CIRCNV: Detection of CNVs Based on a Circular Profile of Read Depth from Sequencing Data
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Overview of CIRCNV
2.2. Input and Preprocessing
2.3. Performing Segmentation and Constructing a Circular RD Profile
2.4. Calculating Local Outlier Factors for Each Segment
2.5. Declaring CNVs and Defining Gains and Homo- and Hemi-Losses
2.6. Estimating Tumor Purity and Correcting the RD Profile
2.7. Core Algorithm of CIRCNV
Algorithm 1 The core algorithm of CIRCNV |
(1) Input data: an observed RD profile; (2) Performing segmentation on the input RD profile and obtaining a segment-based RD profile ; (3) Performing the polar coordinate transformation and obtaining a circular-shaped RD profile ; (4) Calculating a LOF value for each segment , ; (5) Declaring CNVs via boxplot procedure and defining gains, hemi-losses , and homo-losses ; (6) Estimating tumor purity by using and , and updating ; (7) Re-performing steps (3) to (5); (8) Outputting the final results (gains and losses). |
3. Results and Discussion
3.1. Simulation Studies
3.2. Detection of Copy Number Variants from Breast Cancer Sample
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chaisson, M.J.P.; Sanders, A.D.; Zhao, X.; Malhotra, A.; Porubsky, D.; Rausch, T.; Gardner, E.J.; Rodriguez, O.L.; Guo, L.; Collins, R.L.; et al. Multi-platform discovery of haplotype-resolved structural variation in human genomes. Nat. Commun. 2019, 10, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Sudmant, P.H.; Rausch, T.; Gardner, E.J.; Handsaker, R.E.; Abyzov, A.; Huddleston, J.; Zhang, Y.; Ye, K.; Jun, G.; Fritz, M.H. An integrated map of structural variation in 2504 human genomes. Nature 2015, 526, 75–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, L.; Liu, H.; Yuan, X.; Gao, K.; Duan, J. Comparative study of whole exome sequencing-based copy number variation detection tools. BMC Bioinform. 2020, 21, 97. [Google Scholar] [CrossRef] [Green Version]
- Park, H.; Chun, S.-M.; Shim, J.; Oh, J.-H.; Cho, E.J.; Hwang, H.S.; Lee, J.-Y.; Kim, D.; Jang, S.J.; Nam, S.J.; et al. Detection of chromosome structural variation by targeted next-generation sequencing and a deep learning application. Sci. Rep. 2019, 9, 3644. [Google Scholar] [CrossRef] [Green Version]
- Poell, J.B.; Mendeville, M.; Sie, D.; Brink, A.; Brakenhoff, R.H.; Ylstra, B. ACE: Absolute copy number estimation from low-coverage whole-genome sequencing data. Bioinformatics 2018, 35, 2847–2849. [Google Scholar] [CrossRef]
- Yuan, X.; Bai, J.; Zhang, J.; Yang, L.; Duan, J.; Li, Y.; Gao, M. CONDEL: Detecting Copy Number Variation and Genotyping Deletion Zygosity from Single Tumor Samples using Sequence Data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2018, 1. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, J.; Yang, L.; Bai, J.; Fan, P. Detection of Significant Copy Number Variations from Multiple Samples in Next-Generation Sequencing Data. IEEE Trans. NanoBiosci. 2017, 17, 12–20. [Google Scholar] [CrossRef]
