Inborn Errors of Immunity and Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Epidemiology of the Association between IEI and Cancer
3. Pathogenesis of Cancer in IEI
3.1. Genomic Instability
3.2. Viral Infections
3.3. Chronic Antigen Stimulation
4. Malignancy Patterns of Various IEI Subtypes
4.1. Selective IgA Deficiency
4.2. Common Variable Immune Deficiency (CVID)
4.3. X-Linked Agammaglobulinemia (XLA)
4.4. Wiskott–Aldrich Syndrome (WAS)
4.5. Chromosome 22q11.2 Deletion Syndrome
4.6. Ataxia Telangiectasia (A–T)
4.7. WHIM Syndrome
5. Treatment of Cancer in IEI Patients
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Rezaei, N.; Aghamohammadi, A.; Notarangelo, L.D. Primary Immunodeficiency Diseases: Definition, Diagnosis and Management; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Schmidt, R.E.; Grimbacher, B.; Witte, T. Autoimmunity and primary immunodeficiency: Two sides of the same coin? Nat. Rev. Rheumatol. 2018, 14, 7–18. [Google Scholar] [CrossRef]
- Mortaz, E.; Tabarsi, P.; Mansouri, D.; Khosravi, A.; Garssen, J.; Velayati, A.; Adcock, I.M. Cancers Related to Immunodeficiencies: Update and Perspectives. Front. Immunol. 2016, 7, 365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shapiro, R.S.; Robbins, N.; Cowen, L.E. Regulatory Circuitry Governing Fungal Development, Drug Resistance, and Disease. Microbiol. Mol. Biol. Rev. 2011, 75, 213–267. [Google Scholar] [CrossRef] [Green Version]
- Madkaikar, M.; Mishra, A.; Ghosh, K. Diagnostic approach to primary immune deficiency disorders. Indian Pediatr. 2013, 50, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Al-Herz, W.; Bousfiha, A.; Casanova, J.-L.; Chatila, T.; Conley, M.E.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Gaspar, H.B.; Holland, S.M.; et al. Primary immunodeficiency diseases: An update on the classification from the international union of immunological societies expert committee for primary immunodeficiency. Front. Immunol. 2014, 5, 162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picard, C.; Al-Herz, W.; Bousfiha, A.; Casanova, J.-L.; Chatila, T.; Conley, M.E.; Cunningham-Rundles, C.; Etzioni, A.; Holland, S.M.; Klein, C.; et al. Primary Immunodeficiency Diseases: An Update on the Classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J. Clin. Immunol. 2015, 35, 696–726. [Google Scholar] [CrossRef] [Green Version]
- Bousfiha, A.; Jeddane, L.; Picard, C.; Al-Herz, W.; Ailal, F.; Chatila, T.; Cunningham-Rundles, C.; Etzioni, A.; Franco, J.L.; Holland, S.M.; et al. Human Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification. J. Clin. Immunol. 2020, 40, 66–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, J.M.; Buckley, R.H. Population Prevalence of Diagnosed Primary Immunodeficiency Diseases in the United States. J. Clin. Immunol. 2007, 27, 497–502. [Google Scholar] [CrossRef] [Green Version]
- Yee, A.; De Ravin, S.S.; Elliott, E.; Ziegler, J.B. Contributors to the Australian Paediatric Surveillance Unit. Severe combined im-munodeficiency: A national surveillance study. Pediatr. Allergy Immunol. 2008, 19, 298–302. [Google Scholar] [CrossRef]
- Maffeis, M.; Notarangelo, L.D.; Schumacher, R.F.; Soncini, E.; Soresina, A.; Lanfranchi, A.; Porta, F. Primary Immunodeficiencies and Oncological Risk: The Experience of the Children’s Hospital of Brescia. Front. Pediatr. 2019, 7, 232. [Google Scholar] [CrossRef] [Green Version]
- Primary Immune Deficiency Association (PIA) Survey. Available online: http://www.oysterhc.co.uk/market-research.cfm (accessed on 12 December 2020).
- Bonilla, F.A.; Geha, R.S. Primary immunodeficiency diseases. J. Allergy Clin. Immunol. 2003, 111, S571–S581. [Google Scholar] [CrossRef]
- Ballow, M. Primary immunodeficiency disorders: Antibody deficiency. J. Allergy Clin. Immunol. 2002, 109, 581–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Andrews, T.; Sullivan, K.E. Infections in Patients with Inherited Defects in Phagocytic Function. Clin. Microbiol. Rev. 2003, 16, 597–621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCusker, C.; Warrington, R. Primary immunodeficiency. Allergy Asthma Clin. Immunol. 2011, 7, S11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham-Rundles, C.; Bodian, C. Common Variable Immunodeficiency: Clinical and Immunological Features of 248 Patients. Clin. Immunol. 1999, 92, 34–48. [Google Scholar] [CrossRef]
- Saiki, O.; Ralph, P.; Cunningham-Rundles, C.; Good, R.A. Three distinct stages of B-cell defects in common varied immunodeficiency. Proc. Natl. Acad. Sci. USA 1982, 79, 6008–6012. [Google Scholar] [CrossRef] [Green Version]
- Page, A.R.; Hansen, A.; Good, R. Occurrence of leukemia and lymphoma in patients with agammaglobulinemia. Blood 1963, 21, 197–206. [Google Scholar] [CrossRef] [Green Version]
- Boder, E.; Sedgwick, R.P. Ataxia-telangiectasia; a familial syndrome of progressive cerebellar ataxia, oculocutaneous telangiectasia and frequent pulmonary infection. Pediatrics 1958, 21, 526–554. [Google Scholar] [PubMed]
- Mueller, B.U.; Pizzo, P.A. Cancer in children with primary or secondary immunodeficiencies. J. Pediatr. 1995, 126, 1–10. [Google Scholar] [CrossRef]
