First Speleomycological Study on the Occurrence of Psychrophilic and Psychrotolerant Aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and First Reports for Some Species at Underground Sites
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Air Sample Collection
2.3. Isolation of Aeromycota from Samples
2.4. Fungal Identification
2.5. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Fungi Isolated from Air Samples | Identity with Sequence from GenBank | ||||||
---|---|---|---|---|---|---|---|
Isolate Number | Identified Species | Phylum | GenBank Accession No. | The Sequence Length (bp) | Query Cover, % | Identity, % | Accession |
UWR_189 | Chrysosporium merdarium | Ascomycota | MW019461.1 | 442 | 100 | 100.00 | MH859164.1 |
UWR_190 | Cladosporium cladosporioides | Ascomycota | MW019462.1 | 377 | 100 | 99.20 | MT635286.1 |
UWR_191 | Coniothyrium pyrinum | Ascomycota | MW019463.1 | 412 | 100 | 99.51 | MH858918.1 |
UWR_192 | Cystobasidium laryngis | Basidiomycota | MW019464.1 | 512 | 100 | 100.0 | MG674823.1 |
UWR_193 | Epicoccum nigrum | Ascomycota | MW019465.1 | 439 | 100 | 99.77 | MT111108.1 |
UWR_194 | Filobasidium wieringae | Basidiomycota | MW019466.1 | 528 | 100 | 100.00 | MN128850.1 |
UWR_195 | Leucosporidium drummii | Basidiomycota | MW019467.1 | 510 | 100 | 100.00 | KU745364.1 |
UWR_196 | Mortierella parvispora | Mucoromycota | MW019468.1 | 398 | 100 | 96.40 | MT380893.1 |
UWR_197 | Mrakia blollopis | Basidiomycota | MW019469.1 | 537 | 100 | 100.00 | MK693027.1 |
UWR_198 | Mucor hiemalis | Mucoromycota | MW019470.1 | 514 | 100 | 100.00 | MN105537.1 |
UWR_199 | Nakazawaea holstii | Ascomycota | MW019471.1 | 527 | 100 | 100.00 | KY104368.1 |
UWR_200 | Oidiodendron truncatum | Ascomycota | MW019472.1 | 435 | 100 | 99.77 | KF835845.1 |
UWR_201 | Penicillium brevicompactum | Ascomycota | MW019473.1 | 520 | 100 | 100.00 | MN902154.1 |
UWR_202 | Penicillium chrysogenum | Ascomycota | MW019474.1 | 453 | 100 | 100.00 | MT594471.1 |
UWR_203 | Penicillium expansum | Ascomycota | MW019475.1 | 505 | 100 | 100.00 | MT558929.1 |
UWR_204 | Pseudogymnoascus pannorum | Ascomycota | MW019476.1 | 552 | 100 | 99.28 | KP411572.1 |
UWR_205 | Trichoderma viride | Ascomycota | MW019477.1 | 544 | 100 | 100.00 | MK290390.1 |
UWR_206 | Vishniacozyma victoriae | Basidiomycota | MW019478.1 | 564 | 100 | 100.00 | LC515132.1 |
References
- Poulson, T.L.; White, W.B. The cave environment. Science 1969, 165, 971–981. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Kuisiene, N.; Cheeptham, N. The cave microbiome as a source for drug discovery: Reality or pipe dream? Biochem. Pharmacol. 2017, 134, 18–34. [Google Scholar] [CrossRef] [PubMed]
- Cheeptham, N. Advances and Challenges in Studying Cave Microbial Diversity. In Cave Microbiomes: A Novel Resource for Drug Discovery; Cheeptham, N., Ed.; Springer: New York, NY, USA, 2013; pp. 1–34. [Google Scholar]
