CrossRef]
- Magesky, A.; de Oliveira Ribeiro, C.A.; Beaulieu, L.; Pelletier, É. Silver nanoparticles and dissolved silver activate contrasting immune responses and stress-induced heat shock protein expression in sea urchin. Environ. Toxicol. Chem. 2017, 36, 1872–1886. [Google Scholar] [CrossRef] [PubMed]
- Radosevic-Stasic, B.; Jakovac, H.; Grebic, D.; Trobonjaca, Z.; Mrakovcic-Sutic, I.; Cuk, M. Heat shock protein Gp96 as potential regulator of morphostasis after partial hepatectomy in mice. Curr. Aging Sci. 2012, 5, 254–262. [Google Scholar] [CrossRef]
- Rachidi, S.; Sun, S.; Wu, B.X.; Jones, E.; Drake, R.R.; Ogretmen, B.; Cowart, L.A.; Clarke, C.J.; Hannun, Y.A.; Chiosis, G.; et al. Endoplasmic reticulum heat shock protein gp96 maintains liver homeostasis and promotes hepatocellular carcinogenesis. J. Hepatol. 2015, 62, 879–888. [Google Scholar] [CrossRef] [Green Version]
- Travers, T.S.; Harlow, L.; Rosas, I.O.; Gochuico, B.R.; Mikuls, T.R.; Bhattacharya, S.K.; Camacho, C.J.; Ascherman, D.P. Extensive Citrullination Promotes Immunogenicity of HSP90 through Protein Unfolding and Exposure of Cryptic Epitopes. J. Immunol. 2016, 197, 1926–1936. [Google Scholar] [CrossRef] [Green Version]
- Katow, H.; Yoshida, H.; Kiyomoto, M. Initial report of γ-aminobutyric acidergic locomotion regulatory system and its 3-mercaptopropionic acid-sensitivity in metamorphic juvenile of sea urchin, Hemicentrotus pulcherrimus. Sci. Rep. 2020, 10, 778. [Google Scholar] [CrossRef] [Green Version]
- Stephens, R.E. Tubulin in sea urchin embryonic cilia: Post-translational modifications during regeneration. J. Cell Sci. 1992, 101 Pt 4, 837–845. [Google Scholar] [CrossRef]
- Huitorel, P.; White, D.; Fouquet, J.P.; Kann, M.L.; Cosson, J.; Gagnon, C. Differential distribution of glutamylated tubulin isoforms along the sea urchin sperm axoneme. Mol. Reprod. Dev. 2002, 62, 139–148. [Google Scholar] [CrossRef]
- Ragusa, M.A.; Nicosia, A.; Costa, S.; Casano, C.; Gianguzza, F. A Survey on Tubulin and Arginine Methyltransferase Families Sheds Light on P. lividus Embryo as Model System for Antiproliferative Drug Development. Int. J. Mol. Sci. 2019, 20, 2136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosgodage, U.S.; Trindade, R.P.; Thompson, P.T.; Inal, J.M.; Lange, S. Chloramidine/Bisindolylmaleimide-I-mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int. J. Mol. Sci. 2017, 18, 1007. [Google Scholar] [CrossRef] [PubMed]
- Kosgodage, U.S.; Uysal-Onganer, P.; Maclatchy, A.; Nicholas, A.P.; Inal, J.M.; Lange, S. Peptidylarginine deiminases post-translationally deiminate prohibitin and modulate extracellular vesicle release and miRNAs 21 and 126 in glioblastoma multiforme. Int. J. Mol. Sci. 2018, 20, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uysal-Onganer, P.; MacLatchy, A.; Mahmoud, R.; Kraev, I.; Thompson, P.R.; Inal, J.; Lange, S. Peptidylarginine deiminase isozyme-specific PAD2, PAD3 and PAD4 inhibitors differentially modulate extracellular vesicle signatures and cell invasion in two glioblastoma multiforme cell lines. Int. J. Mol. Sci. 2020, 21, 1495. [Google Scholar] [CrossRef] [Green Version]
- Uysal-Onganer, P.; D’Alessio, S.; Mortoglou, M.; Kraev, I.; Lange, S. Peptidylarginine Deiminase Inhibitor Application, Using Cl-Amidine, PAD2, PAD3 and PAD4 Isozyme-Specific Inhibitors in Pancreatic Cancer Cells, Reveals Roles for PAD2 and PAD3 in Cancer Invasion and Modulation of Extracellular Vesicle Signatures. Int. J. Mol. Sci. 2021, 22, 1396. [Google Scholar] [CrossRef]