- Gross, T.G.; Shiramizu, B. Lymphoproliferative disorders and malignancies related to immunodeficiencies. In Principles and Practice of Pediatric Oncology; Pizzo, P.A., Poplack, D.G., Eds.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2006; pp. 748–767. [Google Scholar]
- Filipovich, A.H.; Mathur, A.; Kamat, D.; Kersey, J.H.; Shapiro, R.S. Lymphoproliferative disorders and other tumors complicating immunodeficiencies. Immunodeficiency 1994, 5, 91–112. [Google Scholar]
- Filipovich, A.H.; Mathur, A.; Kamat, D.; Shapiro, R.S. Primary immunodeficiencies: Genetic risk factors for lymphoma. Cancer Res. 1992, 52, 5465–5467. [Google Scholar]
- Shapiro, R.S. Malignancies in the setting of primary immunodeficiency: Implications for hematologists/oncologists. Am. J. Hematol. 2010, 86, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Mellemkjaer, L.; Hammarström, L.; Andersen, V.; Yuen, J.; Heilmann, C.; Barington, T.; Björkander, J.; Olsen, J.H. Cancer risk among patients with IgA deficiency or common variable immunodeficiency and their relatives: A combined Danish and Swedish study. Clin. Exp. Immunol. 2002, 130, 495–500. [Google Scholar] [CrossRef]
- Bosch, J.V.D.W.T.; Akker, M.V.D. Genetic predisposition and hematopoietic malignancies in children: Primary immunodeficiency. Eur. J. Med Genet. 2016, 59, 647–653. [Google Scholar] [CrossRef]
- Oertel, S.; Reiss, H. Immunosurveillance, Immunodeficiency and Lymphoproliferations; Springer: Berlin/Heidelberg, Germany, 2002; 159p. [Google Scholar]
- Vajdic, C.M.; Mao, L.; Van Leeuwen, M.T.; Kirkpatrick, P.; Grulich, A.E.; Riminton, S. Are antibody deficiency disorders associated with a narrower range of cancers than other forms of immunodeficiency? Blood 2010, 116, 1228–1234. [Google Scholar] [CrossRef]
- Jonkman-Berk, B.; Berg, J.V.D.; Berge, I.T.; Bredius, R.; Driessen, G.; Dalm, V.; Van Dissel, J.; Van Deuren, M.; Ellerbroek, P.; Van Der Flier, M.; et al. Primary immunodeficiencies in the Netherlands: National patient data demonstrate the increased risk of malignancy. Clin. Immunol. 2015, 156, 154–162. [Google Scholar] [CrossRef]
- Mayor, P.C.; Eng, K.H.; Singel, K.L.; Abrams, S.I.; Odunsi, K.; Moysich, K.B.; Fuleihan, R.; Garabedian, E.; Lugar, P.; Ochs, H.D.; et al. Cancer in primary immunodeficiency diseases: Cancer incidence in the United States Immune Deficiency Network Registry. J. Allergy Clin. Immunol. 2018, 141, 1028–1035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipovich, A.H.; Heinitz, K.J.; Robison, L.L.; Frizzera, G. The immunodeficiency Cancer Registry. A research resource. Am. J. Pediatr. Hematol. Oncol. 1987, 9, 183–184. [Google Scholar] [CrossRef]
- Geha, R.S.; Notarangelo, L.D.; Casanova, J.-L.; Chapel, H.; Conley, M.E.; Fischer, A.; Hammarström, L.; Nonoyama, S.; Ochs, H.D.; Puck, J.M.; et al. Primary immunodeficiency diseases: An update from the International Union of Immunological Societies Primary Immunodeficiency Diseases Classification Committee. J. Allergy Clin. Immunol. 2007, 120, 776–794. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salavoura, K.; Kolialexi, A.; Tsangaris, G.; Mavrou, A. Development of cancer in patients with primary immunodeficiencies. Anticancer. Res. 2008, 28, 1263–1270. [Google Scholar] [PubMed]
- Kersey, J.H.; Shapiro, R.S.; Filipovich, A.H. Relationship of immunodeficiency to lymphoid malignancy. Pediatr. Infect. Dis. J. 1988, 7, S10–S12. [Google Scholar] [CrossRef]
- Cunningham-Rundles, C.; Lieberman, P.; Hellman, G.; Chaganti, R.S. Non-Hodgkin lymphoma in common variable immunodeficiency. Am. J. Hematol. 1991, 37, 69–74. [Google Scholar] [CrossRef]
- Penn, I. Tumors of the Immunocompromised Patient. Annu. Rev. Med. 1988, 39, 63–73. [Google Scholar] [CrossRef]
- Kersey, J.H.; Spector, B.D.; Good, R.A. Primary immunodeficiency diseases and cancer: The immunodeficiency-cancer registry. Int. J. Cancer 1973, 12, 333–347. [Google Scholar] [CrossRef] [PubMed]
- Burnet, M. Cancer—A Biological Approach: I. The Processes of Control. II. The Significance of Somatic Mutation. Br. Med. J. 1957, 1, 779–786. [Google Scholar] [CrossRef]
- Swann, J.B.; Smyth, M.J. Immune surveillance of tumors. J. Clin. Investig. 2007, 117, 1137–1146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Finn, O.J. Immuno-oncology: Understanding the function and dysfunction of the immune system in cancer. Ann. Oncol. 2012, 23, viii6–viii9. [Google Scholar] [CrossRef] [PubMed]
- Satge, D. A Tumor Profile in Primary Immune Deficiencies Challenges the Cancer Immune Surveillance Concept. Front. Immunol. 2018, 9, 1149. [Google Scholar] [CrossRef] [PubMed]
- Hauck, F.; Voss, R.; Urban, C.; Seidel, M.G. Intrinsic and extrinsic causes of malignancies in patients with primary immunodeficiency disorders. J. Allergy Clin. Immunol. 2018, 141, 59–68.e4. [Google Scholar] [CrossRef] [Green Version]
- De Miranda, N.F.; Björkman, A.; Pan-Hammarström, Q. DNA repair: The link between primary immunodeficiency and cancer. Ann. N. Y. Acad. Sci. 2011, 1246, 50–63. [Google Scholar] [CrossRef]
- Filipovich, A.H.; Gross, T.G. Immunodeficiency and Cancer. Abeloff’s Clin. Oncol. 2008, 223–231. [Google Scholar] [CrossRef]
- Notarangelo, L.D.; Roifman, C.M.; Giliani, S. Cartilage-hair hypoplasia: Molecular basis and heterogeneity of the immunological phenotype. Curr. Opin. Allergy Clin. Immunol. 2008, 8, 534–539. [Google Scholar] [CrossRef]
