Functional Interactions between Entorhinal Cortical Pathways Modulate Theta Activity in the Hippocampus
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Surgery
2.2. Data Acquisition
2.3. Independent Component Analysis
2.4. Power Analysis of Time Series
2.5. Partial Directed Coherence
2.6. Partial Transfer Entropy
2.7. Statistical Analysis
3. Results
3.1. Theta and Gamma Oscillations Are Enhanced during Novelty Exploration
3.2. Hippocampal Functional Connectivity during Novelty Is Dominated by Theta Inputs from the Entorhinal Cortex
3.3. Changes in Functional Connectivity Are Based on Linear Interactions
4. Discussion
4.1. Functional Coupling between Schaffer and EC Inputs in CA1
4.2. Functional Coupling between Entorhinal Cortical Layers
4.3. Functional Role of the Entorhinal Cortex in Novelty and Navigation
4.4. Limitations on Gamma Functional Connectivity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buzsáki, G. Theta oscillations in the hippocampus. Neuron 2002, 33, 325–340. [Google Scholar] [CrossRef] [Green Version]
- Petsche, H.; Stumpf, C.; Gogolak, G. The significance of the rabbit’s septum as a relay station between the midbrain and the hippocampus I. The control of hippocampus arousal activity by the septum cells. Electroencephalogr. Clin. Neurophysiol. 1962, 14, 202–211. [Google Scholar] [CrossRef]
- Martínez-Bellver, S.; Cervera-Ferri, A.; Luque-García, A.; Martínez-Ricós, J.; Valverde-Navarro, A.; Bataller, M.; Guerrero, J.; Teruel-Marti, V. Causal relationships between neurons of the nucleus incertus and the hippocampal theta activity in the rat. J. Physiol. 2017, 595, 1775–1792. [Google Scholar] [CrossRef] [PubMed]
- Jackson, J.; Amilhon, B.; Goutagny, R.; Bott, J.-B.; Manseau, F.; Kortleven, C.; Bressler, S.L.; Williams, S. Reversal of theta rhythm flow through intact hippocampal circuits. Nat. Neurosci. 2014, 17, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Kramis, R.; Vanderwolf, C.; Bland, B. Two types of hippocampal rhythmical slow activity in both the rabbit and the rat: Relations to behavior and effects of atropine, diethyl ether, urethane, and pentobarbital. Exp. Neurol. 1975, 49, 58–85. [Google Scholar] [CrossRef]
- Montgomery, S.M.; Betancur, M.I.; Buzsáki, G. Behavior-dependent coordination of multiple theta dipoles in the hippocampus. J. Neurosci. 2009, 29, 1381–1394. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Madrona, V.J.; Pérez-Montoyo, E.; Álvarez-Salvado, E.; Moratal, D.; Herreras, O.; Pereda, E.; Mirasso, C.R.; Canals, S. Different theta frameworks coexist in the rat hippocampus and are coordinated during memory-guided and novelty tasks. eLife 2020, 9. [Google Scholar] [CrossRef]
- Csicsvari, J.; Jamieson, B.; Wise, K.D.; Buzsaki, G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron 2003, 37, 311–322. [Google Scholar] [CrossRef] [Green Version]
- Colgin, L.L.; Moser, E.I. Gamma oscillations in the hippocampus. Physiology 2010, 25, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Colgin, L.L.; Denninger, T.; Fyhn, M.; Hafting, T.; Bonnevie, T.; Jensen, O.; Moser, M.-B.; Moser, E.I. Frequency of gamma oscillations routes flow of information in the hippocampus. Nat. Cell Biol. 2009, 462, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Tort, A.B.L.; Komorowski, R.W.; Manns, J.R.; Kopell, N.J.; Eichenbaum, H. Theta-gamma coupling increases during the learning of item-context associations. Proc. Natl. Acad. Sci. USA 2009, 106, 20942–20947. [Google Scholar] [CrossRef] [Green Version]