- Bryan, J.; Edwards, R.; Matsudaira, P.; Otto, J.; Wulfkuhle, J. Fascin, an echinoid actin-bundling protein, is a homolog of the Drosophila singed gene product. Proc. Natl. Acad. Sci. USA 1993, 90, 9115–9119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adams, J.C. Roles of fascin in cell adhesion and motility. Curr. Opin. Cell Biol. 2004, 16, 590–596. [Google Scholar] [CrossRef]
- Lamb, M.C.; Tootle, T.L. Fascin in Cell Migration: More Than an Actin Bundling Protein. Biology 2020, 9, 403. [Google Scholar] [CrossRef] [PubMed]
- Groen, C.M.; Jayo, A.; Parsons, M.; Tootle, T.L. Prostaglandins regulate nuclear localization of Fascin and its function in nucleolar architecture. Mol. Biol. Cell 2015, 26, 1901–1917. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hashimoto, Y.; Skacel, M.; Adams, J.C. Roles of fascin in human carcinoma motility and signaling: Prospects for a novel biomarker? Int. J. Biochem. Cell Biol. 2005, 37, 1787–1804. [Google Scholar] [CrossRef] [PubMed]
- Jawhari, A.U.; Buda, A.; Jenkins, M.; Shehzad, K.; Sarraf, C.; Noda, M.; Farthing, M.J.; Pignatelli, M.; Adams, J.C. Fascin, an actin-bundling protein, modulates colonic epithelial cell invasiveness and differentiation in vitro. Am. J. Pathol. 2003, 162, 69–80. [Google Scholar] [CrossRef] [Green Version]
- Li, A.; Dawson, J.C.; Forero-Vargas, M.; Spence, H.J.; Yu, X.; König, I.; Anderson, K.; Machesky, L.M. The actin-bundling protein fascin stabilizes actin in invadopodia and potentiates protrusive invasion. Curr. Biol. 2010, 20, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ganguly, A.; Mucsi, A.D.; Meng, J.; Yan, J.; Detampel, P.; Munro, F.; Zhang, Z.; Wu, M.; Hari, A.; et al. Strong adhesion by regulatory T cells induces dendritic cell cytoskeletal polarization and contact-dependent lethargy. J. Exp. Med. 2017, 214, 327–338. [Google Scholar] [CrossRef]
- Miao, Q.; Hill, M.C.; Chen, F.; Mo, Q.; Ku, A.T.; Ramos, C.; Sock, E.; Lefebvre, V.; Nguyen, H. SOX11 and SOX4 drive the reactivation of an embryonic gene program during murine wound repair. Nat. Commun. 2019, 10, 4042. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryu, M.-J.; Lee, C.; Kim, J.; Shin, H.-S.; Yu, M.-H. Proteomic analysis of stargazer mutant mouse neuronal proteins involved in absence seizure. J. Neurochem. 2008, 104, 1260–1270. [Google Scholar] [CrossRef]
- Castao, E.M.; Maarouf, C.L.; Wu, T.; Leal, M.C.; Whiteside, C.M.; Lue, L.-F.; Kokjohn, T.A.; Sabbagh, M.N.; Beach, T.G.; Roher, A.E.; et al. Alzheimer disease periventricular white matter lesions exhibit specific proteomic profile alterations. Neurochem. Int. 2013, 62, 145–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohan, C.S.; Welnhofer, E.A.; Zhao, L.; Matsumura, F.; Yamashiro, S. Role of the actin bundling protein fascin in growth cone morphogenesis: Localization in filopodia and lamellipodia. Cell Motil. Cytoskelet. 2001, 48, 109–120. [Google Scholar] [CrossRef]