- Moulding, D.A.; Blundell, M.P.; Spiller, D.G.; White, M.R.; Cory, G.O.; Calle, Y.; Kempski, H.; Sinclair, J.; Ancliff, P.J.; Kinnon, C.; et al. Unregulated actin polymerization by WASp causes defects of mitosis and cytokinesis in X-linked neutropenia. J. Exp. Med. 2007, 204, 2213–2224. [Google Scholar] [CrossRef]
- Gasser, S. DNA damage response and development of targeted cancer treatments. Ann. Med. 2007, 39, 457–464. [Google Scholar] [CrossRef]
- Bartkova, J.; Hořejší, Z.; Koed, K.; Krämer, A.; Tort, F.; Zieger, K.; Guldberg, P.; Sehested, M.; Nesland, J.M.; Lukas, C.; et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 2005, 434, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Revy, P.; Buck, D.; le Deist, F.; de Villartay, J.P. The repair of DNA damages/modifications during the maturation of the immune system: Lessons from human primary immunodeficiency disorders and animal models. Adv. Immunol. 2005, 87, 237–295. [Google Scholar]
- Madhusudan, S.; Abbotts, R.; Thompson, N. DNA repair in cancer: Emerging targets for personalized therapy. Cancer Manag. Res. 2014, 6, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Rezaei, N.; Hedayat, M.; Aghamohammadi, A.; Nichols, K.E. Primary immunodeficiency diseases associated with increased susceptibility to viral infections and malignancies. J. Allergy Clin. Immunol. 2011, 127, 1329–1341.e2. [Google Scholar] [CrossRef] [PubMed]
- Pierangeli, A.; Antonelli, G.; Gentile, G. Immunodeficiency-associated viral oncogenesis. Clin. Microbiol. Infect. 2015, 21, 975–983. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mace, E.M.; Orange, J.S. Genetic Causes of Human NK Cell Deficiency and Their Effect on NK Cell Subsets. Front. Immunol. 2016, 7, 545. [Google Scholar] [CrossRef] [PubMed]
- Spinner, M.A.; Sanchez, L.A.; Hsu, A.P.; Shaw, P.A.; Zerbe, C.S.; Calvo, K.R.; Arthur, D.C.; Gu, W.; Gould, C.M.; Brewer, C.C.; et al. GATA2 deficiency: A protean disorder of hematopoiesis, lymphatics, and immunity. Blood 2014, 123, 809–821. [Google Scholar] [CrossRef] [Green Version]
- Cipriani, N.A.; Blair, E.; Taxy, J.B. WHIM syndrome and oral squamous cell carcinoma. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontolo. 2010, 109, 105–108. [Google Scholar] [CrossRef]
- Cohen, S.B.; Fenneteau, O.; Plouvier, E.; Rohrlich, P.-S.; Daltroff, G.; Plantier, I.; Dupuy, A.; Kerob, D.; Beaupain, B.; Bordigoni, P.; et al. Description and outcome of a cohort of 8 patients with WHIM syndrome from the French Severe Chronic Neutropenia Registry. Orphanet J. Rare Dis. 2012, 7, 71. [Google Scholar] [CrossRef] [Green Version]
- Philip, M.; Rowley, D.A.; Schreiber, H. Inflammation as a tumor promoter in cancer induction. Semin. Cancer Biol. 2004, 14, 433–439. [Google Scholar] [CrossRef]
- Palendira, U.; Rickinson, A.B. Primary immunodeficiencies and the control of Epstein–Barr virus infection. Ann. N. Y. Acad. Sci. 2015, 1356, 22–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, D.; Gutkind, J.S. Human tumor-associated viruses and new insights into the molecular mechanisms of cancer. Oncogene 2008, 27, S31–S42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maccari, M.E.; Abolhassani, H.; Aghamohammadi, A.; Aiuti, A.; Aleinikova, O.; Bangs, C.; Baris, S.; Barzaghi, F.; Baxendale, H.; Buckland, M.; et al. Disease Evolution and Response to Rapamycin in Activated Phosphoinositide 3-Kinase δ Syndrome: The European Society for Immunodeficiencies-Activated Phosphoinositide 3-Kinase δ Syndrome Registry. Front. Immunol. 2018, 9, 543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsao, S.W.; Tsang, C.M.; To, K.F.; Lo, K.W. The role of Epstein-Barr virus inepithelial malignancies. J. Pathol. 2015, 235, 323–333. [Google Scholar] [CrossRef] [PubMed]
- Carbone, A.; Gloghini, A.; Dotti, G. EBV-Associated Lymphoproliferative Disorders: Classification and Treatment. Oncology 2008, 13, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Gross, T.G. A review of Epstein-Barr Virus infection in patients with immunodeficiency disorders. Am. J. Med. Sci. 2000, 319, 392–396. [Google Scholar]
- Coleman, C.B.; Wohlford, E.M.; Smith, N.A.; King, C.A.; Ritchie, J.A.; Baresel, P.C.; Kimura, H.; Rochford, R. Epstein-Barr Virus Type 2 Latently Infects T Cells, Inducing an Atypical Activation Characterized by Expression of Lymphotactic Cytokines. J. Virol. 2015, 89, 2301–2312. [Google Scholar] [CrossRef] [Green Version]
- Trinchieri, G. The choices of a natural killer. Nat. Immunol. 2003, 4, 509–510. [Google Scholar] [CrossRef] [PubMed]
- Li, F.-Y.; Chaigne-Delalande, B.; Su, H.; Uzel, G.; Matthews, H.; Lenardo, M.J. XMEN disease: A new primary immunodeficiency affecting Mg2+ regulation of immunity against Epstein-Barr virus. Blood 2014, 123, 2148–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latour, S.; Winter, S. Inherited Immunodeficiencies With High Predisposition to Epstein–Barr Virus-Driven Lymphoproliferative Diseases. Front. Immunol. 2018, 9, 1103. [Google Scholar] [CrossRef] [PubMed]
- European Society for Immunodeficiencies. Diagnostic Criteria PID: IgA Deficiency Diagnostic Criteria, European Society for Immunodeficiencies 2016. Available online: https://esid.org/Education/IgA-Deficiency (accessed on 3 September 2019).
