Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
- Pre-POAG—open angle of the anterior chamber, intraocular pressure higher than 21 mmHg (repeated twice, Goldmann tonometry), glaucomatous appearance of the optic nerve head, classified after Jonas [39], and normal perimetric findings;
- OHT—intraocular pressure higher than 21 mmHg (repeated twice, Goldmann tonometry) with normal optic disc appearance and normal perimetry.
- ≥2 adjacent test points, probability of <1%, or;
- ≥3 test points, probability of <5%, and;
- MD > 2.8
3. Results
3.1. Systemic Statin Therapy
3.2. Systemic Acetylsalicylic Acid (ASS) Therapy
3.3. Combined Systemic Statin and Acetylsalicylic Acid Therapy
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.; Kempen, J.H.; et al. Global causes of blindness and distance vision impairment 1990–2020: A systematic review and meta-analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [Google Scholar] [CrossRef] [Green Version]
- Heijl, A.; Bengtsson, B.; Oskarsdottir, S.E. Prevalence and Severity of Undetected Manifest Glaucoma: Results from the early manifest glaucoma trial screening. Ophthalmology 2013, 120, 1541–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, A.K.; Erb, C.; Hoffmann, E.M.; Dietlein, T.; Pfeiffer, N. The Diagnosis and Treatment of Glaucoma. Dtsch. Ärzteblatt Int. 2020, 117, 225–234. [Google Scholar] [CrossRef]
- Varma, R.; Lee, P.; Goldberg, I.; Kotak, S. An Assessment of the Health and Economic Burdens of Glaucoma. Am. J. Ophthalmol. 2011, 152, 515–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, W.; He, M.; Li, Z.; Huang, W. Epidemiological variations and trends in health burden of glaucoma worldwide. Acta Ophthalmol. 2019, 97, e349–e355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vohra, R.; Tsai, J.C.; Kolko, M. The Role of Inflammation in the Pathogenesis of Glaucoma. Surv. Ophthalmol. 2013, 58, 311–320. [Google Scholar] [CrossRef]
- McMonnies, C. Reactive oxygen species, oxidative stress, glaucoma and hyperbaric oxygen therapy. J. Optom. 2018, 11, 3–9. [Google Scholar] [CrossRef]
- Kumar, D.M.; Agarwal, N. Oxidative Stress in Glaucoma: A Burden of Evidence. J. Glaucoma 2007, 16, 334–343. [Google Scholar] [CrossRef]
- Evangelho, K.; Mogilevskaya, M.; Losada-Barragan, M.; Vargas-Sanchez, J.K. Pathophysiology of primary open-angle glaucoma from a neuroinflammatory and neurotoxicity perspective: A review of the literature. Int. Ophthalmol. 2017, 39, 259–271. [Google Scholar] [CrossRef]
- Chan, K.K.W.; Tang, F.; Tham, C.C.Y.; Young, A.L.; Cheung, C.Y. Retinal vasculature in glaucoma: A review. BMJ Open Ophthalmol. 2017, 1, e000032. [Google Scholar] [CrossRef] [PubMed]
- Hohberger, B. Neuroimmunological Aspects in Glaucoma. Klin. Mon. Augenheilkd. 2021, 238, 125–127. [Google Scholar] [CrossRef]
- Saccà, S.C.; Gandolfi, S.; Bagnis, A.; Manni, G.; Damonte, G.; Traverso, C.E.; Izzotti, A. From DNA damage to functional changes of the trabecular meshwork in aging and glaucoma. Ageing Res. Rev. 2016, 29, 26–41. [Google Scholar] [CrossRef] [PubMed]
- Tsai, T.; Reinehr, S.; Maliha, A.M.; Joachim, S.C. Immune Mediated Degeneration and Possible Protection in Glaucoma. Front. Neurosci. 2019, 13, 931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiggs, J.L.; Pasquale, L.R. Genetics of glaucoma. Hum. Mol. Genet. 2017, 26, R21–R27. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Kim, M.J.; Kim, H.S.; Jeoung, J.W.; Park, K.H. Risk factors for open-angle glaucoma with normal baseline intraocular pressure in a young population: The Korea National Health and Nutrition Examination Survey. Clin. Exp. Ophthalmol. 2014, 42, 825–832. [Google Scholar] [CrossRef]