- Burow, K.; Grawunder, A.; Harpke, M.; Pietschmann, S.; Ehrhardt, R.; Wagner, L.; Voigt, K.; Merten, D.; Büchel, G.; Kothe, E. Microbiomes in an acidic rock–water cave system. FEMS Microbiol. Lett. 2019, 366. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nováková, A.; Hubka, V.; Valinová, Š.; Kolařík, M.; Hillebrand-Voiculescu, A.M. Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: A preliminary study. Folia Microbiol. 2018, 63, 43–55. [Google Scholar] [CrossRef]
- Pusz, W.; Ogórek, R.; Knapik, R.; Kozak, B.; Bujak, H. The Occurrence of Fungi in the Recently Discovered Jarkowicka Cave in the Karkonosze Mts. (Poland). Geomicrobiol. J. 2014, 32, 59–67. [Google Scholar] [CrossRef]
- Ogórek, R.; Pusz, W.; Zagożdżon, P.P.; Kozak, B.; Bujak, H. Abundance and diversity of psychrotolerant cultivable mycobiota in winter of a former aluminous shale mine. Geomicrobiol. J. 2017, 34, 823–833. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; Malloch, D.; McAlpine, D.F.; Forbes, G.J. A world review of fungi, yeasts, and slime molds in caves. Int. J. Speleol. 2013, 42, 77–96. [Google Scholar] [CrossRef]
- Ogórek, R.; Višňovská, Z.; Tančinová, D. Mycobiota of underground habitats: Case study of Harmanecká Cave in Slovakia. Microb. Ecol. 2016, 71, 87–99. [Google Scholar] [CrossRef]
- Docampo, S.; Trigo, M.M.; Recio, M.; Melgar, M.; García-Sánchez, J.; Cabezudo, B. Fungal spore content of the atmosphere of the Cave of Nerja (southern Spain): Diversity and origin. Sci. Total Environ. 2011, 409, 835–843. [Google Scholar] [CrossRef]
- Kokurewicz, T.; Ogórek, R.; Pusz, W.; Matkowski, K. Bats increase the number of cultivable airborne fungi in the “Nietoperek” bat reserve in Western Poland. Microb. Ecol. 2016, 72, 36–48. [Google Scholar] [CrossRef] [Green Version]
- WHO. Indoor Air Pollutants: Exposure and health effects. In WHO EURO Reports and Studies; Report No 1983:78; World Health Organization: Copenhagen, Denmark, 1983. [Google Scholar]
- Brickus, L.S.R.; Siqueira, L.F.G.; De Aquino Neto, F.R.; Cardoso, J.N. Occurrence of airborne bacteria and fungi in bayside offices in Rio de Janeiro, Brazil. Indoor Built Environ. 1998, 7, 270–275. [Google Scholar] [CrossRef]
- Reynolds, S.J.; Black, D.W.; Borin, S.S.; Breuer, G.; Burmeister, L.F.; Fuortes, L.J.; Smith, T.F.; Stein, M.A.; Subramanian, P.; Thorne, P.S.; et al. Indoor environmental quality in six commercial office buildings in the Midwest United States. Appl. Occup. Environ. Hyg. 2001, 16, 1065–1077. [Google Scholar] [CrossRef]
- Barton, H.A.; Northup, D.E. Geomicrobiology in cave environments: Past, current, and future perspectives. J. Cave Karst Stud. 2007, 69, 163–178. [Google Scholar]
- Ogórek, R.; Pusz, W.; Lejman, A.; Uklańska-Pusz, C. Microclimate effects on number and distribution of fungi in the Włodarz undeground complex in the Owl Mountains (Góry Sowie), Poland. J. Cave Karst Stud. 2014, 76, 146–153. [Google Scholar] [CrossRef]
- Ogórek, R.; Dyląg, M.; Kozak, B.; Višňovská, Z.; Tančinová, D.; Lejman, A. Fungi isolated and quantified from bat guano and air in Harmanecká and Driny Caves (Slovakia). J. Cave Karst Stud. 2016, 78, 41–49. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; Malloch, D.; McAlpine, D.F. Ectomycota Associated with Arthropods from Bat Hibernacula in Eastern Canada, with Particular Reference Pseudogymnoascus destructans. Insects 2016, 7, 16. [Google Scholar] [CrossRef] [Green Version]