- Yuan, X.; Yu, G.; Hou, X.; Shih, I.-M.; Clarke, R.; Zhang, J.; Hoffman, E.P.; Wang, R.R.; Zhang, Z.; Wang, Y. Genome-wide identification of significant aberrations in cancer genome. BMC Genom. 2012, 13, 342. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mermel, C.H.; Schumacher, S.E.; Hill, B.; Meyerson, M.L.; Beroukhim, R.; Getz, G. GISTIC2.0 facilitates sensitive and confident localization of the targets of focal somatic copy-number alteration in human cancers. Genome Biol. 2011, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yuan, Y.; Lu, K.H.; Zhang, L. Identification of recurrent focal copy number variations and their putative targeted driver genes in ovarian cancer. BMC Bioinform. 2016, 17, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, Y.; Oldridge, D.A.; Diskin, S.J.; Zhang, N.R. CODEX: A normalization and copy number variation detection method for whole exome sequencing. Nucleic Acids Res. 2015, 46, e39. [Google Scholar] [CrossRef] [Green Version]
- Povysil, G.; Tzika, A.; Vogt, J.; Haunschmid, V.; Messiaen, L.; Zschocke, J.; Klambauer, G.; Hochreiter, S.; Wimmer, K. panelcn.MOPS: Copy-number detection in targeted NGS panel data for clinical diagnostics. Hum. Mutat. 2017, 38, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Chen, P.; Chen, J.; Cai, J.; Song, Y.; Han, G. WaveDec: A Wavelet Approach to Identify Both Shared and Individual Patterns of Copy-Number Variations. IEEE Trans. Biomed. Eng. 2017, 65, 353–364. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Li, A.; Wang, M. HetRCNA: A Novel Method to Identify Recurrent Copy Number Alternations from Heterogeneous Tumor Samples Based on Matrix Decomposition Framework. IEEE/ACM Trans. Comput. Biol. Bioinform. 2020, 17, 422–434. [Google Scholar] [CrossRef] [PubMed]
- Xie, C.; Tammi, M.T. CNV-seq, a new method to detect copy number variation using high-throughput sequencing. BMC Bioinform. 2009, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarasinghe, K.C.; Li, J.; Halgamuge, S.K. CoNVEX: Copy number variation estimation in exome sequencing data using HMM. BMC Bioinform. 2013, 14 (Suppl. 2), 1–9. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Nettleton, D.; Ying, K. Copy number variation detection using next generation sequencing read counts. BMC Bioinform. 2014, 15, 109. [Google Scholar] [CrossRef] [Green Version]
- Kuilman, T.; Velds, A.; Kemper, K.; Ranzani, M.; Bombardelli, L.; Hoogstraat, M.; Nevedomskaya, E.; Xu, G.; De Ruiter, J.; Lolkema, M.P.; et al. CopywriteR: DNA copy number detection from off-target sequence data. Genome Biol. 2015, 16, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Onsongo, G.; Baughn, L.B.; Bower, M.; Henzler, C.; Schomaker, M.; Silverstein, K.A.; Thyagarajan, B. CNV-RF Is a Random Forest–Based Copy Number Variation Detection Method Using Next-Generation Sequencing. J. Mol. Diagn. 2016, 18, 872–881. [Google Scholar] [CrossRef] [Green Version]
- D’Aurizio, R.; Pippucci, T.; Tattini, L.; Giusti, B.; Pellegrini, M.; Magi, A. Enhanced copy number variants detection from whole-exome sequencing data using EXCAVATOR2. Nucleic Acids Res. 2016, 44, e154. [Google Scholar] [CrossRef]
- Gusnanto, A.; Wood, H.M.; Pawitan, Y.; Rabbitts, P.; Berri, S. Correcting for cancer genome size and tumour cell content enables better estimation of copy number alterations from next-generation sequence data. Bioinformatics 2011, 28, 40–47. [Google Scholar] [CrossRef]
- Holt, C.; Losic, B.; Pai, D.; Zhao, Z.; Trinh, Q.; Syam, S.; Arshadi, N.; Jang, G.H.; Ali, J.; Beck, T.; et al. WaveCNV: Allele-specific copy number alterations in primary tumors and xenograft models from next-generation sequencing. Bioinformatics 2014, 30, 768–774. [Google Scholar] [CrossRef] [Green Version]
- Talevich, E.; Shain, A.H.; Botton, T.; Bastian, B.C. CNVkit: Genome-Wide Copy Number Detection and Visualization from Targeted DNA Sequencing. PLoS Comput. Biol. 2016, 12, e1004873. [Google Scholar] [CrossRef]