- Zhao, D.; Cho, J.; Kim, M.H.; Friedman, D.; Guallar, E. Diabetes, Glucose Metabolism, and Glaucoma: The 2005–2008 National Health and Nutrition Examination Survey. PLoS ONE 2014, 9, e112460. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Bao, X. Hyperlipidemia, Blood Lipid Level, and the Risk of Glaucoma: A Meta-Analysis. Investig. Opthalmol. Vis. Sci. 2019, 60, 1028–1043. [Google Scholar] [CrossRef] [Green Version]
- Ferrannini, E.; Cushman, W.C. Diabetes and hypertension: The bad companions. Lancet 2012, 380, 601–610. [Google Scholar] [CrossRef]
- Marshall, H.; Mullany, S.; Qassim, A.; Siggs, O.; Hassall, M.; Ridge, B.; Nguyen, T.; Awadalla, M.; Andrew, N.H.; Healey, P.R.; et al. Cardiovascular Disease Predicts Structural and Functional Progression in Early Glaucoma. Ophthalmology 2021, 128, 58–69. [Google Scholar] [CrossRef]
- Khatri, A.; Shrestha, J.K.; Thapa, M.; Khatri, B.K.; Kharel, M. Severity of primary open-angle glaucoma in patients with hypertension and diabetes. Diabetes Metab. Syndr. Obesity Targets Ther. 2018, 11, 209–215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mozaffarieh, M.; Grieshaber, M.C.; Flammer, J. Oxygen and blood flow: Players in the pathogenesis of glaucoma. Mol. Vis. 2008, 14, 224–233. [Google Scholar] [PubMed]
- Flammer, J.; Konieczka, K.; Flammer, A.J. The primary vascular dysregulation syndrome: Implications for eye diseases. EPMA J. 2013, 4, 14. [Google Scholar] [CrossRef] [Green Version]
- Lévêque, P.-M.; Zéboulon, P.; Brasnu, E.; Baudouin, C.; Labbé, A. Optic Disc Vascularization in Glaucoma: Value of Spectral-Domain Optical Coherence Tomography Angiography. J. Ophthalmol. 2016, 2016, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Triolo, G.; Rabiolo, A.; Shemonski, N.D.; Fard, A.; Di Matteo, F.; Sacconi, R.; Bettin, P.; Magazzeni, S.; Querques, G.; Vazquez, L.E.; et al. Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. Investig. Opthalmol. Vis. Sci. 2017, 58, 5713–5722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hohberger, B.; Lucio, M.; Schlick, S.; Wollborn, A.; Hosari, S.; Mardin, C. OCT-angiography: Regional reduced macula microcirculation in ocular hypertensive and pre-perimetric glaucoma patients. PLoS ONE 2021, 16, e0246469. [Google Scholar] [CrossRef]
- Chung, H.S.; Harris, A.; Evans, D.W.; Kagemann, L.; Garzozi, H.J.; Martin, B. Vascular Aspects in the Pathophysiology of Glaucomatous Optic Neuropathy. Surv. Ophthalmol. 1999, 43, S43–S50. [Google Scholar] [CrossRef]
- Stein, J.D.; Newman-Casey, P.A.; Talwar, N.; Nan, B.; Richards, J.E.; Musch, D.C. The Relationship Between Statin Use and Open-Angle Glaucoma. Ophthalmology 2012, 119, 2074–2081. [Google Scholar] [CrossRef] [Green Version]
- McGwin, G.; McNeal, S.F.; Owsley, C.; Girkin, C.A.; Epstein, D.; Lee, P.P. Statins and Other Cholesterol-Lowering Medications and the Presenceof Glaucoma. Arch. Ophthalmol. 2004, 122, 822–826. [Google Scholar] [CrossRef] [Green Version]
- Downs, J.R.; Clearfield, M.; Weis, S.; Whitney, E.; Shapiro, D.R.; Beere, P.A.; Langendorfer, A.; Stein, E.A.; Kruyer, W.; Gotto, A.M., Jr. Primary prevention of acute coronary events with lovastatin in men and women with average cholesterol levels: Results of AFCAPS/TexCAPS. Air Force/Texas Coronary Atherosclerosis Prevention Study. JAMA 1998, 279, 1615–1622. [Google Scholar] [CrossRef]