- Lopes-Dos-Santos, V.; van de Ven, G.; Morley, A.; Trouche, S.; Campo-Urriza, N.; Dupret, D. Parsing hippocampal theta oscillations by nested spectral components during spatial exploration and memory-guided behavior. Neuron 2018, 100, 940–952. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; Lee, J.; Rozell, C.; Singer, A.C. Sub-second dynamics of theta-gamma coupling in hippocampal CA1. eLife 2019, 8. [Google Scholar] [CrossRef] [PubMed]
- Bragin, A.; Jando, G.; Nadasdy, Z.; Hetke, J.; Wise, K.; Buzsaki, G. Gamma (40–100 Hz) oscillation in the hippocampus of the behaving rat. J. Neurosci. 1995, 15, 47–60. [Google Scholar] [CrossRef] [PubMed]
- Trimper, J.B.; Galloway, C.R.; Jones, A.C.; Mandi, K.; Manns, J.R. Gamma oscillations in rat hippocampal subregions dentate gyrus, CA3, CA1 and subiculum underlie associative memory encoding. Cell Rep. 2017, 21, 2419–2432. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ruiz, A.; Oliva, A.; Soula, M.; Rocha-Almeida, F.; Nagy, G.A.; Martin-Vazquez, G.; Buzsáki, G. Gamma rhythm communication between entorhinal cortex and dentate gyrus neuronal assemblies. Science 2021, 372, eabf3119. [Google Scholar] [CrossRef]
- Griffiths, B.J.; Parish, G.; Roux, F.; Michelmann, S.; van der Plas, M.; Kolibius, L.D.; Chelvarajah, R.; Rollings, D.T.; Sawlani, V.; Hamer, H.; et al. Directional coupling of slow and fast hippocampal gamma with neocortical alpha/beta oscillations in human episodic memory. Proc. Natl. Acad. Sci. USA 2019, 116, 21834–21842. [Google Scholar] [CrossRef] [Green Version]
- Hasselmo, M.E.; Bodelón, C.; Wyble, B.P. A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 2002, 14, 793–817. [Google Scholar] [CrossRef]
- Siegle, J.H.; Wilson, M.A. Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. eLife 2014, 3, e03061. [Google Scholar] [CrossRef]
- Douchamps, V.; Jeewajee, A.; Blundell, P.; Burgess, N.; Lever, C. Evidence for encoding versus retrieval scheduling in the hippocampus by theta phase and acetylcholine. J. Neurosci. 2013, 33, 8689–8704. [Google Scholar] [CrossRef] [Green Version]
- Bressler, S.L.; Seth, A. Wiener–Granger causality: A well-established methodology. NeuroImage 2011, 58, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Granger, C.W.J. Investigating causal relations by econometric models and cross-spectral methods. Econometrica 1969, 37, 424–438. [Google Scholar] [CrossRef]
- Brovelli, A.; Ding, M.; Ledberg, A.; Chen, Y.; Nakamura, R.; Bressler, S.L. Beta oscillations in a large-scale sensorimotor cortical network: Directional influences revealed by Granger causality. Proc. Natl. Acad. Sci. USA 2004, 101, 9849–9854. [Google Scholar] [CrossRef] [Green Version]
- Matias, F.; Gollo, L.; Carelli, P.; Bressler, S.L.; Copelli, M.; Mirasso, C.R. Modeling positive Granger causality and negative phase lag between cortical areas. NeuroImage 2014, 99, 411–418. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Seth, A.; Kendrick, K.; Zhou, C.; Feng, J. Partial Granger causality—Eliminating exogenous inputs and latent variables. J. Neurosci. Methods 2008, 172, 79–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- López-Madrona, V.J.; Matias, F.S.; Mirasso, C.R.; Canals, S.; Pereda, E. Inferring correlations associated to causal interactions in brain signals using autoregressive models. Sci. Rep. 2019, 9, 1–15. [Google Scholar] [CrossRef]
- Baccalá, L.A.; Sameshima, K. Partial directed coherence: A new concept in neural structure determination. Biol. Cybern. 2001, 84, 463–474. [Google Scholar] [CrossRef]
- Schreiber, T. Measuring information transfer. Phys. Rev. Lett. 2000, 85, 461–464. [Google Scholar] [CrossRef] [Green Version]
- Brovelli, A.; Chicharro, D.; Badier, J.-M.; Wang, H.; Jirsa, V. Characterization of cortical networks and corticocortical functional connectivity mediating arbitrary visuomotor mapping. J. Neurosci. 2015, 35, 12643–12658. [Google Scholar] [CrossRef] [Green Version]