- Khacho, M.; Mekhail, K.; Pilon-Larose, K.; Pause, A.; Côté, J.; Lee, S. eEF1A is a novel component of the mammalian nuclear protein export machinery. Mol. Biol. Cell 2008, 19, 5296–5308. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, Y.; Wang, W.N.; Mai, W.J.; Xin, Y.; Zhou, J.; He, W.Y.; Wang, A.L.; Sun, R.Y. Molecular characterization and expression analysis of elongation factors 1A and 2 from the Pacific white shrimp, Litopenaeus vannamei. Mol. Biol. Rep. 2011, 38, 2167–2178. [Google Scholar] [CrossRef] [PubMed]
- Talapatra, S.; Wagner, J.D.; Thompson, C.B. Elongation factor-1 alpha is a selective regulator of growth factor withdrawal and ER stress-induced apoptosis. Cell Death Differ. 2020, 9, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Vera, M.; Pani, B.; Griffiths, L.A.; Muchardt, C.; Abbott, C.M.; Singer, R.H.; Nudler, E. The translation elongation factor eEF1A1 couples transcription to translation during heat shock response. Elife 2014, 3, e03164. [Google Scholar] [CrossRef]
- Peeler, M.T.; Kelso-Winemiller, L.; Wu, M.F.; Skipper, J.K.; Winkler, M.M. Counterproductive transcriptional and translational regulation of elongation factor 1-alpha synthesis during early development in sea urchins. Dev. Biol. 1990, 142, 486–488. [Google Scholar] [CrossRef]
- Woo, S.; Jeon, H.Y.; Kim, S.R.; Yum, S. Differentially displayed genes with oxygen depletion stress and transcriptional responses in the marine mussel, Mytilus galloprovincialis. Comp. Biochem. Physiol. Part D Genom. Proteom. 2011, 6, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.F.; Cerff, R. Physiology, phylogeny, early evolution, and GAPDH. Protoplasma 2017, 254, 1823–1834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baibai, T.; Oukhattar, L.; Mountassif, D.; Assobhei, O.; Serrano, A.; Soukri, A. Comparative molecular analysis of evolutionarily distant glyceraldehyde-3-phosphate dehydrogenase from Sardina pilchardus and Octopus vulgaris. Acta Biochim. Biophys. Sin. 2010, 42, 863–867. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, C.; Li, H.; Liu, J.P. GAPDH: A common enzyme with uncommon functions. Clin. Exp. Pharmacol. Physiol. 2012, 39, 674–679. [Google Scholar] [CrossRef]
- Carroll, E.J., Jr.; Epel, D. Reevaluation of cell surface protein release at fertilization and its role in regulation of sea urchin egg protein synthesis. Dev. Biol. 1981, 87, 374–378. [Google Scholar] [CrossRef]
- Liu, M.C.; Liao, W.Y.; Buckley, K.M.; Yang, S.Y.; Rast, J.P.; Fugmann, S.D. AID/APOBEC-like cytidine deaminases are ancient innate immune mediators in invertebrates. Nat. Commun. 2018, 9, 1948. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.; Tosatto, S.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 49, D412–D419. [Google Scholar] [CrossRef] [PubMed]
- Faddetta, T.; Ardizzone, F.; Faillaci, F.; Reina, C.; Palazzotto, E.; Strati, F.; De Filippo, C.; Spinelli, G.; Puglia, A.M.; Gallo, G.; et al. Composition and geographic variation of the bacterial microbiota associated with the coelomic fluid of the sea urchin Paracentrotus lividus. Sci. Rep. 2020, 10, 21443. [Google Scholar] [CrossRef]
- Williamson, J.E.; De Nys, R.; Kumar, N.; Carson, D.G.; Steinberg, P.D. Induction of metamorphosis in the sea urchin Holopneustes purpurascens by a metabolite complex from the algal host Delisea pulchra. Biol. Bull. 2000, 198, 332–345. [Google Scholar] [CrossRef]
- Brothers, C.J.; Van Der Pol, W.J.; Morrow, C.D.; Hakim, J.A.; Koo, H.; McClintock, J.B. Ocean warming alters predicted microbiome functionality in a common sea urchin. Proc. Biol. Sci. 2018, 285, 20180340. [Google Scholar] [CrossRef]