- Schroeder, H.W., Jr.; Zhu, Z.B.; March, R.; Campbell, R.D.; Berney, S.M.; Nedospasov, S.A.; Turetskaya, R.L.; Atkinson, T.P.; Go, R.C.; Cooper, M.D.; et al. Susceptibility locus for IgA deficiency and common variable immunodeficiency in the HLA-DR3, 2B8, 2A1 haplotypes. Mol. Med. 1998, 4, 72–86. [Google Scholar] [CrossRef] [PubMed]
- Yazdani, R.; Azizi, G.; Abolhassani, H.; Aghamohammadi, A. Selective IgA Deficiency: Epidemiology, Pathogenesis, Clinical Phenotype, Diagnosis, Prognosis and Management. Scand. J. Immunol. 2017, 85, 3–12. [Google Scholar] [CrossRef]
- Aghamohammadi, A.; Cheraghi, T.; Gharagozlou, M.; Movahedi, M.; Rezaei, N.; Yeganeh, M.; Parvaneh, N.; Abolhassani, H.; Pourpak, Z.; Moin, M. IgA Deficiency: Correlation Between Clinical and Immunological Phenotypes. J. Clin. Immunol. 2008, 29, 130–136. [Google Scholar] [CrossRef]
- Halfdanarson, T.R.; Litzow, M.R.; Murray, J.A. Hematologic manifestations of celiac disease. Blood 2006, 109, 412–421. [Google Scholar] [CrossRef] [Green Version]
- Bonilla, F.A.; Bernstein, I.L.; Khan, D.A.; Ballas, Z.K.; Chinen, J.; Frank, M.M.; Kobrynski, L.J.; Levinson, A.I.; Mazer, B.; Nelson, R.P., Jr.; et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann. Allergy Asthma Immunol. 2005, 95, S1–S63. [Google Scholar] [CrossRef]
- Diez, R.; Garcia, M.J.; Vivas, S.; Arias, L.; Rascarachi, G.; Pozo, E.; Vaquero, L.M.; Miguel, A.; Sierra, M.; Calleja, S.; et al. Gastrointestinal manifestations in patients with primary immunodeficiencies causing antibody deficiency. Gastroenterol. Hepatol. 2010, 33, 347–351. [Google Scholar]
- Magen, E.; Waitman, D.A.; Goldstein, N.; Schlesinger, M.; Dickstein, Y.; Kahan, N.R. Helicobacter pylori infection in patients with se-lective immunoglobulin a deficiency. Clin. Exp. Immunol. 2016, 184, 332–337. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, M.M.; Ott, G.; Klinker, H.; Trunk, M.J.; Katzenberger, T.; Müller-Hermelink, H.K. Abdominal T-Cell Non-Hodgkin’s Lymphoma of the Gamma/Delta Type in a Patient with Selective Immunoglobulin A Deficiency. Am. J. Surg. Pathol. 1998, 22, 500–506. [Google Scholar] [CrossRef] [PubMed]
- Wobser, M.; Kerstan, A.; Kneitz, H.; Goebeler, M.; Kunzmann, V.; Rosenwald, A.; Geissinger, E. Primary cutaneous marginal zone lymphoma with sequential development of nodal marginal zone lymphoma in a patient with selective immunoglobulin A deficiency. J. Cutan. Pathol. 2013, 40, 1035–1041. [Google Scholar] [CrossRef]
- Park, M.; Li, J.T.; Hagan, J.B.; Maddox, D.; Abraham, R.S. Common variable immunodeficiency: A new look at an old disease. Lancet 2008, 372, 489–502. [Google Scholar] [CrossRef]
- Resnick, E.S.; Moshier, E.L.; Godbold, J.H.; Cunningham-Rundles, C. Morbidity and mortality in common variable immune deficiency over 4 decades. Blood 2012, 119, 1650–1657. [Google Scholar] [CrossRef]
- Keller, M.D.; Jyonouchi, S. Chipping away at a mountain: Genomic studies in common variable immunodeficiency. Autoimmun. Rev. 2013, 12, 687–689. [Google Scholar] [CrossRef] [Green Version]
- Anzilotti, C.; Kienzler, A.K.; Lopez-Granados, E.; Gooding, S.; Davies, B.; Pandit, H.; Lucas, M.; Price, A.; Littlewood, T.; van der Burg, M.; et al. Key stages of bone marrow B-cell maturation are defective in patients with common variable immunodeficiency disorders. J. Allergy Clin. Immunol. 2015, 136, 487–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giovannetti, A.; Pierdominici, M.; Mazzetta, F.; Marziali, M.; Renzi, C.; Mileo, A.M.; De Felice, M.; Mora, B.; Esposito, A.; Carello, R.; et al. Unravelling the complexity of T cell abnormalities in common variable immunodeficiency. J. Immunol. 2007, 178, 3932–3943. [Google Scholar] [CrossRef]
- Viallard, J.-F.; Camou, F.; André, M.; Liferman, F.; Moreau, J.-F.; Pellegrin, J.-L.; Blanco, P. Altered dendritic cell distribution in patients with common variable immunodeficiency. Arthritis Res. 2005, 7, R1052–R1055. [Google Scholar] [CrossRef] [Green Version]
- Grimbacher, B.; Hutloff, A.; Schlesier, M.; Glocker, E.; Warnatz, K.; Dräger, R.; Eibel, H.; Fischer, B.; Schäffer, A.A.; Mages, H.W.; et al. Homozygous loss of ICOS is associated with adult-onset common variable immunodeficiency. Nat. Immunol. 2003, 4, 261–268. [Google Scholar] [CrossRef]