- Ogórek, R.; Guz-Regner, K.; Kokurewicz, T.; Baraniok, E.; Kozak, B. Airborne bacteria cultivated from underground hibernation sites in the Nietoperek bat reserve (Poland). J. Cave Karst Stud. 2018, 80, 161–171. [Google Scholar] [CrossRef]
- Adetutu, E.M.; Thorpe, K.; Bourne, S.; Cao, X.; Shahsavari, E.; Kirby, G.; Ball, A.S. Phylogenetic diversity of fungal communities in areas accessible and not accessible to tourists in Naracoorte Caves. Mycologia 2011, 103, 959–968. [Google Scholar] [CrossRef] [Green Version]
- Vaughan, M.; Maier, R.; Pryor, B. Fungal communities on speleothem surfaces in Kartchner Caverns, Arizona, USA. Int. J. Speleol. 2011, 40, 65–77. [Google Scholar] [CrossRef] [Green Version]
- Davy, C.M.; Donaldson, M.E.; Bandouchova, H.; Breit, A.M.; Dorville, N.A.S.; Dzal, Y.A.; Kovacova, V.; Kunkel, E.L.; Martínková, N.; Norquay, K.J.O.; et al. Transcriptional host–pathogen responses of Pseudogymnoascus destructans and three species of bats with white-nose syndrome. Virulence 2020, 11, 781–794. [Google Scholar] [CrossRef]
- Vanderwolf, K.J.; McAlpine, D.F. Hibernacula microclimate and declines in overwintering bats during an outbreak of white-nose syndrome near the northern range limit of infection in North America. Ecol. Evol. 2021, 11, 2273–2288. [Google Scholar] [CrossRef] [PubMed]
- Garzoli, L.; Riccucci, M.; Patriarca, E.; Debernardi, P.; Boggero, A.; Pecoraro, L.; Picco, A.M. First isolation of Pseudogymnoascus destructans, the fungal causative agent of white-nose disease, in bats from Italy. Mycopathologia 2019, 184, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Wynn-Williams, D.W. Ecological aspects of Antarctic microbiology. Adv. Microb. Ecol. 1990, 11, 71–146. [Google Scholar]
- Rampelotto, P.H. Extremophiles and extreme environments. Life 2013, 3, 482–485. [Google Scholar] [CrossRef]
- Buzzini, P.; Branda, E.; Goretti, M.; Turchetti, B. Psychrophilic yeasts from worldwide glacial habitats: Diversity, adaptation strategies and biotechnological potential. FEMS Microbiol. Ecol. 2012, 82, 217–241. [Google Scholar] [CrossRef]
- Collins, T.; Margesin, R. Psychrophilic lifestyles: Mechanisms of adaptation and biotechnological tools. Appl. Microbiol. Biotechnol. 2019, 103, 2857–2871. [Google Scholar] [CrossRef]
- Domínguez-Villar, D.; Lojen, S.; Krklec, K. Is global warming affecting cave temperatures? Experimental and model data from a paradigmatic case study. Clim. Dyn. 2015, 45, 569–581. [Google Scholar] [CrossRef]
- Shapiro, J.; Pringle, A. Anthropogenic Influences on the Diversity of Fungi Isolated from Caves in Kentucky and Tennessee. Am. Midl. Nat. 2010, 163, 76–86. [Google Scholar] [CrossRef]
- Droppa, A. Karst on Sivývrch. Československý Kras 1972, 23, 77–98. (In Slovak) [Google Scholar]
- Brestovská Cave. Slovak Caves Administration. Available online: http://www.ssj.sk (accessed on 12 May 2021).