- Enomoto, M.; Nakagawa, S.; Sawabe, T. Microbial communities associated with holothurians: Presence of unique bacteria in the coelomic fluid. Microbes Environ. 2012, 27, 300–305. [Google Scholar] [CrossRef] [Green Version]
- Nakagawa, S.; Saito, H.; Tame, A.; Hirai, M.; Yamaguchi, H.; Sunata, T.; Aida, M.; Muto, H.; Sawayama, S.; Takaki, Y. Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon. Sci. Rep. 2017, 7, 8764. [Google Scholar] [CrossRef] [Green Version]
- Cummings, T.F.M.; Gori, K.; Sanchez-Pulido, L.; Gavriilidis, G.; Moi, D.; Wilson, A.R.; Murchison, E.; Dessimoz, C.; Ponting, C.P.; Christophorou, M.A. Protein citrullination was introduced into animals by horizontal gene transfer from cyanobacteria. bioRxiv 2020. [Google Scholar] [CrossRef]
Protein ID | Species Name | Matches | Total Score |
---|---|---|---|
Protein Name | Common Name | (Sequences) | (p < 0.05) † |
P19615/MYP_STRPU | Strongylocentrotus purpuratus | 76 | 2443 |
Major yolk protein | Purple sea urchin | (75) | |
O44344_STRPU | Strongylocentrotus purpuratus | 65 | 2119 |
Complement component C3 | Purple sea urchin | (53) | |
Q7Z1Y6_HEMPU | Hemicentrotus pulcherrimus | 54 | 1729 |
Major yolk protein | Sea urchin | (42) | |
Q6RSH4_STRPU | Strongylocentrotus purpuratus | 39 | 1719 |
Complement related-long | Purple sea urchin | (33) | |
P69004/ACT2_MESFR | Mesocentrotus franciscanus | 164 | 1611 |
Actin-15B | Red sea urchin | (115) | |
A0A7M7HL75_STRPU | Strongylocentrotus purpuratus | 162 | 1579 |
Uncharacterised protein | Purple sea urchin | (117) | |
(Actin, cytoskeletal 1A; Actin, cytoskeletal 1B; Beta actin) | |||
Q3YL94_MESNU | Mesocentrotus nudus | 47 | 1563 |
Major yolk protein | Sea urchin | (37) | |
Q964G1_PSEDP | Pseudocentrotus depressus | 41 | 1419 |
Vitellogenin | Pink sea urchin | (30) | |
A0A7M7GHQ8_STRPU | Strongylocentrotus purpuratus | 36 | 1075 |
Uncharacterised protein | Purple sea urchin | (30) | |
(Tubulin beta chain) | |||
A0A7M7PHC8_STRPU | Strongylocentrotus purpuratus | 20 | 766 |
Uncharacterised protein | Purple sea urchin | (15) | |
(Tubulin alpha chain) | |||
A0A7M7NNT8_STRPU | Strongylocentrotus purpuratus | 27 | 648 |
Uncharacterised protein | Purple sea urchin | (19) | |
(Histone H4; Histone H2B; Histone H3) | |||
A0A7M7THK3_STRPU | Strongylocentrotus purpuratus | 14 | 569 |
Uncharacterised protein (Heat shock 70 kDa) | Purple sea urchin | (11) | |
Q8MVU0_STRDR | Strongylocentrotus droebachiensis | 13 | 555 |
Tubulin alpha chain | Green sea urchin | (9) | |
A0A7M6UMT5_STRPU | Strongylocentrotus purpuratus | 13 | 499 |
Uncharacterised protein | Purple sea urchin | (8) | |
(Elongation factor 1-alpha; Translation elongation factor eEF-1 alpha-related centrosphere protein) | |||
A0A7M7NZ19_STRPU | Strongylocentrotus purpuratus | 13 | 480 |
Uncharacterised protein | Purple sea urchin | (10) | |
(Glyceraldehyde-3-phosphate dehydrogenase) | |||
A0A7M7N257_STRPU | Strongylocentrotus purpuratus | 10 | 452 |
Uncharacterised protein | Purple sea urchin | (9) | |
(Sea urchin Arp3 (SUArp3)) | |||
A0A7M7T5A0_STRPU | Strongylocentrotus purpuratus | 13 | 429 |
Uncharacterised protein | Purple sea urchin | (12) | |
(Galectin) | |||
A0A7M7P855_STRPU | Strongylocentrotus purpuratus | 5 | 276 |