- van Zelm, M.C.; Reisli, I.; van der Burg, M.; Castaño, D.; van Noesel, C.J.; van Tol, M.J.; Woellner, C.; Grimbacher, B.; Patiño, P.J.; van Dongen, J.J.; et al. An antibody-deficiency syndrome due to mutations in the CD19 gene. N. Engl. J. Med. 2006, 354, 1901–1912. [Google Scholar] [CrossRef] [Green Version]
- Salzer, U.; Chapel, H.; Webster, A.D.B.; Panhammarstrom, Q.; Schmittgraeff, A.; Schlesier, M.; Peter, H.H.; Rockstroh, J.K.; Schneider, P.B.; Schaffer, A.; et al. Mutations in TNFRSF13B encoding TACI are associated with common variable immunodeficiency in humans. Nat. Genet. 2005, 37, 820–828. [Google Scholar] [CrossRef]
- Castigli, E.; Wilson, S.A.; Garibyan, L.; Rachid, R.; Bonilla, F.; Schneider, L.; Geha, R.S. TACI is mutant in common variable immuno-deficiency and IgA deficiency. Nat. Genet. 2005, 37, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Losi, C.G.; Silini, A.; Fiorini, C.; Soresina, A.; Meini, A.; Ferrari, S.; Notarangelo, L.D.; Lougaris, V.; Plebani, A. Mutational Analysis of Human BAFF Receptor TNFRSF13C (BAFF-R) in Patients with Common Variable Immunodeficiency. J. Clin. Immunol. 2005, 25, 496–502. [Google Scholar] [CrossRef] [PubMed]
- Cunningham-Rundles, C. The many faces of common variable immunodeficiency. Hematology 2012, 2012, 301–305. [Google Scholar] [CrossRef] [Green Version]
- Uzzan, M.; Ko, H.M.; Mehandru, S.; Cunningham-Rundles, C. Gastrointestinal Disorders Associated with Common Variable Immune Deficiency (CVID) and Chronic Granulomatous Disease (CGD). Curr. Gastroenterol. Rep. 2016, 18, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham-Rundles, C.; Cooper, D.L.; Duffy, T.P.; Strauchen, J. Lymphomas of mucosal-associated lymphoid tissue in common variable immunodeficiency. Am. J. Hematol. 2002, 69, 171–178. [Google Scholar] [CrossRef]
- Kinlen, L.J.; Webster, A.D.; Bird, A.G.; Haile, R.; Peto, J.; Soothill, J.F.; Thompson, R.A. Prospective study of cancer in patients with hy-pogammaglobulinaemia. Lancet 1985, 1, 263–266. [Google Scholar] [CrossRef]
- Kiaee, F.; Azizi, G.; Rafiemanesh, H.; Zainaldain, H.; Sadaat Rizvi, F.; Alizadeh, M.; Jamee, M.; Mohammadi, S.; Habibi, S.; Sharifi, L.; et al. Malignancy in common variable immunodeficiency: A systematic review and meta-analysis. Expert Rev. Clin. Immunol. 2019, 15, 1105–1113. [Google Scholar] [CrossRef]
- Chua, I.; Quinti, I.; Grimbacher, B. Lymphoma in common variable immuno-deficiency: Interplay between immune dysregulation, infection and genetics. Curr. Opin. Hematol. 2008, 15, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Zullo, A.; Romiti, A.; Rinaldi, V.; Vecchione, A.; Tomao, S.; Aiuti, F.; Frati, L.; Luzi, G. Gastric pathology in patients with common variable immunodeficiency. Gut 1999, 45, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Quiding-Järbrink, M.; Sundström, P.; Lundgren, A.; Hansson, M.; Bäckström, M.; Johansson, C.; Enarsson, K.; Hermansson, M.; Johnsson, E.; Svennerholm, A.M. Decreased IgA antibody production in the stomach of gastric adenocarcinoma patients. Clin. Immunol. 2009, 131, 463–471. [Google Scholar] [CrossRef]
- Correa, P.; Piazuelo, M.B. The gastric precancerous cascade. J. Dig. Dis. 2012, 13, 2–9. [Google Scholar] [CrossRef] [Green Version]
- Desar, I.M.; Keuter, M.; Raemaekers, J.M.; Jansen, J.B.; van Krieken, J.H.; van der Meer, J.W. Extranodal marginal zone (MALT) lym-phoma in common variable immunodeficiency. Neth. J. Med. 2006, 64, 136–140. [Google Scholar]
- Wotherspoon, A.C.; Ortiz-Hidalgo, C.; Falzon, M.R.; Isaacson, P.G. Helicobacter pylori-associated gastritis and primary B-cell gastric lymphoma. Lancet 1991, 338, 1175–1176. [Google Scholar] [CrossRef]
- Shillitoe, B.; Gennery, A. X-Linked Agammaglobulinaemia: Outcomes in the modern era. Clin. Immunol. 2017, 183, 54–62. [Google Scholar] [CrossRef]
- Vetrie, D.; Vořechovský, I.; Sideras, P.; Holland, J.; Davies, A.; Flinter, F.; Hammarström, L.; Kinnon, C.; Levinsky, R.J.; Bobrow, M.; et al. The gene involved in X-linked agammaglobulinaemia is a member of the src family of protein-tyrosine kinases. Nature 1993, 361, 226–233. [Google Scholar] [CrossRef]