- Sillesen, H.; Amarenco, P.; Hennerici, M.G.; Callahan, A.; Goldstein, L.B.; Zivin, J.; Messig, M.; Welch, K.M. Atorvastatin Reduces the Risk of Cardiovascular Events in Patients with Carotid Atherosclerosis: A Secondary Analysis of the Stroke Prevention by Aggressive Reduction in Cholesterol Levels (SPARCL) trial. Stroke 2008, 39, 3297–3302. [Google Scholar] [CrossRef] [Green Version]
- Wu, A.; Khawaja, A.P.; Pasquale, L.R.; Stein, J.D. A review of systemic medications that may modulate the risk of glaucoma. Eye 2020, 34, 12–28. [Google Scholar] [CrossRef]
- Whigham, B.; Oddone, E.Z.; Woolson, S.; Coffman, C.; Allingham, R.R.; Shieh, C.; Muir, K.W. The influence of oral statin medications on progression of glaucomatous visual field loss: A propensity score analysis. Ophthalmic Epidemiol. 2017, 25, 207–214. [Google Scholar] [CrossRef]
- Rikitake, Y.; Liao, J.K. Rho GTPases, Statins, and Nitric Oxide. Circ. Res. 2005, 97, 1232–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gorabi, A.M.; Kiaie, N.; Hajighasemi, S.; Banach, M.; Penson, P.E.; Jamialahmadi, T.; Sahebkar, A. Statin-Induced Nitric Oxide Signaling: Mechanisms and Therapeutic Implications. J. Clin. Med. 2019, 8, 2051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmeer, C.; Isenmann, S. Therapeutic Potential of 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors for the Treatment of Retinal and Eye Diseases. CNS Neurol. Disord. Drug Targets 2007, 6, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Wareham, L.K.; Buys, E.S.; Sappington, R.M. The nitric oxide-guanylate cyclase pathway and glaucoma. Nitric Oxide 2018, 77, 75–87. [Google Scholar] [CrossRef]
- Herdegen, T.; Böhm, R.; Culman, J.; Gohlke, P.; Luippold, G. Kurzlehrbuch Pharmakologie und Toxikologie, 2nd ed.; Georg Thieme Verlag: Stuttgart, Germany, 2010; 535p. [Google Scholar]
- Jonas, J.B.; Gusek, G.C.; Naumann, G.O.H. Optic disc morphometry in chronic primary open-angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 1988, 226, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Kornitzer, M. 20 years of cardiovascular epidemiology. The epidemiologist’s viewpoint. Revue d’Épidémiologie Santé Publique 1996, 44, 563–576. [Google Scholar]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef]
- Graf, C.; Böhm, M.; Predel, H.G.; Bjarnason-Wehrens, B. Arteriosklerose—Eine Lebenslange Herausforderung. Herz 2002, 27, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Schmermund, A.; Erbel, R. Therapie der Arteriosklerose. Dtsch. Med. Wochenschr. 2003, 128, 41–47. [Google Scholar] [CrossRef]
- Mammo, Z.; Heisler, M.; Balaratnasingam, C.; Lee, S.; Yu, D.-Y.; Mackenzie, P.; Schendel, S.; Merkur, A.; Kirker, A.; Albiani, D.; et al. Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes. Am. J. Ophthalmol. 2016, 170, 41–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansoori, T.; Gamalapati, J.; Sivaswamy, J.; Balakrishna, N. Optical coherence tomography angiography measured capillary density in the normal and glaucoma eyes. Saudi J. Ophthalmol. 2018, 32, 295–302. [Google Scholar] [CrossRef] [PubMed]