- Abyzov, A.; Urban, A.E.; Snyder, M.; Gerstein, M. CNVnator: An approach to discover, genotype, and characterize typical and atypical CNVs from family and population genome sequencing. Genome Res. 2011, 21, 974–984. [Google Scholar] [CrossRef] [Green Version]
- Boeva, V.; Popova, T.; Bleakley, K.; Chiche, P.; Cappo, J.; Schleiermacher, G.; Janoueix-Lerosey, I.; Delattre, O.; Barillot, E. Control-FREEC: A tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 2012, 28, 423–425. [Google Scholar] [CrossRef]
- Pugh, T.J.; Amr, S.S.; Bowser, M.J.; Gowrisankar, S.; Hynes, E.; Mahanta, L.M.; Rehm, H.L.; Funke, B.; Lebo, M. VisCap: Inference and visualization of germ-line copy-number variants from targeted clinical sequencing data. Genet. Med. 2015, 18, 712–719. [Google Scholar] [CrossRef] [Green Version]
- Johansson, L.F.; Van Dijk, F.; De Boer, E.N.; Van Dijk-Bos, K.K.; Jongbloed, J.D.; Van Der Hout, A.H.; Westers, H.; Sinke, R.J.; Swertz, M.A.; Sijmons, R.H.; et al. CoNVaDING: Single Exon Variation Detection in Targeted NGS Data. Hum. Mutat. 2016, 37, 457–464. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.; Li, A.; Wang, M. CLImAT-HET: Detecting subclonal copy number alterations and loss of heterozygosity in heterogeneous tumor samples from whole-genome sequencing data. BMC Med. Genom. 2017, 10, 15. [Google Scholar] [CrossRef] [Green Version]
- Dharanipragada, P.; Vogeti, S.; Parekh, N. iCopyDAV: Integrated platform for copy number variations—Detection, annotation and visualization. PLoS ONE 2018, 13, e0195334. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Yu, J.; Xi, J.; Yang, L.; Shang, J.; Li, Z.; Duan, J. CNV_IFTV: An Isolation Forest and Total Variation-Based Detection of CNVs from Short-Read Sequencing Data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2021, 18, 539–549. [Google Scholar] [CrossRef]
- Yuan, X.; Li, J.; Bai, J.; Xi, J. A local outlier factor-based detection of copy number variations from NGS data. IEEE/ACM Trans. Comput. Biol. Bioinform. 2019, 1. [Google Scholar] [CrossRef]
- Miller, C.A.; Hampton, O.; Coarfa, C.; Milosavljevic, A. ReadDepth: A Parallel R Package for Detecting Copy Number Alterations from Short Sequencing Reads. PLoS ONE 2011, 6, e16327. [Google Scholar] [CrossRef] [Green Version]
- Smith, S.D.; Kawash, J.K.; Grigoriev, A. GROM-RD: Resolving genomic biases to improve read depth detection of copy number variants. PeerJ 2015, 3, 836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malekpour, S.A.; Pezeshk, H.; Sadeghi, M. PSE-HMM: Genome-wide CNV detection from NGS data using an HMM with Position-Specific Emission probabilities. BMC Bioinform. 2016, 18, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fromer, M.; Purcell, S.M. Using XHMM Software to Detect Copy Number Variation in Whole-Exome Sequencing Data. Curr. Protoc. Hum. Genet. 2014, 81, 7–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, S.; Xuan, Z.; Makarov, V.; Ye, K.; Sebat, J. Sensitive and accurate detection of copy number variants using read depth of coverage. Genome Res. 2009, 19, 1586–1592. [Google Scholar] [CrossRef] [Green Version]
- Venkatraman, E.S.; Olshen, A.B. A faster circular binary segmentation algorithm for the analysis of array CGH data. Bioinformatics 2007, 23, 657–663. [Google Scholar] [CrossRef] [Green Version]
