BICD Cargo Adaptor 1 (BICD1) Downregulation Correlates with a Decreased Level of PD-L1 and Predicts a Favorable Prognosis in Patients with IDH1-Mutant Lower-Grade Gliomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Clinicopathological Data and Gene Expression Profiles of Patients with LGGs from the TCGA Database
2.2. Clinicopathological Data and Gene Expression Profiles of Patients with LGGs from the CGGA Database
2.3. Gene Sequencing Data of LGG Cell Lines in the CCLE Dataset from the TCGA Database
2.4. Subgroups of Patients with LGGs for Further Analyses
2.5. Statistical Analysis
3. Results
3.1. Identification of 12 Genes from HIF1A-Associated Pathways as Candidate Markers of LGGs
3.2. BICD1 Gene Severs as a Potential Prognostic Marker of LGGs
3.3. BICD1 Downregulation Correlates with Benign Clinicopathological Features of LGG Patients
3.4. BICD1 Downregulation in Coordination with IDH1 or EGFR Status Effectively Predicts a Faborable Overall Survival of LGG Patients
3.5. BICD1 Expression Is an Independent Prognostic Factor in Patients with LGGs
3.6. BICD1 Downregulation Probably Suppresses Signaling Pathways Related to Immune Checkpoints and Cancer Progression in LGGs
3.7. The Prognostic Significance of BICD1 Downregulation Is Validated by Another LGG Cohort from the CCGA Database
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ostrom, Q.T.; Gittleman, H.; Fulop, J.; Liu, M.; Blanda, R.; Kromer, C.; Wolinsky, Y.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012. Neuro-Oncology 2015, 17, iv1–iv62. [Google Scholar] [CrossRef]
- Bourne, T.D.; Schiff, D. Update on molecular findings, management and outcome in low-grade gliomas. Nat. Rev. Neurol. 2010, 6, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Mahaley, M.S.; Mettlin, C.; Natarajan, N.; Laws, E.R.; Peace, B.B. National survey of patterns of care for brain-tumor patients. J. Neurosurg. 1989, 71, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, J.; Peng, J.; Ritchie, J.C.; Van Meir, E.G. Proteomics of gliomas: Initial biomarker discovery and evolution of technology. Neuro-Oncology 2011, 13, 926–942. [Google Scholar] [CrossRef] [PubMed]
- Haynes, H.R.; Ecamelo-Piragua, S.; Kurian, K.M. Prognostic and Predictive Biomarkers in Adult and Pediatric Gliomas: Toward Personalized Treatment. Front. Oncol. 2014, 4, 47. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Cancer Genome Atlas Research Network. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N. Engl. J. Med. 2015, 372, 2481–2498. [Google Scholar] [CrossRef] [Green Version]
- Wen, P.Y.; Reardon, D.A. Progress in glioma diagnosis, classification and treatment. Nat. Rev. Neurol. 2016, 12, 69–70. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Reifenberger, G.; von Deimling, A.; Figarella-Branger, D.; Cavenee, W.K.; Ohgaki, H.; Wiestler, O.D.; Kleihues, P.; Ellison, D.W. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: A summary. Acta Neuropathol. 2016, 131, 803–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galanis, E.; Wu, W.; Sarkaria, J.; Chang, S.M.; Colman, H.; Sargent, D.; Reardon, D.A. Incorporation of Biomarker Assessment in Novel Clinical Trial Designs: Personalizing Brain Tumor Treatments. Curr. Oncol. Rep. 2011, 13, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Ludwig, J.A.; Weinstein, J.N. Biomarkers in Cancer Staging, Prognosis and Treatment Selection. Nat. Rev. Cancer 2005, 5, 845–856. [Google Scholar] [CrossRef]