- Mastropasqua, R.; Agnifili, L.; Borrelli, E.; Fasanella, V.; Brescia, L.; Di Antonio, L.; Mastropasqua, L. Optical Coherence Tomography Angiography of the Peripapillary Retina in Normal-Tension Glaucoma and Chronic Nonarteritic Anterior Ischemic Optic Neuropathy. Curr. Eye Res. 2018, 43, 778–784. [Google Scholar] [CrossRef] [PubMed]
- Kose, H.C.; Tekeli, O. Optical coherence tomography angiography of the peripapillary region and macula in normal, primary open angle glaucoma, pseudoexfoliation glaucoma and ocular hypertension eyes. Int. J. Ophthalmol. 2020, 13, 744–754. [Google Scholar] [CrossRef]
- Manalastas, P.I.; Zangwill, L.M.; Saunders, L.J.; Mansouri, K.; Belghith, A.; Suh, M.H.; Yarmohammadi, A.; Penteado, R.C.; Akagi, T.; Shoji, T.; et al. Reproducibility of Optical Coherence Tomography Angiography Macular and Optic Nerve Head Vascular Density in Glaucoma and Healthy Eyes. J. Glaucoma 2017, 26, 851–859. [Google Scholar] [CrossRef]
- Flammer, J.; Orgül, S.; Costa, V.P.; Orzalesi, N.; Krieglstein, G.K.; Serra, L.M.; Renard, J.-P.; Stefánsson, E. The impact of ocular blood flow in glaucoma. Prog. Retin. Eye Res. 2002, 21, 359–393. [Google Scholar] [CrossRef]
- Emre, M. Ocular blood flow alteration in glaucoma is related to systemic vascular dysregulation. Br. J. Ophthalmol. 2004, 88, 662–666. [Google Scholar] [CrossRef] [Green Version]
- Leung, D.; Li, F.C.; Kwong, Y.Y.; Tham, C.C.; Chi, S.C.; Lam, D.S. Simvastatin and Disease Stabilization in Normal Tension Glaucoma: A Cohort Study. Ophthalmology 2010, 117, 471–476. [Google Scholar] [CrossRef]
- De Castro, D.K.; Punjabi, O.S.; Bostrom, A.G.; Stamper, R.L.; Lietman, T.M.; Ray, K.; Lin, S.C. Effect of statin drugs and aspirin on progression in open-angle glaucoma suspects using confocal scanning laser ophthalmoscopy. Clin. Exp. Ophthalmol. 2007, 35, 506–513. [Google Scholar] [CrossRef]
- Vasnawala, H.; Kavalipati, N.; Shah, J.; Ramakrishan, A. Pleiotropic effects of statins. Indian J. Endocrinol. Metab. 2015, 19, 554–562. [Google Scholar] [CrossRef]
- Liao, J.K.; Laufs, U. Pleiotropic effects of statins. Annu. Rev. Pharmacol. Toxicol. 2005, 45, 89–118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terai, N.; Spoerl, E.; Fischer, S.; Hornykewycz, K.; Haustein, M.; Haentzschel, J.; Pillunat, L.E. Statins affect ocular microcirculation in patients with hypercholesterolaemia. Acta Ophthalmol. 2011, 89, e500–e504. [Google Scholar] [CrossRef] [PubMed]
- Erb, C.; Konieczka, K. Rho kinase inhibitors as new local therapy option in primary open angle glaucoma. Ophthalmologe 2021, 118, 449–460. [Google Scholar] [CrossRef]
- Nagaoka, T.; Hein, T.W.; Yoshida, A.; Kuo, L. Simvastatin Elicits Dilation of Isolated Porcine Retinal Arterioles: Role of Nitric Oxide and Mevalonate-Rho Kinase Pathways. Investig. Opthalmol. Vis. Sci. 2007, 48, 825–832. [Google Scholar] [CrossRef] [PubMed]
- Harris, M.B.; Blackstone, M.A.; Sood, S.G.; Li, C.; Goolsby, J.M.; Venema, V.J.; Kemp, B.E.; Venema, R.C. Acute activation and phosphorylation of endothelial nitric oxide synthase by HMG-CoA reductase inhibitors. Am. J. Physiol. Circ. Physiol. 2004, 287, H560–H566. [Google Scholar] [CrossRef] [Green Version]
- Nagaoka, T.; Takahashi, A.; Sato, E.; Izumi, N.; Hein, T.W.; Kuo, L.; Yoshida, A. Effect of Systemic Administration of Simvastatin on Retinal Circulation. Arch. Ophthalmol. 2006, 124, 665–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Honjo, M.; Tanihara, H.; Nishijima, K.; Kiryu, J.; Honda, Y.; Yue, B.Y.J.T.; Sawamura, T. Statin Inhibits Leukocyte-Endothelial Interaction and Prevents Neuronal Death Induced by Ischemia-Reperfusion Injury in the Rat Retina. Arch. Ophthalmol. 2002, 120, 1707–1713. [Google Scholar] [CrossRef] [PubMed]