- López-Madrona, V.J.; Matias, F.S.; Pereda, E.; Canals, S.; Mirasso, C.R. On the role of the entorhinal cortex in the effective connectivity of the hippocampal formation. Chaos Interdiscip. J. Nonlinear Sci. 2017, 27, 047401. [Google Scholar] [CrossRef] [Green Version]
- Makarov, V.A.; Makarova, J.; Herreras, O. Disentanglement of local field potential sources by independent component analysis. J. Comput. Neurosci. 2010, 29, 445–457. [Google Scholar] [CrossRef]
- Jung, T.P.; Makeig, S.; Humphries, C.; Lee, T.W.; McKeown, M.J.; Iragui, V.; Sejnowski, T.J. Removing electroencephalographic artifacts by blind source separation. Psychophysiology 2000, 37, 163–178. [Google Scholar] [CrossRef]
- Alayrangues, J.; Torrecillos, F.; Jahani, A.; Malfait, N. Error-related modulations of the sensorimotor post-movement and foreperiod beta-band activities arise from distinct neural substrates and do not reflect efferent signal processing. NeuroImage 2019, 184, 10–24. [Google Scholar] [CrossRef]
- Tang, A. Independent components of magnetoencephalography: Single-trial response onset times. NeuroImage 2002, 17, 1773–1789. [Google Scholar] [CrossRef]
- Pizzo, F.; Roehri, N.; Villalon, S.M.; Trébuchon, A.; Chen, S.; Lagarde, S.; Carron, R.; Gavaret, M.; Giusiano, B.; McGonigal, A.; et al. Deep brain activities can be detected with magnetoencephalography. Nat. Commun. 2019, 10, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Malinowska, U.; Badier, J.-M.; Gavaret, M.; Bartolomei, F.; Chauvel, P.; Bénar, C.-G. Interictal networks in magnetoencephalography. Hum. Brain Mapp. 2014, 35, 2789–2805. [Google Scholar] [CrossRef] [PubMed]
- Bénar, C.-G.; Velmurugan, J.; López-Madrona, V.J.; Pizzo, F.; Badier, J.-M. Detection and localization of deep sources in magnetoencephalography: A review. Curr. Opin. Biomed. Eng. 2021, 18, 100285. [Google Scholar] [CrossRef]
- Herreras, O.; Makarova, J.; Makarov, V. New uses of LFPs: Pathway-specific threads obtained through spatial discrimination. Neuroscience 2015, 310, 486–503. [Google Scholar] [CrossRef]
- Ortuño, T.; López-Madrona, V.J.; Makarova, J.; Tapia-Gonzalez, S.; Muñoz, A.; DeFelipe, J.; Herreras, O. Slow-wave activity in the S1HL cortex is contributed by different layer-specific field potential sources during development. J. Neurosci. 2019, 39, 8900–8915. [Google Scholar] [CrossRef] [PubMed]
- Torres, D.; Makarova, J.; Ortuño, T.; Benito, N.; Makarov, V.; Herreras, O. Local and volume-conducted contributions to cortical field potentials. Cereb. Cortex 2019, 29, 5234–5254. [Google Scholar] [CrossRef]
- Schomburg, E.W.; Fernández-Ruiz, A.; Mizuseki, K.; Berenyi, A.; Anastassiou, C.A.; Koch, C.; Buzsáki, G. Theta phase segregation of input-specific gamma patterns in entorhinal-hippocampal networks. Neuron 2014, 84, 470–485. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ruiz, A.; Herreras, O. Identifying the synaptic origin of ongoing neuronal oscillations through spatial discrimination of electric fields. Front. Comput. Neurosci. 2013, 7, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benito, N.; Fernandez-Ruiz, A.; Makarov, V.; Makarova, J.; Korovaichuk, A.; Herreras, O. Spatial modules of coherent activity in pathway-specific LFPs in the hippocampus reflect topology and different modes of presynaptic synchronization. Cereb. Cortex 2013, 24, 1738–1752. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernández-Ruiz, A.; Makarov, V.A.; Herreras, O. Sustained increase of spontaneous input and spike transfer in the CA3-CA1 pathway following long-term potentiation in vivo. Front. Neural Circuits 2012, 6, 71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korovaichuk, A.; Makarova, J.; Makarov, V.A.; Benito, N.; Herreras, O. Minor contribution of principal excitatory pathways to hippocampal LFPs in the anesthetized rat: A combined independent component and current source density study. J. Neurophysiol. 2010, 104, 484–497. [Google Scholar] [CrossRef]