Uncharacterised protein (Putative 14-3-3 epsilon isoform) | Purple sea urchin | (4) | |
H3IRP0_STRPU | Strongylocentrotus purpuratus | 10 | 261 |
Histone H2B | Purple sea urchin | (6) | |
A0A7M7PNT6_STRPU | Strongylocentrotus purpuratus | 5 | 235 |
Uncharacterised protein | Purple sea urchin | (4) | |
(Scavenger receptor cysteine-rich protein type 5) | |||
Q1PS64_STRPU | Strongylocentrotus purpuratus | 4 | 228 |
Amassin-2 | Purple sea urchin | (4) | |
A0A7M7N0L4_STRPU | Strongylocentrotus purpuratus | 6 | 210 |
Uncharacterised protein (Villin) | Purple sea urchin | (4) | |
A0A7M6UMU1_STRPU | Strongylocentrotus purpuratus | 2 | 155 |
Uncharacterised protein | Purple sea urchin | (1) | |
(Sodium/potassium ATPase alpha subunit) | |||
Q86RA9_STRPU | Strongylocentrotus purpuratus | 3 | 143 |
Amassin | Purple sea urchin | (2) | |
A0A7M7SSL0_STRPU | Strongylocentrotus purpuratus | 3 | 139 |
Uncharacterised protein (Heat shock protein gp96) | Purple sea urchin | (2) | |
A0A7M6W5I2_STRPU | Strongylocentrotus purpuratus | 3 | 138 |
Uncharacterised protein (ATP synthase subunit beta) | Purple sea urchin | (3) | |
A0A7M7NPF8_STRPU | Strongylocentrotus purpuratus | 5 | 130 |
Uncharacterised protein | Purple sea urchin | (5) | |
(C-type lectin domain-containing protein) | |||
A0A1D8I2M5_STRPU | Strongylocentrotus purpuratus | 3 | 121 |
Uncharacterised protein (Catalase-like protein) | Purple sea urchin | (2) | |
A0A7M6UX55_STRPU | Strongylocentrotus purpuratus | 3 | 117 |
Uncharacterised protein (ATP synthase subunit alpha) | Purple sea urchin | (2) | |
A0A7M6UC86_STRPU | Strongylocentrotus purpuratus | 2 | 116 |
Uncharacterised protein (Tetraspanin) | Purple sea urchin | (2) | |
A0A7M7NA73_STRPU | Strongylocentrotus purpuratus | 2 | 114 |
Uncharacterised protein (40S ribosomal protein s27a; Polyubiquitin; Ubiquitin) | Purple sea urchin | (2) | |
A0A7M7NYP9_STRPU | Strongylocentrotus purpuratus | 2 | 112 |
Uncharacterised protein (L-lactate dehydrogenase) | Purple sea urchin | (2) | |
A0A7M7PPU0_STRPU | Strongylocentrotus purpuratus | 2 | 109 |
Uncharacterised protein (Actin-related protein 2) | Purple sea urchin | (2) | |
D5H3J3_PSAMI | Psammechinus miliaris | 2 | 102 |
60S ribosomal protein L40 | Green sea urchin/ shore sea urchin | (2) | |
A0A7M7REH8_STRPU | Strongylocentrotus purpuratus | 4 | 98 |
Uncharacterised protein (Peptidyl-prolyl cis-trans isomerase) | Purple sea urchin | (2) | |
Q5EAJ7_MVP STRPU | Strongylocentrotus purpuratus | 2 | 82 |
Major vault protein | Purple sea urchin | (2) | |
O06393_STRPU | Strongylocentrotus purpuratus | 2 | 75 |
Vesicle-fusing ATPase | Purple sea urchin | (1) | |
A0A7M7HNW9_STRPU | Strongylocentrotus purpuratus | 1 | 72 |
Uncharacterised protein (Amassin-4) | Purple sea urchin | (1) | |
Q26613/EMAP_STRPU | Strongylocentrotus purpuratus | 2 | 70 |
77 kDa echinoderm microtubule-associate protein | Purple sea urchin | (1) | |
A0A7M7N1D9_STRPU | Strongylocentrotus purpuratus | 2 | 69 |
Uncharacterised protein (Polyadenylate-binding protein) | Purple sea urchin | (1) | |
A0A7M7LPJ9_STRPU | Strongylocentrotus purpuratus | 1 | 61 |
Uncharacterised protein (Guanine nucleotide-binding protein G (I) alpha subunit | Purple sea urchin | (1) | |
C4P258_STRPU | Strongylocentrotus purpuratus | 2 | 47 |
Extracellular transglutaminase | Purple sea urchin | (0) | |