- Breunig, M.M.; Kriegel, H.P.; Ng, R.T.; Sander, J. LOF: Identifying Density-Based Local Outliers. In Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, Dallas, TX, USA, 16–18 May 2000; pp. 93–104. [Google Scholar]
- Yuan, X.; Zhang, J.; Yang, L. IntSIM: An Integrated Simulator of Next-Generation Sequencing Data. IEEE Trans. Biomed. Eng. 2016, 64, 441–451. [Google Scholar] [CrossRef]
- Yuan, X.; Miller, D.J.; Zhang, J.; Herrington, D.; Wang, Y. An Overview of Population Genetic Data Simulation. J. Comput. Biol. 2012, 19, 42–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boeva, V.; Zinovyev, A.; Bleakley, K.; Vert, J.-P.; Janoueix-Lerosey, I.; Delattre, O.; Barillot, E. Control-free calling of copy number alterations in deep-sequencing data using GC-content normalization. Bioinformatics 2010, 27, 268–269. [Google Scholar] [CrossRef] [Green Version]
- Bolland, D.E.; Hao, Y.; Tan, Y.S.; Reske, J.; Tan, L.; Chandler, R.L.; Xie, Y.; Lei, Y.L.; McLean, K. Abstract B05: Induction of DNA damage in high-grade serous carcinoma induces type I interferon signaling. In Proceedings of the AACR Special Conference on Advances in Ovarian Cancer Research, Atlanta, GA, USA, 13–16 September 2019; American Association for Cancer Research (AACR): Philadelphia, PA, USA, 2020; Volume 26, p. B05. [Google Scholar]
- Sugimura, M.; Sagae, S.; Ishioka, S.-I.; Nishioka, Y.; Tsukada, K.; Kudo, R. Mechanisms of Paclitaxel-Induced Apoptosis in an Ovarian Cancer Cell Line and Its Paclitaxel-Resistant Clone. Oncology 2004, 66, 53–61. [Google Scholar] [CrossRef]
- Zheng, J.; Li, X.; Yang, W.; Zhang, F. Dihydroartemisinin regulates apoptosis, migration, and invasion of ovarian cancer cells via mediating RECK. J. Pharmacol. Sci. 2021, 146, 71–81. [Google Scholar] [CrossRef] [PubMed]
- Zuberi, M.; Dholariya, S.; Khan, I.; Mir, R.; Guru, S.; Bhat, M.; Sumi, M.; Saxena, A. Epigenetic Silencing of DAPK1and p16INK4a Genes by CpG Island Hypermethylation in Epithelial Ovarian Cancer Patients. Indian J. Clin. Biochem. 2021, 36, 200–207. [Google Scholar] [CrossRef] [PubMed]
- Lv, X.-L.; Zhu, Y.; Liu, J.-W.; Ai, H. The application value of the detection of the level of tissue polypeptide antigen, ovarian cancer antigen X1, cathepsin L and CA125 on the diagnosis of epithelial ovarian cancer. Eur. Rev. Med Pharmacol. Sci. 2016, 20, 5113–5116. [Google Scholar] [PubMed]
- Mok, M.T.; Zhou, J.; Tang, W.; Zeng, X.; Oliver, A.; Ward, S.E.; Cheng, A.S. CCRK is a novel signalling hub exploitable in cancer immunotherapy. Pharmacol. Ther. 2018, 186, 138–151. [Google Scholar] [CrossRef]
- Zhang, S.; Deen, S.; Storr, S.J.; Yao, A.; Martin, S.G. Expression of Syk and MAP4 proteins in ovarian cancer. J. Cancer Res. Clin. Oncol. 2019, 145, 909–919. [Google Scholar] [CrossRef] [Green Version]
- Wiiger, M.T.; Bideli, H.; Fodstad, Ø.; Flatmark, K.; Andersson, Y. The MOC31PE immunotoxin reduces cell migration and induces gene expression and cell death in ovarian cancer cells. J. Ovarian Res. 2014, 7, 23. [Google Scholar] [CrossRef] [Green Version]