- Ogórek, R.; Kurczaba, K.; Łobas, Z.; Żołubak, E.; Jakubska-Busse, A. Species Diversity of Micromycetes Associated with Epipactis helleborine and Epipactis purpurata (Orchidaceae, Neottieae) in Southwestern Poland. Diversity 2020, 12, 182. [Google Scholar] [CrossRef]
- Dyląg, M.; Sawicki, A.; Ogórek, R. Diversity of Species and Susceptibility Phenotypes toward Commercially Available Fungicides of Cultivable Fungi Colonizing Bones of Ursus spelaeus on Display in Niedźwiedzia Cave (Kletno, Poland). Diversity 2019, 11, 224. [Google Scholar] [CrossRef] [Green Version]
- Torres, D.E.; Rojas-Martínez, R.I.; Zavaleta-Mejía, E.; Guevara-Fefer, P.; Márquez-Guzmán, G.J.; Pérez-Martínez, C. Cladosporium cladosporioides and Cladosporium pseudocladosporioides as potential new fungal antagonists of Puccinia horiana Henn., the causal agent of chrysanthemum white rust. PLoS ONE 2017, 12, e0170782. [Google Scholar] [CrossRef] [Green Version]
- Rice, A.V.; Currah, R.S. Oidiodendron: A survey of the named species and related anamorphs of Myxotrichum. Stud. Mycol. 2005, 53, 83–120. [Google Scholar] [CrossRef] [Green Version]
- Samson, R.A.; Frisvad, J.C. Penicillium subgenus Penicillium: New taxonomic schemes and mycotoxins and other extrolites. Stud. Mycol. 2004, 49, 1–266. [Google Scholar]
- Ozerskaya, S.; Ivanushkina, N.; Kochkina, G.; Fattakhova, R.; Gilichinsky, D. Mycelial fungi in cryopegs. Int. J. Astrobiol. 2004, 3, 327–331. [Google Scholar] [CrossRef]
- Aveskamp, M.M.; De Gruyter, J.; Woudenberg, J.H.C.; Verkley, G.J.M.; Crous, P.W. Highlights of the Didymellaceae: A polyphasic approach to characterise Phoma and related pleosporalean genera. Stud. Mycol. 2010, 65, 1–60. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Kachalkin, A.V.; Daniel, H.M.; Groenewald, M.; Libkind, D.; De Garcia, V.; Zalar, P.; Gouliamova, D.E.; Boekhout, T.; Begerow, D. Two yeast species Cystobasidium psychroaquaticum f.a. sp. nov. and Cystobasidium rietchieii f.a. sp. nov. isolated from natural environments, and the transfer of Rhodotorula minuta clade members to the genus Cystobasidium. Antonie Leeuwenhoek 2015, 107, 173–185. [Google Scholar] [CrossRef]
- Fonseca, A.; Scorzetti, G.; Fell, J.W. Diversity in the yeast Cryptoccocus albidus and related species as revealed by ribosomal DNA sequence analysis. Can. J. Microbiol. 2000, 46, 7–27. [Google Scholar] [CrossRef]
- Yurkov, A.M.; Schäfer, A.M.; Begerow, D. Leucosporidium drummii sp. nov., a member of the Microbotryomycetes isolated from soil. Int. J. Syst. Evol. 2012, 62, 728–734. [Google Scholar] [CrossRef]
- Vandepol, N.; Liber, J.; Desirò, A.; Na, H.; Kennedy, M.; Barry, K.; Grigoriev, I.V.; Miller, A.N.; O’Donnell, K.; Stajich, J.E.; et al. Resolving the Mortierellaceae phylogeny through synthesis of multi-gene phylogenetics and phylogenomics. Fungal Divers. 2020, 104, 267–289. [Google Scholar] [CrossRef]
- Thomas-Hall, S.R.; Turchetti, B.; Buzzini, P.; Branda, E.; Boekhout, T.; Theelen, B.; Watson, K. Cold-adapted yeasts from Antarctica and the Italian Alps-description of three novel species: Mrakia robertii sp. nov., Mrakia blollopis sp. nov. and Mrakiella niccombsii sp. nov. Extremophiles 2010, 14, 47–59. [Google Scholar] [CrossRef] [Green Version]