- Tsukada, S.; Saffran, D.C.; Rawlings, D.J.; Parolini, O.; Allen, R.; Klisak, I.; Sparkes, R.S.; Kubagawa, H.; Mohandas, T.; Quan, S.; et al. Deficient expression of a B cell cytoplasmic tyrosine kinase in human X-linked agammaglobulinemia. Cell 1993, 72, 279–290. [Google Scholar] [CrossRef]
- Plebani, A.; Soresina, A.; Rondelli, R.; Amato, G.M.; Azzari, C.; Cardinale, F.; Cazzola, G.; Consolini, R.; De Mattia, D.; Dell’Erba, G.; et al. Clinical, immunological, and molecular analysis in a large cohort of patients with X-linked agammaglobulinemia: An Italian multicenter study. Clin. Immunol. 2002, 104, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Lougaris, V.; Soresina, A.; Baronio, M.; Montin, D.; Martino, S.; Signa, S.; Volpi, S.; Zecca, M.; Marinoni, M.; Baselli, L.A.; et al. Long-term follow-up of 168 patients with X-linked agammaglobulinemia reveals increased morbidity and mortality. J. Allergy Clin. Immunol. 2020, 146, 429–437. [Google Scholar] [CrossRef] [PubMed]
- Barmettler, S.; Otani, I.M.; Minhas, J.; Abraham, R.S.; Chang, Y.; Dorsey, M.J.; Ballas, Z.K.; Bonilla, F.A.; Ochs, H.D.; Walter, J.E. Gastroin-testinal manifestations in X-linkedagammaglobulinemia. J. Clin. Immunol. 2017, 38, 287–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lavilla, P.; Gil, A.; Rodríguez, M.C.G.; Dupla, M.L.; Pintado, V.; Fontán, G. X-Linked agammaglobulinemia and gastric adenocarcinoma. Cancer 1993, 72, 1528–1531. [Google Scholar] [CrossRef]
- Staines Boone, A.T.; Torres Martínez, M.G.; López Herrera, G.; de LeijaPortilla, J.O.; Espinosa Padilla, S.E.; Espinosa Rosales, F.J.; Lugo Reyes, S.O. Gastric adenocarcinoma in the context of X-linked agammaglobulinemia: Case report and review of the literature. J. Clin. Immunol. 2013, 34, 10–13. [Google Scholar] [CrossRef]
- Rhodes, J.M.; Campbell, B.J. Inflammation and colorectal cancer: IBD-associated and sporadic cancer compared. Trends Mol. Med. 2002, 8, 10–16. [Google Scholar] [CrossRef]
- Pan, Y.; Chiu, Y.H.; Chiu, S.C.; Cho, D.Y.; Lee, L.M.; Wen, Y.C.; Whang-Peng, J.; Hsiao, C.H.; Shih, P.H. Inhibition of Bruton’s Tyrosine Kinase Suppresses Cancer Stemness and Promotes Carboplatin-induced Cytotoxicity Against Bladder Cancer Cells. Anticancer Res. 2020, 40, 6093–6099. [Google Scholar] [CrossRef]
- Candotti, F. Clinical Manifestations and Pathophysiological Mechanisms of the Wiskott-Aldrich Syndrome. J. Clin. Immunol. 2018, 38, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Bosticardo, M.; Marangoni, F.; Aiuti, A.; Villa, A.; Roncarolo, M.G. Recent advances in understanding the pathophysiology of Wiskott-Aldrich syndrome. Blood 2009, 113, 6288–6295. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; Morio, T.; Zhu, Y.; Jin, Y.; Itoh, S.; Kajiwara, M.; Yata, J.-I.; Mizutani, S.; Ochs, H.D.; Nonoyama, S. Clinical course of patients with WASP gene mutations. Blood 2004, 103, 456–464. [Google Scholar] [CrossRef] [Green Version]
- De Meester, J.; Calvez, R.; Valitutti, S.; Dupré, L. The Wiskott-Aldrichsyndrome protein regulates CTL cytotoxicity and is required for efficient killingof B cell lymphoma targets. J. Leukoc. Biol. 2010, 88, 1031–1040. [Google Scholar] [CrossRef]
- Catucci, M.; Zanoni, I.; Draghici, E.; Bosticardo, M.; Castiello, M.C.; Venturini, M.; Cesana, D.; Montini, E.; Ponzoni, M.; Granucci, F.; et al. Wiskott-Aldrich syndrome protein deficiency in natural killer and dendritic cells affects antitumor immunity. Eur. J. Immunol. 2014, 44, 1039–1045. [Google Scholar] [CrossRef]
- Stevens, T.; Bosch, J.V.D.W.T.; De Rademaeker, M.; Bogaert, A.V.D.; Akker, M.V.D. Risk of malignancy in 22q11.2 deletion syndrome. Clin. Case Rep. 2017, 5, 486–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sullivan, K.E. Chromosome 22q11.2 deletion syndrome and DiGeorge syndrome. Immunol. Rev. 2018, 287, 186–201. [Google Scholar] [CrossRef] [PubMed]
- Crowley, B.; Ruffner, M.; McGinn, D.M.M.; Sullivan, K.E. Variable immune deficiency related to deletion size in chromosome 22q11.2 deletion syndrome. Am. J. Med. Genet. Part A 2018, 176, 2082–2086. [Google Scholar] [CrossRef] [PubMed]
