Dietary Carnitine and Carnosine Increase Body Lean in Healthy Cats in a Preliminary Study
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Housing
2.2. Group Assignments and Study Design
2.3. Body Composition Measurement
2.4. Complete Blood Count (CBC) and Blood Chemistry
2.5. Cytokines
2.6. Plasma Metabolomics
2.7. Statistical Analysis
3. Results
3.1. Body Composition
3.2. Complete Blood Count (CBC) and Blood Chemistry
3.3. Cytokines
3.4. Plasma Metabolomics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pekala, J.; Patkowska-Sokola, B.; Bodkowski, R.; Jamroz, D.; Nowakowski, P.; Lochynski, S.; Librowski, T. L-carnitine-metabolic functions and meaning in humans life. Curr. Drug Metab. 2011, 12, 667–678. [Google Scholar] [CrossRef]
- Vidal-Casariego, A.; Burgos-Peláez, R.; Martínez-Faedo, C.; Calvo-Gracia, F.; Valero-Zanuy, M.Á.; Luengo-Pérez, L.M.; Cuerda-Compés, C. Metabolic effects of L-carnitine on type 2 diabetes mellitus: Systematic review and meta-analysis. Exp. Clin. Endocrinol. Diabetes 2013, 121, 234–238. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, W.; Chen, G.; Zhu, W.; Ding, W.; Ge, Z.; Tan, Y.; Ma, T.; Cui, G. L-carnitine treatment of insulin resistance: A systematic review and meta-analysis. Adv. Clin. Exp. Med. 2017, 26, 333–338. [Google Scholar] [CrossRef]
- Abuzaid, A.A. Variation of Carnitine Concentrations in Angus Beef. Master’s Thesis, Iowa State University, Ames, IA, USA, 2010. [Google Scholar]
- Jung, S.; Bae, Y.S.; Yong, H.I.; Lee, H.J.; Seo, D.W.; Park, H.B.; Lee, J.H.; Jo, C. Proximate composition, and L-carnitine and betaine contents in meat from Korean indigenous chicken. Asian Australas. J. Anim. Sci. 2015, 28, 1760. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef]
- Derave, W.; Everaert, I.; Beeckman, S.; Baquet, A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med. 2010, 40, 247–263. [Google Scholar] [CrossRef] [PubMed]
- Everaert, I.; Stegen, S.; Vanheel, B.; Taes, Y.; Derave, W. Effect of beta-alanine and carnosine supplementation on muscle contractility in mice. Med. Sci. Sports Exerc. 2013, 45, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Sale, C.; Artioli, G.G.; Gualano, B.; Saunders, B.; Hobson, R.M.; Harris, R.C. Carnosine: From exercise performance to health. Amino Acids. 2013, 44, 1477–1491. [Google Scholar] [CrossRef] [PubMed]
- Gross, M.; Boesch, C.; Bolliger, C.S.; Norman, B.; Gustafsson, T.; Hoppeler, H.; Vogt, M. Effects of beta-alanine supplementation and interval training on physiological determinants of severe exercise performance. Eur. J. Appl. Physiol. 2014, 114, 221–234. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, L.; Everaert, I.; Derave, W. Beta-alanine supplementation, muscle carnosine and exercise performance. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Baraniuk, J.N.; El-Amin, S.; Corey, R.; Rayhan, R.; Timbol, C. Carnosine treatment for gulf war illness: A randomized controlled trial. Glob. J. Health Sci. 2013, 5, 69–81. [Google Scholar] [CrossRef] [PubMed]
- Szczesniak, D.; Budzen, S.; Kopec, W.; Rymaszewska, J. Anserine and carnosine supplementation in the elderly: Effects on cognitive functioning and physical capacity. Arch. Gerontol. Geriatr. 2014, 59, 485–490. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, J.; Li, J.; Shi, X.; Ouyang, L.; Tian, Y.; Lu, J. Carnosine inhibits the proliferation of human gastric cancer SGC-7901 cells through both of the mitochondrial respiration and glycoloysis pathways. PLoS ONE 2014, 9, e104632. [Google Scholar] [CrossRef]