- Yamada, Y.; Maeda, K.; Mikata, K. The phylogenetic relationships of the hat-shaped ascospore-forming, nitrate-assimilating Pichia species, formerly classified in the genus Hansenula Sydow et Sydow, based on the partial sequences of 18S and 26S ribosomal RNAs (Saccharomycetaceae): The proposals of three new genera, Ogataea, Kuraishia, and Nakazawaea. Biosci. Biotechnol. Biochem. 1994, 58, 1245–1257. [Google Scholar]
- Thomas-Hall, S.; Watson, K.; Scorzetti, G. Cryptococcus statzelliae sp. nov. and three novel strains of Cryptococcus victoriae, yeasts isolated from Antarctic soils. Int. J. Syst. Evol. 2002, 52, 2303–2308. [Google Scholar]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J.W. Amplification and direct sequencing of fungal ribosomal RNAgenes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: New York, NY, USA, 1990; pp. 315–322. [Google Scholar]
- Ogórek, R.; Dyląg, M.; Kozak, B. Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles 2016, 20, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Spellerberg, I.F.; Fedor, P. A tribute to Claude Shannon (1916–2001) and a plea for more rigorous use of species richness, species diversity and the ‘Shannon–Wiener’ Index. Glob. Ecol. Biogeogr. 2003, 12, 177–179. [Google Scholar] [CrossRef] [Green Version]
- Shannon, C.E.; Wiener, W. The Mathematical Theory of Communication; University Illinois Press: Urbana, IL, USA, 1963; p. 360. [Google Scholar]
- Marshall, V.; Poulson-Cook, S.; Moldenhauer, J. Comparativemold and yeast recovery analysis (the effect of differing incuba-tion temperature ranges and growth media). PDA J. Pharm. Sci. Technol. 1998, 52, 165–169. [Google Scholar]
- Meletiadis, J.; Meis, J.F.G.M.; Mouton, J.W.; Verweij, P.E. Analysis of growth characteristics of filamentous fungi in differ-ent nutrient media. J. Clin. Microbiol. 2001, 39, 478–484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Litman, M.L. A culture medium for the primary isolation of fungi. Science 1947, 106, 109–111. [Google Scholar] [CrossRef] [PubMed]
- Ogórek, R.; Kalinowska, K.; Pląskowska, E.; Baran, E.; Moszczyńska, E. Zanieczyszczenia powietrza grzybami na różnych podłożach hodowlanych w wybranych pomieszczeniach kliniki dermatologicznej. Część I/Mycological air pollutions on different culture mediums in selected rooms of dermatology department. (Part I). Med. Mycol. 2011, 18, 30–38. (In Polish) [Google Scholar]
- Ogórek, R.; Piecuch, A.; Višňovská, Z.; Cal, M.; Niedźwiecka, K. First Report on the Occurence of Dermatophytes of Microsporum Cookei Clade and Close Affinities to Paraphyton Cookei in the Harmanecká Cave (Veľká Fatra Mts., Slovakia). Diversity 2019, 11, 191. [Google Scholar] [CrossRef] [Green Version]
- Kumaresan, D.; Wischer, D.; Stephenson, J.; Hillebrand-Voiculescu, A.; Murrell, J.C. Microbiology of Movile Cave—chemolithoautotrophic ecosystem. Geomicrobiol. J. 2014, 31, 186–193. [Google Scholar] [CrossRef]
- Mammas, I.N.; Spandidos, D.A. Paediatric virology in the hippocratic corpus. Exp. Ther. Med. 2016, 12, 541–549. [Google Scholar] [CrossRef] [Green Version]