A3KLJ5_STRPU | Strongylocentrotus purpuratus | 1 | 45 |
RNA helicase | Purple sea urchin | (1) | |
B3FNR8_STRPU | Strongylocentrotus purpuratus | 1 | 34 |
E2E3 | Purple sea urchin | (1) | |
A0A7M7PKS2_STRPU | Strongylocentrotus purpuratus | 1 | 33 |
Uncharacterised protein | Purple sea urchin | (1) | |
(Catalytic subunit of cAMP-dependant histone kinase) |
Protein ID | Species Name | EVs | CF |
---|---|---|---|
Protein Name | Common Name | ||
P19615/MYP_STRPU | Strongylocentrotus purpuratus | v | v |
Major yolk protein | Purple sea urchin | ||
A0A7M7HL75_STRPU | Strongylocentrotus purpuratus | v | v |
Uncharacterised protein | Purple sea urchin | ||
(Actin, cytoskeletal 2A; Actin, cytoskeletal 1A; Actin, cytoskeletal 1B; Actin, cytoskeletal 2B) | |||
A0A1L3KPZ4_MESNU | Mesocentrotus nudus | v | |
Beta actin | Sea urchin | ||
O18555_HELER | Heliocidaris erythrogramma | v | |
Cytoplasmic actin CyII | Sea urchin | ||
A0A7M6UC80_STRPU | Strongylocentrotus purpuratus | v | |
Uncharacterised protein | Purple sea urchin | ||
(Histone H2A.V; Histone H2A-bta,sperm) | |||
A0A7M7NNT8_STRPU | Strongylocentrotus purpuratus | v | v |
Uncharacterised protein | Purple sea urchin | ||
(Histone HB2) | |||
P07794/H2BL1_PSAMI | Psammechinus miliaris | v | |
Late histone H2B.2.1 | Green sea urchin | ||
A0A7M7NNT8_STRPU | Strongylocentrotus purpuratus | v | |
Uncharacterised protein | Purple sea urchin | ||
(Histone H3) | |||
H3IPI3_STRPU | Strongylocentrotus purpuratus | v | v |
Uncharacterised protein | Purple sea urchin | ||
(Histone H4) | |||
A0A7M7MZP4_STRPU | Strongylocentrotus purpuratus | v | |
Uncharacterised protein | Purple sea urchin | ||
(Tubulin alpha chain) | |||
A0A7M7GHQ8_STRPU | Strongylocentrotus purpuratus | v | v |
Uncharacterised protein | Purple sea urchin | ||
(Tubulin beta chain) | |||
D5H3J3_PSAMI | Psammechinus miliaris | v | v |
60S ribosomal protein L40 | Green sea urchin | ||
A0A7M7SSL0_STRPU | Strongylocentrotus purpuratus | v | |
Uncharacterised protein | Purple sea urchin | ||
(Heat shock protein gp96) | |||
Q7M4J9_HEMPU | Hemicentrotus pulcherrimus | v | |
98K protein | Sea urchin | ||
O443344_STRPU | Strongylocentrotus purpuratus | v | |
Complement C3 | Purple sea urchin | ||
A0A7M7NVJ2_STRPU | Strongylocentrotus purpuratus | v | |
Uncharacterised protein | Purple sea urchin | ||
(Fascin) | |||
A0A7M6UMT5_STRPU | Strongylocentrotus purpuratus | v | |
Uncharacterised protein | Purple sea urchin | ||
(Elongation factor alpha-1) | |||
A0A1DB8I2L3_STENE | Sterechinus neumayery | v | |
Glyceraldehyde-3-phosphate dehydrogenase | Sea urchin | ||
Q26049_PARLI | Paracentrotus lividus | v | |
Cell surface protein | Mediterranean purple sea urchin |
Protein Name | Number of Disordered Regions | Longest Disordered Region | Number of Disordered Residues | Number of Arginines |
---|---|---|---|---|
P19615/MYP_STRPU | 15 | 61 | 290 | 63 |
Major yolk protein | (out of 1357 residues) | |||
A0A7M7HL75_STRPU | 3 | 17 | 37 | 18 |
Uncharacterised protein | (out of 376 residues) | |||
(Actin, cytoskeletal 2A; Actin, cytoskeletal 1A; Actin, cytoskeletal 1B; Actin, cytoskeletal 2B) | ||||
A0A7M7NNT8_STRPU | 1 | 51 | 51 | 8 |
Uncharacterised protein | (out of 122 residues) | |||
(Histone HB2) | ||||
H3IPI3_STRPU | 1 | 44 | 44 | 14 |
Uncharacterised protein | (out of 103 residues) | |||