- Hipkiss, A.R.; Cartwright, S.P.; Bromley, C.; Gross, S.R.; Bill, R.M. Carnosine: Can understanding its actions on energy metabolism and protein homeostasis inform its therapeutic potential? Chem. Cent. J. 2013, 7, 38. [Google Scholar] [CrossRef]
- Hall, J.A.; Jackson, M.I.; Farace, G.; Yerramilli, M.; Jewell, D.E. Influence of Dietary Ingredients on Lean Body Percent, Uremic Toxin Concentrations, and Kidney Function in Senior-Adult Cats. Metabolites 2019, 9, 238. [Google Scholar] [CrossRef]
- Floerchinger, A.M.; Jackson, M.I.; Jewell, D.E.; MacLeay, J.M.; Hahn, K.A.; Paetau-Robinson, I. Effect of feeding a weight loss food beyond a caloric restriction period on body composition and resistance to weight gain in cats. J. Am. Vet. Med. Assoc. 2015, 247, 365–374. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.A.; Fritsch, D.A.; Jewell, D.E.; Burris, P.A.; Gross, K.L. Cats with IRIS stage 1 and 2 chronic kidney disease maintain body weight and lean muscle mass when fed food having increased caloric density, and enhanced concentrations of carnitine and essential amino acids. Vet. Rec. 2019, 184, 190. [Google Scholar] [CrossRef] [PubMed]
- Panickar, K.S.; Jewell, D.E. The beneficial role of anti-inflammatory dietary ingredients in attenuating markers of chronic low-grade inflammation in aging. Horm. Mol. Biol. Clin. Investig. 2015, 23, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Panickar, K.S.; Jewell, D.E. The Benefit of Anti-Inflammatory and Renal-Protective Dietary Ingredients on the Biological Processes of Aging in the Kidney. Biology 2018, 7, 45. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Lin, J.S.; Lin, Y.C.; Lin, P.T. Antiinflammatory effects of L-carnitine supplementation (1000 mg/d) in coronary artery disease patients. Nutrition 2015, 31, 475–479. [Google Scholar] [CrossRef]
- Shakeri, A.; Tabibi, H.; Hedayati, M. Effects of l-carnitine supplement on serum inflammatory cytokines, C-reactive protein, lipoprotein (a), and oxidative stress in hemodialysis patients with Lp (a) hyperlipoproteinemia. Hemodial. Int. 2010, 14, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Salama, S.A.; Arab, H.H.; Omar, H.A.; Gad, H.S.; Abd-Allah, G.M.; Maghrabi, I.A. L-carnitine mitigates UVA-induced skin tissue injury in rats through downregulation of oxidative stress, p38/c-Fos signaling, and the proinflammatory cytokines. Chem. Biol. Interact. 2018, 285, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, H.; Takaki, A.; Tsuzaki, R.; Yasunaka, T.; Koike, K.; Shimomura, Y.; Seki, H.; Matsushita, H.; Miyake, Y.; Ikeda, F.; et al. L-carnitine prevents progression of non-alcoholic steatohepatitis in a mouse model with upregulation of mitochondrial pathway. PLoS ONE 2014, 9, e100627. [Google Scholar] [CrossRef] [PubMed]
- Jin, M.; Pan, T.; Cheng, X.; Zhu, T.T.; Sun, P.; Zhou, F.; Ding, X.; Zhou, Q. Effects of supplemental dietary L-carnitine and bile acids on growth performance, antioxidant and immune ability, histopathological changes and inflammatory response in juvenile black seabream (Acanthopagrus schlegelii) fed high-fat diet. Aquaculture 2019, 504, 199–209. [Google Scholar] [CrossRef]