- WHO. Indoor Air Quality: Biological Contaminants: Report on a WHO Meeting, Rautavaara, 29 August–2 September 1988; European Series no. 31; WHO Regional Office for Europe: Copenhagan, Denmark, 1990. [Google Scholar]
- Choi, Y.W.; Hyde, K.D.; Ho, W.H. Single spore isolation of fungi. Fungal Divers. 1999, 3, 29–38. [Google Scholar]
- Pilarek, M. Polska Norma PN-89/Z-04111/03. Ochrona Czystości Powietrza. Badania Mikrobiologiczne. Oznaczanie Liczby Grzybów Mikroskopowych w Powietrzu Atmosferycznym (Imisja) Przy Pobieraniu Próbek Metodą Aspiracyjną i Sedymentacyjną/Polish Norm PN-89/Z-04111/03. Determination of the Number of Bacteria in the Atmospheric Air by Aspiration and Sedimentation Sampling; Polski Komitet Normalizacji Miar Jakości: Warszawa, Poland, 1989. (In Polish) [Google Scholar]
- Ogórek, R.; Dyląg, M.; Višňovská, Z.; Tančinová, D.; Zalewski, D. Speleomycology of air and rock surfaces in Driny Cave (Lesser Carpathians, Slovakia). J. Cave Karst Stud. 2016, 78, 119–127. [Google Scholar] [CrossRef]
- Ogórek, R. Speleomycology of air in Demänovská Cave of Liberty (Slovakia) and new airborne species for fungal sites. J. Cave Karst Stud. 2018, 80, 153–160. [Google Scholar] [CrossRef]
- Ogórek, R.; Kozak, B.; Višňovská, Z.; Tančinová, D. Phenotypic and genotypic diversity of airborne fungal spores in Demänovská Ice Cave (Low Tatras, Slovakia). Aerobiologia 2018, 34, 13–28. [Google Scholar] [CrossRef] [Green Version]
- Pusz, W.; Baturo-Cieśniewska, A.; Zagożdżon, P.P.; Ogórek, R. Mycobiota of the disused ore mine of Marcinków in Śnieżnik Masiff (western Poland). J. Mt. Sci. 2017, 14, 2448–2457. [Google Scholar] [CrossRef]
- Larsen, L.; Gravesen, S. Seasonal variation of outdoor airborne viable microfungi in Copenhagen, Denmark. Grana 1991, 30, 467–471. [Google Scholar] [CrossRef]
- Stępalska, D.; Harmata, K.; Kasprzyk, I.; Myszkowska, D.; Stach, A. Occurrence of air borne Cladosporium and Alternaria spores in Southern and Central Poland in 1995–1996. Aerobiologia 1999, 15, 39–47. [Google Scholar] [CrossRef]
- Pusz, W.; Ogórek, R.; Uklańska-Pusz, C.M.; Zagożdżon, P. Speleomycological research in underground Osówka complex in Sowie Mountains (Lower Silesia, Poland). Int. J. Speleol. 2014, 43, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Rapiejko, P.; Lipiec, A.; Wojdas, A.; Jurkiewicz, D. Threshold pollen concentration necessary to evoke allergic symptoms. Otolaryngol. Pol. 2004, 10, 91–94. [Google Scholar]
- Nadkarni, N.M.; Solano, R. Potential effects of climate change on canopy communities in a tropical cloud forest: An experimental approach. Oecologia 2002, 131, 580–586. [Google Scholar] [CrossRef]
- Garcia-Solache, M.A.; Casadevall, A. Global warming will bring new fungal diseases for mammals. MBio 2010, 1, e00061. [Google Scholar] [CrossRef] [Green Version]
- Connel, L.B.; Staudigel, H. Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2013, 2, 798–809. [Google Scholar] [CrossRef] [Green Version]
- Held, B.W.; Salomon, C.E.; Blanchette, R.A. Diverse subterranean fungi of anunderground iron ore mine. PLoS ONE 2012, 15, e0234208. [Google Scholar] [CrossRef]