(Histone H4) | ||||
A0A7M7SSL0_STRPU | 9 | 111 | 410 | 30 |
Uncharacterised protein | (out of 806 residues) | |||
(Heat shock protein gp96) | ||||
A0A7M7GHQ8_STRPU | 4 | 57 | 112 | 20 |
Uncharacterised protein | (out of 447 residues) | |||
(Tubulin beta chain) |
Protein Name | Number of Disordered Regions | Longest Disordered Region | Number of Disordered Residues | Number of Arginines |
---|---|---|---|---|
P19615/MYP_STRPU | 15 | 61 | 290 | 63 |
Major yolk protein | (out of 1357 residues) | |||
A0A7M7NNT8_STRPU | 1 | 66 | 66 | 18 |
Uncharacterised protein | (out of 136 residues) | |||
(Histone H4; Histone H3; Histone H2B; | ||||
A0A7M7HL75_STRPU | 3 | 17 | 37 | 18 |
Uncharacterised protein | (out of 376 residues) | |||
(Actin, cytoskeletal 2A; Actin, cytoskeletal 1A; Actin, cytoskeletal 1B; Actin, cytoskeletal 2B) | ||||
O443344_STRPU | 15 | 39 | 258 | 85 |
Complement C3 | (out of 1699 residues) | |||
A0A7M7NRQ3_STRPU | 4 | 57 | 112 | 20 |
Uncharacterised protein | (out of 447 residues) | |||
(Tubulin beta chain) | ||||
A0A7M7RBS6_STRPU | 1 | 51 | 51 | 8 |
Uncharacterised protein | (out of 122 residues) | |||
(Histone H2B) | ||||
A0A7M6UC80_STRPU | 2 | 35 | 41 | 12 |
Uncharacterised protein | (out of 125 residues) | |||
(Histone H2A.V; Histone H2A-bta,sperm) | ||||
A0A7M7MZP4_STRPU | 2 | 49 | 54 | 20 |
Uncharacterised protein | (out of 452 residues) | |||
(Tubulin alpha chain) | ||||
A0A7M7NVJ2_STRPU | 6 | 51 | 138 | 17 |
Uncharacterised protein | (out of 496 residues) | |||
(Fascin) | ||||
A0A7M6UMT5_STRPU | 2 | 27 | 33 | 19 |
Uncharacterised protein | (out of 461 residues) | |||
(Elongation factor alpha-1) | ||||
A0A1DB8I2L3_STENE | 0 | 0 | 0 | 11 |
Glyceraldehyde-3-phosphate dehydrogenase | (out of 337 residues) |
Hit | Protein Accession No. | Species/Family Name | E-Value | Identity (%) |
---|---|---|---|---|
1 | WP_111894244 | Arthrospira sp. | 3e-69 | 99 |
2 | WP_048895331 | Limnospira indica | 4e-69 | 100 |
3 | CCE20058 | Limniospira indica | 4e-69 | 100 |
4 | CDM98608 | Limniospira indica | 4e-69 | 100 |
5 | WP_006622374 | Microcoleaceae | 5e-69 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessio, S.; Buckley, K.M.; Kraev, I.; Hayes, P.; Lange, S. Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin (Strongylocentrotus purpuratus) Coelomic Fluid—Novel Insights into Echinodermata Biology. Biology 2021, 10, 866. https://doi.org/10.3390/biology10090866
D’Alessio S, Buckley KM, Kraev I, Hayes P, Lange S. Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin (Strongylocentrotus purpuratus) Coelomic Fluid—Novel Insights into Echinodermata Biology. Biology. 2021; 10(9):866. https://doi.org/10.3390/biology10090866
Chicago/Turabian StyleD’Alessio, Stefania, Katherine M. Buckley, Igor Kraev, Polly Hayes, and Sigrun Lange. 2021. "Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin (Strongylocentrotus purpuratus) Coelomic Fluid—Novel Insights into Echinodermata Biology" Biology 10, no. 9: 866. https://doi.org/10.3390/biology10090866
APA StyleD’Alessio, S., Buckley, K. M., Kraev, I., Hayes, P., & Lange, S. (2021). Extracellular Vesicle Signatures and Post-Translational Protein Deimination in Purple Sea Urchin (Strongylocentrotus purpuratus) Coelomic Fluid—Novel Insights into Echinodermata Biology. Biology, 10(9), 866. https://doi.org/10.3390/biology10090866