- Zacco, A.; Togo, J.; Spence, K.; Ellis, A.; Lloyd, D.; Furlong, S.; Piser, T. 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase Inhibitors Protect Cortical Neurons from Excitotoxicity. J. Neurosci. 2003, 23, 11104–11111. [Google Scholar] [CrossRef] [Green Version]
- Bösel, J.; Gandor, F.; Harms, C.; Synowitz, M.; Harms, U.; Djoufack, P.C.; Megow, D.; Dirnagl, U.; Hörtnagl, H.; Fink, K.B.; et al. Neuroprotective effects of atorvastatin against glutamate-induced excitotoxicity in primary cortical neurones. J. Neurochem. 2005, 92, 1386–1398. [Google Scholar] [CrossRef]
- Schmeer, C.; Kretz, A.; Isenmann, S. Statin-mediated protective effects in the central nervous system: General mechanisms and putative role of stress proteins. Restor. Neurol. Neurosci. 2006, 24, 79–95. [Google Scholar] [PubMed]
- Cong, L.; Fu, S.; Zhang, J.; Zhao, J.; Zhang, Y. Effects of atorvastatin on porcine aqueous humour outflow and trabecular meshwork cells. Exp. Ther. Med. 2017, 15, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villarreal, G.; Chatterjee, A.; Oh, S.S.; Oh, D.-J.; Rhee, U.J. Pharmacological Regulation of SPARC by Lovastatin in Human Trabecular Meshwork Cells. Investig. Ophthalmol. Vis. Sci. 2014, 55, 1657–1665. [Google Scholar] [CrossRef] [Green Version]
- Rhee, D.J.; Haddadin, R.I.; Kang, M.H.; Oh, D.-J. Matricellular proteins in the trabecular meshwork. Exp. Eye Res. 2009, 88, 694–703. [Google Scholar] [CrossRef]
- Haddadin, R.I.; Oh, D.-J.; Kang, M.H.; Filippopoulos, T.; Gupta, M.; Hart, L.; Sage, E.H.; Rhee, D.J. SPARC-null Mice Exhibit Lower Intraocular Pressures. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3771–3777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, S.S.; Oh, D.-J.; Kang, M.H.; Ren, R.; Jin, R.; Gong, H.; Rhee, D.J. Secreted Protein Acidic and Rich in Cysteine (SPARC)-Null Mice Exhibit More Uniform Outflow. Investig. Ophthalmol. Vis. Sci. 2013, 54, 2035–2047. [Google Scholar] [CrossRef]
- Schrör, K. Aspirin and Platelets: The Antiplatelet Action of Aspirin and Its Role in Thrombosis Treatment and Prophylaxis. Semin. Thromb. Hemost. 1997, 23, 349–356. [Google Scholar] [CrossRef]
- Hardy, P.; Bhattacharya, M.; Abran, D.; Peri, K.G.; Asselin, P.; Varma, D.R.; Chemtob, S.; Bhatthacharya, M. Increases in retinovascular prostaglandin receptor functions by cyclooxygenase-1 and -2 inhibition. Investig. Ophthalmol. Vis. Sci. 1998, 39, 1888–1898. [Google Scholar]
- Maihöfner, C.; Schlötzer-Schrehardt, U.; Gühring, H.; Zeilhofer, H.U.; Naumann, G.O.; Pahl, A.; Mardin, C.; Tamm, E.R.; Brune, K. Expression of cyclooxygenase-1 and -2 in normal and glaucomatous human eyes. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2616–2624. [Google Scholar] [CrossRef]
- Mori, A.; Saito, M.; Sakamoto, K.; Narita, M.; Nakahara, T.; Ishii, K. Stimulation of prostanoid IP and EP2 receptors dilates retinal arterioles and increases retinal and choroidal blood flow in rats. Eur. J. Pharmacol. 2007, 570, 135–141. [Google Scholar] [CrossRef]
- Monobe, H.; Yamanari, H.; Nakamura, K.; Ohe, T. Effects of low-dose aspirin on endothelial function in hypertensive patients. Clin. Cardiol. 2001, 24, 705–709. [Google Scholar] [CrossRef]