- Fleming, I.N.; Manavaki, R.; Blower, P.; West, C.; Williams, K.J.; Harris, A.; Domarkas, J.; Lord, S.J.; Baldry, C.W.; Gilbert, F.J. Imaging tumour hypoxia with positron emission tomography. Br. J. Cancer 2015, 112, 238–250. [Google Scholar] [CrossRef] [Green Version]
- Jubb, A.M.; Buffa, F.; Harris, A.L. Assessment of tumour hypoxia for prediction of response to therapy and cancer prognosis. J. Cell. Mol. Med. 2009, 14, 18–29. [Google Scholar] [CrossRef] [PubMed]
- Hong, S.-S.; Lee, H.; Kim, K.-W. HIF-1α: A Valid Therapeutic Target for Tumor Therapy. Cancer Res. Treat. 2004, 36, 343. [Google Scholar] [CrossRef] [Green Version]
- Semenza, G.L. HIF-1: Upstream and downstream of cancer metabolism. Curr. Opin. Genet. Dev. 2010, 20, 51–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Jung, Y.H.; Oh, J.Y.; Choi, G.E.; Chae, C.W.; Kim, J.S.; Lim, J.R.; Kim, S.Y.; Lee, S.-J.; Seong, J.K.; et al. BICD1 mediates HIF1α nuclear translocation in mesenchymal stem cells during hypoxia adaptation. Cell Death Differ. 2019, 26, 1716–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baens, M.; Marynen, P. A Human Homologue (BICD1) of theDrosophila Bicaudal-DGene. Genomics 1997, 45, 601–606. [Google Scholar] [CrossRef]
- Mahone, M.; Saffman, E.; Lasko, P. Localized Bicaudal-C RNA encodes a protein containing a KH domain, the RNA binding motif of FMR1. EMBO J. 1995, 14, 2043–2055. [Google Scholar] [CrossRef] [PubMed]
- Mohler, J.; Wieschaus, E.F. Dominant Maternal-Effect Mutations of Drosophila Melanogaster Causing the Production of Double-Abdomen Embryos. Genetics 1986, 112, 803–822. [Google Scholar] [CrossRef]
- Terenzio, M.; Schiavo, G. The more, the better: The BICD family gets bigger. EMBO J. 2010, 29, 1625–1626. [Google Scholar] [CrossRef]
- Mangino, M.; Brouilette, S.; Braund, P.; Tirmizi, N.; Vasa-Nicotera, M.; Thompson, J.R.; Samani, N.J. A regulatory SNP of the BICD1 gene contributes to telomere length variation in humans. Hum. Mol. Genet. 2008, 17, 2518–2523. [Google Scholar] [CrossRef] [Green Version]
- Kong, X.; Cho, M.H.; Anderson, W.; Coxson, H.O.; Müller, N.; Washko, G.; Hoffman, E.A.; Bakke, P.; Gulsvik, A.; Lomas, D.A.; et al. Genome-wide Association Study IdentifiesBICD1as a Susceptibility Gene for Emphysema. Am. J. Respir. Crit. Care Med. 2011, 183, 43–49. [Google Scholar] [CrossRef] [Green Version]
- Hoogenraad, C.C.; Akhmanova, A. Bicaudal D Family of Motor Adaptors: Linking Dynein Motility to Cargo Binding. Trends Cell Biol. 2016, 26, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Matanis, T.; Akhmanova, A.; Wulf, P.S.; Del Nery, E.; Weide, T.; Stepanova, T.; Galjart, N.; Grosveld, F.; Goud, B.; De Zeeuw, C.I.; et al. Bicaudal-D regulates COPI-independent Golgi–ER transport by recruiting the dynein–dynactin motor complex. Nat. Cell Biol. 2002, 4, 986–992. [Google Scholar] [CrossRef] [PubMed]
- Matarredona, E.R.; Pastor, A.M. Extracellular Vesicle-Mediated Communication between the Glioblastoma and Its Microenvironment. Cells 2019, 9, 96. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.J.; Han, H.J. Role of Microtubule-Associated Factors in HIF1α Nuclear Translocation. Adv. Exp. Med. Biol. 2020, 1232, 271–276. [Google Scholar] [CrossRef]
- Huang, S.-P.; Chang, Y.-C.; Low, Q.H.; Wu, A.T.; Chen, C.-L.; Lin, Y.-F.; Hsiao, M. BICD1 expression, as a potential biomarker for prognosis and predicting response to therapy in patients with glioblastomas. Oncotarget 2017, 8, 113766–113791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Yao, B.; Chen, T.; Mo, H.; Chen, S.; Liu, Q.; Sun, Y. BICD1 functions as a prognostic biomarker and promotes hepatocellular carcinoma progression. Pathol. Res. Pr. 2020, 216, 152858. [Google Scholar] [CrossRef]