- Holz, P.H.; Lumsden, L.F.; Marenda, M.S.; Browning, G.F.; Hufschmid, J. Two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans. PLoS ONE 2018, 13, e0204282. [Google Scholar] [CrossRef]
- Mondini, A.; Donhauser, J.; Itcus, C.; Marin, C.; Perșoiu, A.; Lavin, P.; Frey, B.; Purcarea, C. High-throughput sequencing of fungal communities across the perennial ice block of Scărișoara Ice Cave. Ann. Glaciol. 2018, 59, 134–146. [Google Scholar] [CrossRef] [Green Version]
- Korhola, M.; Hakonen, R.; Juuti, K.; Edelmann, M.; Kariluoto, S.; Nyström, L.; Sontag-Strohm, T.; Piironen, V. Production of folate in oat bran fermentation by yeasts isolated from barley and diverse foods. J. Appl. Microbiol. 2014, 117, 679–689. [Google Scholar] [CrossRef]
- Romo-Sánchez, S.; Alves-Baffi, M.; Arévalo-Villena, M.; Úbeda-Iranzo, J.; Briones-Pérez, A. Yeast biodiversity from oleic ecosystems: Study of their biotechnological properties. Food Microbiol. 2010, 27, 487–492. [Google Scholar] [CrossRef]
- Kulesza, K.; Biedunkiewicz, A.; Nowacka, K.; Glinka, P. Potentially pathogenic fungi of the Candida genus isolated from the Łyna River—A 20-year study. Ann. Parasitol. 2018, 64, 217–223. [Google Scholar]
- Fazli, M.A.; Razdan, V.K. A new record of Coniothyrium pyrinum on almond trees. Indian Phytopathol. 1991, 44, 422. [Google Scholar]
- Rush, R.; Cochran, S.; Haines, S.; Acosta, L.; Divjan, A.; Rundle, A.; Miller, R.; Perzanowski, M.; Dannemiller, K.; Green, B. Detection of environmentally ubiquitous Vishniacozyma victoriae (syn. Cryptococcus victoriae) in the homes of asthmatic and non-asthmatic children in New York City. J. Allergy Clin. Immunol. 2020, 145, AB164. [Google Scholar] [CrossRef]
- Grajewski, J.; Twarożek, M. The healthy aspects of the influence of moulds and mycotoxins. Alergia 2004, 13, 44–45. [Google Scholar]
- Schwab, C.J.; Straus, D.C. The roles of Penicillium and Aspergillus in Sick Building Syndrome. Adv. Appl. Microbiol. 2004, 55, 215–238. [Google Scholar]
- Jurado, V.; Laiz, L.; Rodriguez-Nava, V.; Boiron, P.; Hermosin, H.; Sanchez-Moral, S.; Saiz-Jimenez, C. Pathogenic and opportunistic microorganisms in caves. Int. J. Speleol. 2010, 39, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Geltner, C.; Lass-Flör, C.; Bonatti, H.; Müller, L.; Stelzmüller, I. Invasive pulmonary mycosis due to Penicillium chrysogenum: A new invasive pathogen. Transplantation 2013, 95, 21–23. [Google Scholar] [CrossRef]
- Mahomed, K.; Mlisana, K. Penicillium species: Is it a contaminant or pathogen? Delayed diagnosis in a case of pneumonia caused by Penicillium chrysogenum in a systemic lupus erythematosis patient. Int. J. Trop. Med. Publ. Health 2016, 1. [Google Scholar] [CrossRef]
- De La Cámara, R.; Pinilla, I.; Muñoz, E.; Buendía, B.; Steegmann, J.L.; Fernández-Rañada, J.M. Penicillium brevicompactum as the cause of a necrotic lung ball in an allogeneic bone marrow transplant recipient. Bone Marrow Transpl. 1996, 18, 1189–1193. [Google Scholar]
- Caro-Vadillo, A.; Payá-Vicens, M.J.; Martínez-Merlo, E.; García-Real, I.; Martín-Espada, C. Fungal pneumonia caused by Penicillium brevicompactum in a young Staffordshire bull terrier. Vet. Rec. 2007, 160, 595–596. [Google Scholar] [CrossRef]