- Makarova, J.; Ibarz, J.M.; Makarov, V.A.; Benito, N.; Herreras, O. Parallel readout of pathway-specific inputs to laminated brain structures. Front. Syst. Neurosci. 2011, 5, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Vázquez, G.; Benito, N.; Makarov, V.A.; Herreras, O.; Makarova, J. Diversity of LFPs activated in different target regions by a common CA3 input. Cereb. Cortex 2016, 26, 4082–4100. [Google Scholar] [CrossRef] [Green Version]
- Bell, A.J.; Sejnowski, T.J. An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 1995, 7, 1129–1159. [Google Scholar] [CrossRef]
- Martín-Vázquez, G.; Makarova, J.; Makarov, V.A.; Herreras, O. Determining the true polarity and amplitude of synaptic currents underlying gamma oscillations of local field potentials. PLoS ONE 2013, 8, e75499. [Google Scholar] [CrossRef] [Green Version]
- Thomson, D. Spectrum estimation and harmonic analysis. Proc. IEEE 1982, 70, 1055–1096. [Google Scholar]
- Faes, L.; Erla, S.; Porta, A.; Nollo, G. A framework for assessing frequency domain causality in physiological time series with instantaneous effects. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2013, 371, 20110618. [Google Scholar] [CrossRef] [Green Version]
- Verdes, P.F. Assessing causality from multivariate time series. Phys. Rev. E 2005, 72, 026222. [Google Scholar] [CrossRef]
- Montalto, A.; Faes, L.; Marinazzo, D. MuTE: A MATLAB toolbox to compare established and novel estimators of the multivariate transfer entropy. PLoS ONE 2014, 9, e109462. [Google Scholar] [CrossRef] [Green Version]
- Niso, G.; Bruña, R.; Pereda, E.; Gutiérrez, R.; Bajo, R.; Maestú, F.; Del-Pozo, F. HERMES: Towards an integrated toolbox to characterize functional and effective brain connectivity. Neuroinformatics 2013, 11, 405–434. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Ruiz, A.; Oliva, A.; Nagy, G.A.; Maurer, A.P.; Berényi, A.; Buzsáki, G. Entorhinal-CA3 dual-input control of spike timing in the hippocampus by theta-gamma coupling. Neuron 2017, 93, 1213–1226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Desikan, S.; Koser, D.E.; Neitz, A.; Monyer, H. Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex. Proc. Natl. Acad. Sci. USA 2018, 115, E2644–E2652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salib, M.; Joshi, A.; Katona, L.; Howarth, M.; Micklem, B.R.; Somogyi, P.; Viney, T.J. GABAergic medial septal neurons with low-rhythmic firing innervating the dentate gyrus and hippocampal area CA3. J. Neurosci. 2019, 39, 4527–4549. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gaykema, R.P.A.; Luiten, P.G.M.; Nyakas, C. Cortical projection patterns of the medial septum-diagonal band complex. J. Comp. Neurol. 1990, 293, 103–124. [Google Scholar] [CrossRef]
- Khakpai, F.; Nasehi, M.; Haeri-Rohani, A.; Eidi, A.; Zarrindast, M.R. Septo-hippocampo-septal loop and memory formation. Basic Clin. Neurosci. J. 2013, 4, 5–23. [Google Scholar]
- Colgin, L.L. Theta–gamma coupling in the entorhinal–hippocampal system. Curr. Opin. Neurobiol. 2015, 31, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Chatzikalymniou, A.P.; Skinner, F.K. Deciphering the contribution of oriens-lacunosum/moleculare (OLM) cells to intrinsic θ rhythms using biophysical local field potential (LFP) models. Eneuro 2018, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klausberger, T.; Somogyi, P. Neuronal diversity and temporal dynamics: The unity of hippocampal circuit operations. Science 2008, 321, 53–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leão, R.N.; Mikulovic, S.; Leao, K.; Munguba, H.; Gezelius, H.; Enjin, A.; Patra, K.; Eriksson, A.; Loew, L.; Tort, A.; et al. OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons. Nat. Neurosci. 2012, 15, 1524–1530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Canto, C.B.; Wouterlood, F.G.; Witter, M.P. What does the anatomical organization of the entorhinal cortex tell us? Neural Plast. 2008, 2008, 381243. [Google Scholar] [CrossRef] [Green Version]