- Upadhyaya, S.A.; Mody, R.; Walkovich, K.; Hutchinson, R.J.; Sandlund, J.T.; Connelly, J.A. Ataxia Telangiectasia and Cancer Predis-position: Challenges in Management. J. Pediatr. Hematol. Oncol. 2018, 40, 483–486. [Google Scholar] [CrossRef] [PubMed]
- Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia telangiectasia: A review. Orphanet J. Rare Dis. 2016, 11, 1–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suarez, F.; Mahlaoui, N.; Canioni, D.; Andriamanga, C.; Dubois d’Enghien, C.; Brousse, N.; Jais, J.P.; Fischer, A.; Hermine, O.; Stop-pa-Lyonnet, D. Incidence, Presentation, and prognosis of malignancies in Ataxia-teleangectasia: A report from the French National Registry of Inborn Errors of Immunity. J. Clin. Oncol. 2015, 33, 202–208. [Google Scholar] [CrossRef]
- Shen, L.; Yin, Z.-H.; Wan, Y.; Zhang, Y.; Li, K.; Zhou, B.-S. Association between ATM polymorphisms and cancer risk: A meta-analysis. Mol. Biol. Rep. 2011, 39, 5719–5725. [Google Scholar] [CrossRef]
- McDermott, D.H.; Murphy, P.M. WHIM syndrome: Immunopathogenesis, treatment and cure strategies. Immunol. Rev. 2018, 287, 91–102. [Google Scholar] [CrossRef]
- Dotta, L.; Notarangelo, L.D.; Moratto, D.; Kumar, R.; Porta, F.; Soresina, A.; Lougaris, V.; Plebani, A.; Smith, C.I.E.; Norlin, A.-C.; et al. Long-Term Outcome of WHIM Syndrome in 18 Patients: High Risk of Lung Disease and HPV-Related Malignancies. J. Allergy Clin. Immunol. Pract. 2019, 7, 1568–1577. [Google Scholar] [CrossRef] [Green Version]
- Chow, K.Y.; Brotin, É.; Ben Khalifa, Y.; Carthagena, L.; Teissier, S.; Danckaert, A.; Galzi, J.-L.; Arenzana-Seisdedos, F.; Thierry, F.; Bachelerie, F. A Pivotal Role for CXCL12 Signaling in HPV-Mediated Transformation of Keratinocytes: Clues to Understanding HPV-Pathogenesis in WHIM Syndrome. Cell Host Microbe 2010, 8, 523–533. [Google Scholar] [CrossRef] [Green Version]
- Chae, K.; Ertle, J.O.; Tharp, M.D. B-cell lymphoma in a patient with WHIM syndrome. J. Am. Acad. Dermatol. 2001, 44, 124–128. [Google Scholar] [CrossRef]
- Imashuku, S.; Miyagawa, A.; Chiyonobu, T.; Ishida, H.; Yoshihara, T.; Teramura, T.; Kuriyama, K.; Imamura, T.; Hibi, S.; Morimoto, A.; et al. Epstein- Barr virus- associated T- lymphoproliferative disease with hemophagocytic syndrome, followed by fatal in-testinal B lymphoma in a young adult female with WHIM syndrome. Warts, hypogammaglobulinemia, infections, and myelokathexis. Ann. Hematol. 2002, 81, 470–473. [Google Scholar] [CrossRef]
- Zhang, A.; Chen, X.; Li, Z.; Ruan, M.; Zhang, Y.; Zhu, X. Acute myeloid leukemia arising after Hodgkin lymphoma in a patient with WHIM syndrome. Pediatr. Blood Cancer 2019, 66, e27951. [Google Scholar] [CrossRef]
- Bomken, S.; van der Werff Ten Bosch, J.; Attarbaschi, A.; Bacon, C.M.; Borkhardt, A.; Boztug, K.; Fischer, U.; Hauck, F.; Kuiper, R.P.; Lammens, T.; et al. Current understanding and future research priorities in malignancy associated with inborn errors of immunity and DNA repair disorders: The perspective of an interdisciplinary working group. Front. Immunol. 2018, 9, 2912. [Google Scholar] [CrossRef]
- Tran, H.; Nourse, J.; Hall, S.; Green, M.; Griffiths, L.; Gandhi, M.K. Immunodeficiency-associated lymphomas. Blood Rev. 2008, 22, 261–281. [Google Scholar] [CrossRef]
- Riaz, I.B.; Faridi, W.; Patnaik, M.M.; Abraham, R.S. A Systematic Review on Predisposition to Lymphoid (B and T cell) Neoplasias in Patients with Primary Immunodeficiencies and Immune Dysregulatory Disorders (Inborn Errors of Immunity). Front. Immunol. 2019, 10, 777. [Google Scholar] [CrossRef]
- Cohen, J.M.; Sebire, N.J.; Harvey, J.; Gaspar, H.B.; Cathy, C.; Jones, A.; Rao, K.; Cubitt, D.; Amrolia, P.J.; Davies, E.G.; et al. Successful treatment of lymphoproliferative disease complicating primary immunodeficiency/immunodysregulatory disorders with reduced-intensity allogeneic stem-cell transplantation. Blood 2007, 110, 2209–2214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aiuti, A.; Cattaneo, F.; Galimberti, S.; Benninghoff, U.; Cassani, B.; Callegaro, L.; Scaramuzza, S.; Andolfi, G.; Mirolo, M.; Brigida, I.; et al. Gene Therapy for Immunodeficiency Due to Adenosine Deaminase Deficiency. N. Engl. J. Med. 2009, 360, 447–458. [Google Scholar] [CrossRef] [Green Version]