- Nie, X.; Liu, C.; Guo, Q.; Zheng, M.-J.; Gao, L.-L.; Li, X.; Liu, D.-W.; Zhu, L.-C.; Liu, J.-J.; Lin, B. TMEFF1 overexpression and its mechanism for tumor promotion in ovarian cancer. Cancer Manag. Res. 2019, 11, 839–855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pisano, S.; Gonzalez, D.; Ferrari, M.; Conlan, S.; Corradetti, B. 1. Modeling ovarian cancer for dendritic cells-derived exosomes treatment. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Taylan, E.; Zayou, F.; Murali, R.; Karlan, B.Y.; Pandol, S.J.; Edderkaoui, M.; Orsulic, S. Dual targeting of GSK3B and HDACs reduces tumor growth and improves survival in an ovarian cancer mouse model. Gynecol. Oncol. 2020, 159, 277–284. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.K.; Jia, Y.J.; Liu, S.H.; Ma, J. FSTL1 increases cisplatin sensitivity in epithelial ovarian cancer cells by inhibition of NF-κB pathway. Cancer Chemother. Pharmacol. 2021, 87, 405–414. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Yuan, C.; Yang, Q.; Li, X.; Yang, N.; Liu, X.; Dong, R.; Zhang, X.; Yuan, Z.; Zhang, N.; et al. A genetic polymorphism (rs17251221) in the calcium-sensing receptor is associated with ovarian cancer susceptibility. Oncol. Rep. 2015, 34, 2151–2155. [Google Scholar] [CrossRef]
- Li, J.; Zhi, X.; Chen, S.; Shen, X.; Chen, C.; Yuan, L.; Guo, J.; Meng, D.; Chen, M.; Yao, L. CDK9 inhibitor CDKI-73 is synergetic lethal with PARP inhibitor olaparib in BRCA1 wide-type ovarian cancer. Am. J. Cancer Res. 2020, 10, 1140–1155. [Google Scholar]
- Molin, G.Z.D.; Westin, S.N.; Coleman, R.L. Rucaparib in ovarian cancer: Extending the use of PARP inhibitors in the recurrent disease. Futur. Oncol. 2018, 14, 3101–3110. [Google Scholar] [CrossRef]
- Allawi, H.T.; Giakoumopoulos, M.; Flietner, E.; Oliphant, A.; Volkmann, C.; Aizenstein, B.; Sander, T.; Eckmayer, D.; Strong, A.P.; Gray, M.; et al. Abstract 712: Detection of lung cancer by assay of novel methylated DNA markers in plasma. Clin. Trials 2017, 77, 712. [Google Scholar] [CrossRef]
- Kafka, A.; Tomas, D.; Beroš, V.; Pećina, H.I.; Zeljko, M.; Pećina-Šlaus, N. Brain Metastases from Lung Cancer Show Increased Expression of DVL1, DVL3 and Beta-Catenin and Down-Regulation of E-Cadherin. Int. J. Mol. Sci. 2014, 15, 10635–10651. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Ji, X.; Ge, M.; Zhan, Q.; Huang, R.; Liang, X.; Zhou, X. Characterization of genetic alterations in brain metastases from non-small cell lung cancer. FEBS Open Bio 2018, 8, 1544–1552. [Google Scholar] [CrossRef]
- Mao, Y.-F.; Yuan, X.-G.; Cun, Y.-P. A novel machine learning approach (svmSomatic) to distinguish somatic and germline mutations using next-generation sequencing data. Zool. Res. 2021, 42, 246–249. [Google Scholar] [CrossRef]
CIRCNV | CNVnator | FREEC | CNV-LOF | |
---|---|---|---|---|
4802_2053_1 | 27.07 | 15.83 | 11.03 | 21.00 |
4836_2561_1 | 25.16 | 10.55 | 1.73 | 27.55 |
0144_LC | 29.6 | 16.6 | 0.73 | 23.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.-Y.; Li, Q.; Tian, Y.; Chen, Y.-H.; Alvi, H.A.K.; Yuan, X.-G. CIRCNV: Detection of CNVs Based on a Circular Profile of Read Depth from Sequencing Data. Biology 2021, 10, 584. https://doi.org/10.3390/biology10070584
Zhao H-Y, Li Q, Tian Y, Chen Y-H, Alvi HAK, Yuan X-G. CIRCNV: Detection of CNVs Based on a Circular Profile of Read Depth from Sequencing Data. Biology. 2021; 10(7):584. https://doi.org/10.3390/biology10070584
Chicago/Turabian StyleZhao, Hai-Yong, Qi Li, Ye Tian, Yue-Hui Chen, Haque A. K. Alvi, and Xi-Guo Yuan. 2021. "CIRCNV: Detection of CNVs Based on a Circular Profile of Read Depth from Sequencing Data" Biology 10, no. 7: 584. https://doi.org/10.3390/biology10070584
APA StyleZhao, H. -Y., Li, Q., Tian, Y., Chen, Y. -H., Alvi, H. A. K., & Yuan, X. -G. (2021). CIRCNV: Detection of CNVs Based on a Circular Profile of Read Depth from Sequencing Data. Biology, 10(7), 584. https://doi.org/10.3390/biology10070584