- Yan, H.; Parsons, D.W.; Jin, G.; McLendon, R.; Rasheed, B.A.; Yuan, W.; Kos, I.; Batinic-Haberle, I.; Jones, S.; Riggins, G.J.; et al. IDH1andIDH2Mutations in Gliomas. N. Engl. J. Med. 2009, 360, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Parsons, D.W.; Jones, S.; Zhang, X.; Lin, J.C.-H.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Siu, I.-M.; Gallia, G.L.; et al. An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science 2008, 321, 1807–1812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ichimura, K. Molecular pathogenesis of IDH mutations in gliomas. Brain Tumor Pathol. 2012, 29, 131–139. [Google Scholar] [CrossRef] [PubMed]
- Masugi, Y.; Nishihara, R.; Yang, J.; Mima, K.; Da Silva, A.; Shi, Y.; Inamura, K.; Cao, Y.; Song, M.; A Nowak, J.; et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut 2017, 66, 1463–1473. [Google Scholar] [CrossRef] [PubMed]
- Choueiri, T.K.; Figueroa, D.J.; Fay, A.P.; Signoretti, S.; Liu, Y.; Gagnon, R.; Deen, K.; Carpenter, C.; Benson, P.; Ho, T.; et al. Correlation of PD-L1 Tumor Expression and Treatment Outcomes in Patients with Renal Cell Carcinoma Receiving Sunitinib or Pazopanib: Results from COMPARZ, a Randomized Controlled Trial. Clin. Cancer Res. 2015, 21, 1071–1077. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Q.-H.; Li, K.-W.; Chen, X.; He, H.-X.; Peng, S.-M.; Peng, S.-R.; Wang, Q.; Li, Z.-A.; Tao, Y.-R.; Cai, W.-L.; et al. HHLA2 and PD-L1 co-expression predicts poor prognosis in patients with clear cell renal cell carcinoma. J. Immunother. Cancer 2019, 8, e000157. [Google Scholar] [CrossRef] [Green Version]
- Seo, W.; Gao, Y.; He, Y.; Sun, J.; Xu, H.; Feng, D.; Park, S.H.; Cho, Y.-E.; Guillot, A.; Ren, T.; et al. ALDH2 deficiency promotes alcohol-associated liver cancer by activating oncogenic pathways via oxidized DNA-enriched extracellular vesicles. J. Hepatol. 2019, 71, 1000–1011. [Google Scholar] [CrossRef] [PubMed]
- Ghaffari-Rafi, A.; Samandouras, G. Effect of Treatment Modalities on Progression-Free Survival and Overall Survival in Molecularly Subtyped World Health Organization Grade II Diffuse Gliomas: A Systematic Review. World Neurosurg. 2020, 133, 366–380.e2. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-P.; Li, C.-H.; Chang, W.-M.; Lin, Y.-F. BICD Cargo Adaptor 1 (BICD1) Downregulation Correlates with a Decreased Level of PD-L1 and Predicts a Favorable Prognosis in Patients with IDH1-Mutant Lower-Grade Gliomas. Biology 2021, 10, 701. https://doi.org/10.3390/biology10080701
Huang S-P, Li C-H, Chang W-M, Lin Y-F. BICD Cargo Adaptor 1 (BICD1) Downregulation Correlates with a Decreased Level of PD-L1 and Predicts a Favorable Prognosis in Patients with IDH1-Mutant Lower-Grade Gliomas. Biology. 2021; 10(8):701. https://doi.org/10.3390/biology10080701
Chicago/Turabian StyleHuang, Shang-Pen, Chien-Hsiu Li, Wei-Min Chang, and Yuan-Feng Lin. 2021. "BICD Cargo Adaptor 1 (BICD1) Downregulation Correlates with a Decreased Level of PD-L1 and Predicts a Favorable Prognosis in Patients with IDH1-Mutant Lower-Grade Gliomas" Biology 10, no. 8: 701. https://doi.org/10.3390/biology10080701
APA StyleHuang, S. -P., Li, C. -H., Chang, W. -M., & Lin, Y. -F. (2021). BICD Cargo Adaptor 1 (BICD1) Downregulation Correlates with a Decreased Level of PD-L1 and Predicts a Favorable Prognosis in Patients with IDH1-Mutant Lower-Grade Gliomas. Biology, 10(8), 701. https://doi.org/10.3390/biology10080701