- Witter, M.P.; Doan, T.P.; Jacobsen, B.; Nilssen, E.S.; Ohara, S. Architecture of the entorhinal cortex, a review of entorhinal anatomy in rodents with some comparative notes. Front. Syst. Neurosci. 2017, 11, 46. [Google Scholar] [CrossRef] [PubMed]
- Ohara, S.; Onodera, M.; Simonsen, Ø.W.; Yoshino, R.; Hioki, H.; Iijima, T.; Tsutsui, K.-I.; Witter, M.P. Intrinsic projections of layer Vb neurons to layers Va, III, and II in the lateral and medial entorhinal cortex of the rat. Cell Rep. 2018, 24, 107–116. [Google Scholar] [CrossRef]
- Soriano, E.; Martínez, A.; Fariñas, I.; Frotscher, M. Chandelier cells in the hippocampal formation of the rat: The entorhinal area and subicular complex. J. Comp. Neurol. 1993, 337, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Mizuseki, K.; Sirota, A.; Pastalkova, E.; Buzsáki, G. Theta oscillations provide temporal windows for local circuit computation in the entorhinal-hippocampal loop. Neuron 2009, 64, 267–280. [Google Scholar] [CrossRef] [Green Version]
- Muller, R.U.; Stead, M.; Pach, J. The hippocampus as a cognitive graph. J. Gen. Physiol. 1996, 107, 663–694. [Google Scholar] [CrossRef] [Green Version]
- Witter, M.P.; Moser, E.I. Spatial representation and the architecture of the entorhinal cortex. Trends Neurosci. 2006, 29, 671–678. [Google Scholar] [CrossRef]
- Kubie, J.L.; Fenton, A.A. Linear look-ahead in conjunctive cells: An entorhinal mechanism for vector-based navigation. Front. Neural Circuits 2012, 6, 20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubie, J.L.; Fenton, A. Heading-vector navigation based on head-direction cells and path integration. Hippocampus 2009, 19, 456–479. [Google Scholar] [CrossRef] [PubMed]
- Sargolini, F.; Fyhn, M.; Hafting, T.; McNaughton, B.L.; Witter, M.P.; Moser, M.-B.; Moser, E.I. Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 2006, 312, 758–762. [Google Scholar] [CrossRef] [Green Version]
- Wollstadt, P.; Martínez-Zarzuela, M.; Vicente, R.; Díaz, F.J.; Wibral, M. Efficient transfer entropy analysis of non-stationary neural time series. PLoS ONE 2014, 9, e102833. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.J.; Sorensen, L.B.; Ojemann, J.; Nijs, M.D. Power-law scaling in the brain surface electric potential. PLoS Comput. Biol. 2009, 5, e1000609. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Madrona, V.J.; Canals, S. Functional Interactions between Entorhinal Cortical Pathways Modulate Theta Activity in the Hippocampus. Biology 2021, 10, 692. https://doi.org/10.3390/biology10080692
López-Madrona VJ, Canals S. Functional Interactions between Entorhinal Cortical Pathways Modulate Theta Activity in the Hippocampus. Biology. 2021; 10(8):692. https://doi.org/10.3390/biology10080692
Chicago/Turabian StyleLópez-Madrona, Víctor J., and Santiago Canals. 2021. "Functional Interactions between Entorhinal Cortical Pathways Modulate Theta Activity in the Hippocampus" Biology 10, no. 8: 692. https://doi.org/10.3390/biology10080692
APA StyleLópez-Madrona, V. J., & Canals, S. (2021). Functional Interactions between Entorhinal Cortical Pathways Modulate Theta Activity in the Hippocampus. Biology, 10(8), 692. https://doi.org/10.3390/biology10080692