- Larsen, T.O.; Frisvad, J.C.; Ravn, G.; Skaaning, T. Mycotoxin production by Penicillium expansum on blackcurrant and cherry juice. Food Addit. Contam. 1998, 15, 671–675. [Google Scholar] [CrossRef]
- Luciano-Rosario, D.; Keller, N.P.; Jurick, W.M. Penicillium expansum: Biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit. Mol. Plant Pathol. 2020, 21, 1391–1404. [Google Scholar] [CrossRef]
Fungal Species | Sampling Location | |||||
---|---|---|---|---|---|---|
I | II | III | IV | V | VI | |
Chrysosporium merdarium | ND | ND | ND | 2.2 b | ND | ND |
Cladosporium cladosporioides | 40.3 a* | 4.1 b | 11.9 ab | ND | ND | ND |
Coniothyrium pyrinum | ND | ND | 5.3 b | 2.7 ab | ND | ND |
Cystobasidium laryngis | ND | ND | ND | ND | ND | 3.6 c |
Epicoccum nigrum | 9.4 b | 10.6 b | ND | 3.4 ab | 1.4 b | 2.0 c |
Filobasidium wieringae | ND | ND | 1.3 b | ND | 1.0 b | ND |
Leucosporidium drummii | ND | ND | 19.8 a | ND | ND | ND |
Mortierella parvispora | ND | 39.7 a | 13.4 ab | ND | ND | ND |
Mrakia blollopis | 1.8 b | ND | ND | ND | 1.5 b | 5.3 c |
Mucor hiemalis | ND | ND | ND | 5.3 ab | 4.0 ab | 4.4 c |
Nakazawaea holstii | ND | 5.2 b | ND | ND | ND | 4.9 c |
Oidiodendron truncatum | ND | ND | ND | 8.7 a | 11.3 a | 23.0 a |
Penicillium brevicompactum | 4.4 b | ND | ND | 8.0 ab | ND | 2.2 c |
Penicillium chrysogenum | 1.2 b | ND | ND | 2.4 b | 4.2 ab | 1.8 c |
Penicillium expansum | ND | ND | ND | 2.8 ab | 8.0 ab | 17.7 ab |
Pseudogymnoascus pannorum | 3.5 b | ND | 2.1 b | 7.1 ab | 6.0 ab | ND |
Trichoderma viride | 2.7 b | 1.0 b | ND | ND | ND | ND |
Vishniacozyma victoriae | ND | 7.6 b | ND | ND | ND | 6.1 bc |
Shannon index | 0.5329 | 0.5542 | 0.6483 | 0.8977 | 0.7898 | 0.8362 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogórek, R.; Speruda, M.; Borzęcka, J.; Piecuch, A.; Cal, M. First Speleomycological Study on the Occurrence of Psychrophilic and Psychrotolerant Aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and First Reports for Some Species at Underground Sites. Biology 2021, 10, 497. https://doi.org/10.3390/biology10060497
Ogórek R, Speruda M, Borzęcka J, Piecuch A, Cal M. First Speleomycological Study on the Occurrence of Psychrophilic and Psychrotolerant Aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and First Reports for Some Species at Underground Sites. Biology. 2021; 10(6):497. https://doi.org/10.3390/biology10060497
Chicago/Turabian StyleOgórek, Rafał, Mateusz Speruda, Justyna Borzęcka, Agata Piecuch, and Magdalena Cal. 2021. "First Speleomycological Study on the Occurrence of Psychrophilic and Psychrotolerant Aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and First Reports for Some Species at Underground Sites" Biology 10, no. 6: 497. https://doi.org/10.3390/biology10060497
APA StyleOgórek, R., Speruda, M., Borzęcka, J., Piecuch, A., & Cal, M. (2021). First Speleomycological Study on the Occurrence of Psychrophilic and Psychrotolerant Aeromycota in the Brestovská Cave (Western Tatras Mts., Slovakia) and First Reports for Some Species at Underground Sites. Biology, 10(6), 497. https://doi.org/10.3390/biology10060497