- Oft, M. No immunosurveillance in human IL-10R deficiency. Blood 2013, 122, 3702–3703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rael, E.; Rakszawski, K.; Koller, K.; Bayerl, M.; Butte, M.; Zheng, H. Treatment with rituximab and brentuximab vedotin in a patient of common variable immune deficiency-associated classic Hodgkin lymphoma. Biomark. Res. 2016, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardner, A.; de Mingo Pulido, Á.; Ruffell, B. Dendritic Cells and Their Role in Immunotherapy. Front. Immunol. 2020, 11, 924. [Google Scholar] [CrossRef] [PubMed]
- Vo, M.-C.; Ahn, S.-Y.; Chu, T.-H.; Uthaman, S.; Pillarisetti, S.; Uong, T.N.T.; Lakshmi, T.J.; Kim, M.; Song, G.-Y.; Jung, S.-H.; et al. A combination of immunoadjuvant nanocomplexes and dendritic cell vaccines in the presence of immune checkpoint blockade for effective cancer immunotherapy. Cell. Mol. Immunol. 2021, 1–3. [Google Scholar] [CrossRef]
- Verhoeven, D.; Stoppelenburg, A.J.; Meyer-Wentrup, F.; Boes, M. Increased risk of hematologic malignancies in primary immu-nodeficiency disorders: Opportunities for immunotherapy. Clin. Immunol. 2018, 190, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Derpoorter, C.; Bordon, V.; Laureys, G.; Haerynck, F.; Lammens, T. Genes at the Crossroad of Primary Immunodeficiencies and Cancer. Front. Immunol. 2018, 9, 2544. [Google Scholar] [CrossRef] [PubMed]
Abbreviation | Full Name |
---|---|
A–T | Ataxia–telangiectasia |
ALPS | Autoimmune lymphoproliferative syndrome |
ATM | Ataxia–telangiectasia mutated |
BLPDs | B cell lymphoproliferative disorders |
22q11.2DS | Chromosome 22q11.2 deletion syndrome |
CAR | Chimeric antigen receptor |
CID | Combined immunodeficiency |
CSR | Class switch recombination |
CTLs | Cytotoxic T lymphocytes |
CVID | Common variable immunodeficiency |
DCs | Dendritic cells |
DGS | DiGeorge Syndrome |
EBNA-2 | Epstein–Barr virus nuclear antigen 2 |
EBV | Epstein–Barr virus |
HL | Hodgkin’s lymphoma |
HHV | Human herpes virus |
HPV | Human papilloma virus |
ICR | Immunodeficiency Cancer Registry |
IEI | Inborn Errors of Immunity |
IFN | Interferon |
IL | Interleukin |
ITK | Interleukin-2-inducible T-cell kinase |
LPDs | Lymphoproliferative disorders |
MALT | Mucosa-associated lymphoid tissue |
NHL | Non-Hodgkin’s lymphoma |
PTLDs | Posttransplant lymphoproliferative disorders |
SCID | Severe combined immunodeficiency |
SMH | Somatic hypermutation |
TCR | T cell receptor |
TLR | Toll-like receptor |
TNF | Tumour necrosis factor |
WAS | Wiskott–Aldrich syndrome |
WHIM | Warts, hypogammaglobulinemia, infections, and myelokathexis |
XLA | X-Linked Agammaglobulinemia |
XLP | X-linked lymphoproliferative syndrome |
XMEN | X-linked immunodeficiency with magnesium defect, Epstein-Barr virus infection, and neoplasia |
Disease | Disease Frequency | Over-Represented Cancers |
---|---|---|
Selective IgA deficiency | 1:600 |
|
CVID | 1:25–50.000 |
|
X-linked agammaglobulinemia | 1:200.000 |
|
Wiskott-Aldrich syndrome | 1:100.000 |
|
Chromosome 22q11.2 deletion syndrome | 1:4.000 |
|
Ataxia telangiectasia | 1:40.000–100.000 |
|
WHIM syndrome | 1:4.000.000 |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiri, A.; Masetti, R.; Conti, F.; Tignanelli, A.; Turrini, E.; Bertolini, P.; Esposito, S.; Pession, A. Inborn Errors of Immunity and Cancer. Biology 2021, 10, 313. https://doi.org/10.3390/biology10040313
Tiri A, Masetti R, Conti F, Tignanelli A, Turrini E, Bertolini P, Esposito S, Pession A. Inborn Errors of Immunity and Cancer. Biology. 2021; 10(4):313. https://doi.org/10.3390/biology10040313
Chicago/Turabian StyleTiri, Alessandra, Riccardo Masetti, Francesca Conti, Anna Tignanelli, Elena Turrini, Patrizia Bertolini, Susanna Esposito, and Andrea Pession. 2021. "Inborn Errors of Immunity and Cancer" Biology 10, no. 4: 313. https://doi.org/10.3390/biology10040313
APA StyleTiri, A., Masetti, R., Conti, F., Tignanelli, A., Turrini, E., Bertolini, P., Esposito, S., & Pession, A. (2021). Inborn Errors of Immunity and Cancer. Biology, 10(4), 313. https://doi.org/10.3390/biology10040313