- Lee, J.; Sung, K.R.; Kwon, J.; Shin, J.W. Effect of Antiplatelet/Anticoagulant Use on Glaucoma Progression in Eyes with Optic Disc Hemorrhage. J. Glaucoma 2018, 27, 1125–1130. [Google Scholar] [CrossRef]
- Kubota, N.; Kasai, T.; Miyauchi, K.; Njaman, W.; Kajimoto, K.; Akimoto, Y.; Kojima, T.; Yokoyama, K.; Kurata, T.; Daida, H. Therapy with statins and aspirin enhances long-term outcome of percutaneous coronary intervention. Heart Vessel. 2008, 23, 35–39. [Google Scholar] [CrossRef]
- Le, A.; Mukesh, B.N.; McCarty, C.; Taylor, H.R. Risk Factors Associated with the Incidence of Open-Angle Glaucoma: The Visual Impairment Project. Investig. Ophthalmol. Vis. Sci. 2003, 44, 3783–3789. [Google Scholar] [CrossRef]
- McMonnies, C.W. Glaucoma history and risk factors. J. Optom. 2017, 10, 71–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laurent, S. Defining vascular aging and cardiovascular risk. J. Hypertens. 2012, 30, S3–S8. [Google Scholar] [CrossRef] [PubMed]
- Horodinschi, R.-N.; Stanescu, A.M.A.; Bratu, O.G.; Stoian, A.P.; Radavoi, D.G.; Diaconu, C.C. Treatment with Statins in Elderly Patients. Medicina 2019, 55, 721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Phan, K.; Moore, J.M.; Griessenauer, C.J.; Ogilvy, C.S.; Thomas, A. Aspirin and Risk of Subarachnoid Hemorrhage: Systematic Review and Meta-Analysis. Stroke 2017, 48, 1210–1217. [Google Scholar] [CrossRef]
- Mahé, I.; Leizorovicz, A.; Caulin, C.; Bergmann, J.-F. Aspirin for the Prevention of Cardiovascular Events in the Elderly. Drugs Aging 2003, 20, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, L.A.G.; Soriano, L.C.; Hill, C.; Johansson, S. Increased risk of stroke after discontinuation of acetylsalicylic acid: A UK primary care study. Neurology 2011, 76, 740–746. [Google Scholar] [CrossRef] [PubMed]
- Aimo, A. Aspirin for primary cardiovascular prevention: Advice for a decisional strategy still based on risk stratification. Anatol. J. Cardiol. 2019, 23, 70–78. [Google Scholar] [CrossRef] [PubMed]
- Hennekens, C. Pravastatin and acetylsalycilic acid fixed-combination: A strategy to improve cardiovascular outcomes. Am. J. Cardiovasc. Drugs 2007, 7, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Hennekens, C.H. Aspirin in the treatment and prevention of cardiovascular disease: Current perspectives and future directions. Curr. Atheroscler. Rep. 2007, 9, 409–416. [Google Scholar] [CrossRef]
- Derry, S. Risk of gastrointestinal haemorrhage with long term use of aspirin: Meta-analysis. BMJ 2000, 321, 1183–1187. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thiermeier, N.; Lämmer, R.; Mardin, C.; Hohberger, B. Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression. Biology 2021, 10, 538. https://doi.org/10.3390/biology10060538
Thiermeier N, Lämmer R, Mardin C, Hohberger B. Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression. Biology. 2021; 10(6):538. https://doi.org/10.3390/biology10060538
Chicago/Turabian StyleThiermeier, Nina, Robert Lämmer, Christian Mardin, and Bettina Hohberger. 2021. "Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression" Biology 10, no. 6: 538. https://doi.org/10.3390/biology10060538
APA StyleThiermeier, N., Lämmer, R., Mardin, C., & Hohberger, B. (2021). Erlanger Glaucoma Registry: Effect of a Long-Term Therapy with Statins and Acetyl Salicylic Acid on Glaucoma Conversion and Progression. Biology, 10(6), 538. https://doi.org/10.3390/biology10060538