| Variable | Control (C) | C±Carnitine | C+Carnosine | C+Both |
|---|---|---|---|---|
| Lean body mass (g) Initial | 3712 ± 41 | 3699 ± 41 | 3722 ± 39 | 3702 ± 43 |
| Lean body mass (g) Final | 3591 ± 41 a | 3805 ± 41 b | 3819 ± 39 b | 3542 ± 41 a |
| Fat body mass (g) Initial | 1809 ± 72 | 1794 ± 72 | 1793 ± 69 | 1844 ± 76 |
| Fat body mass (g) Final | 1998 ± 72 a | 1950 ± 72 a | 1740 ± 69 b | 2097 ± 76 a |
| Body Weight (g) Initial | 5675 ± 65 | 5678 ± 65 | 5664 ± 62 | 5694 ± 65 |
| Body weight (g) Final | 5749 ± 65 a | 5946 ± 65 b | 5712 ± 62 a | 5795 ± 69 a |
| Mean Intake (Kcal/day) | 194 ± 17.5 | 201 ± 16.7 | 203 ± 16.0 | 218 ± 17.5 |
| Control (C) | C+Carnitine | C+Carnosine | C+Both | |
|---|---|---|---|---|
| Creatinine 1 Initial (mg/dL) | 1.27 ± 0.06 | 1.21 ± 0.06 | 1.37 ± 0.06 | 1.28 ± 0.06 |
| Creatinine final (mg/dl) | 1.20 ± 0.06 | 1.13 ± 0.06 | 1.30 ± 0.06 | 1.10 ± 0.06 |
| Glucose 2 initial (mg/dL) | 100.4 ± 5.1 | 107.4 ± 5.1 | 100.7 ± 4.9 | 105.4 ± 5.3 |
| Glucose final (mg/dL) | 98.0 a ± 5.1 | 100.7 a ± 5.1 | 103.2 a ± 4.9 | 115.0 b ± 5.3 |
| Triglycerides 3 initial (mg/dL) | 31.2 ± 3.7 | 32.6 ± 3.7 | 27.9 ± 3.5 | 29.2 ± 3.9 |
| Triglycerides final (mg/dL) | 31.3 a ± 3.7 | 34.7 a,b ± 3.6 | 32.6 a ± 3.5 | 44.4 b ± 3.9 |
| Cholesterol 4 initial (mg/dL) | 190 ± 15 | 183 ± 15 | 167 ± 14 | 170 ± 15 |
| Cholesterol final (mg/dL) | 207 ± 15 | 213 ± 15 | 202 ± 14 | 208 ± 15 |
| Metabolite | C+Carnitine/C | C+Carnosine/C | C+Both/C |
|---|---|---|---|
| pyruvate | 0.73 | 1.05 | 1.39 |
| succinate | 1.08 | 1.04 | 1.18 |
| 17-methylstearate | 1.41 | 1.15 | 1.43 |
| malonylcarnitine | 1.42 | 1.35 | 1.44 |
| butyrylcarnitine (C4) | 1.63 | 1.01 | 1.36 |
| propionylcarnitine (C3) | 1.51 | 0.96 | 1.39 |
| hexanoylglycine | 0.72 | 0.73 | 0.65 |
| hexanoylcarnitine (C6) | 1.28 | 0.87 | 1 |
| octanoylcarnitine (C8) | 1.35 | 0.93 | 1.18 |
| suberoylcarnitine (C8-DC) | 1.4 | 1.31 | 1.5 |
| pimeloylcarnitine/ 3-methyladipoylcarnitine (C7-DC) | 1.48 | 1.16 | 1.46 |
| cerotoylcarnitine (C26)* | 1.52 | 1.18 | 1.65 |
| deoxycarnitine | 1.32 | 0.89 | 1.17 |
| carnitine | 1.2 | 0.95 | 1.08 |
| linoleoyl ethanolamide | 1.27 | 1.05 | 1.11 |
| trimethylamine N-oxide | 1.34 | 0.92 | 1.14 |
| 1-linoleoyl-2-linolenoyl-GPC (18:2/18:3) | 1.32 | 1.05 | 0.94 |
| 1-oleoyl-2-linoleoyl-GPC (18:1/18:2) | 1.2 | 1.11 | 1.05 |
| 1-palmitoyl-2-stearoyl-GPC (16:0/18:0) | 1.51 | 1.33 | 1.34 |
| 1,2-dilinoleoyl-GPC (18:2/18:2) | 1.3 | 1.09 | 1.05 |
| 1-palmitoleoyl-GPC (16:1) | 1.23 | 0.97 | 0.97 |
| 1-linolenoyl-GPC (18:3) | 1.37 | 1.02 | 1.11 |
| 1-palmitoyl-GPE (16:0) | 0.83 | 0.8 | 0.88 |
| 1-stearoyl-GPE (18:0) | 0.86 | 0.81 | 0.88 |
| 1-(1-enyl-palmitoyl)-2-arachidonoyl-GPC (P-16:0/20:4) | 0.84 | 0.94 | 0.76 |
| 1-(1-enyl-stearoyl)-2-arachidonoyl-GPE (P-18:0/20:4) | 0.82 | 0.83 | 0.96 |
| sphinganine-1-phosphate | 0.86 | 0.74 | 0.72 |
| sphingomyelin (d18:2/16:0, d18:1/16:1) | 0.93 | 0.96 | 0.87 |
| sphingomyelin (d18:2/24:1, d18:1/24:2) | 0.86 | 0.88 | 0.8 |
| sphingosine 1-phosphate | 0.87 | 0.8 | 0.85 |
| sphingomyelin (d18:1/25:0, d19:0/24:1, d20:1/23:0, d19:1/24:0) | 1.48 | 1.02 | 1.94 |
Means in red are increasing p < 0.05.
Means in green are decreasing p < 0.05.| C+Carnitine/C | C+Carnosine/C | C+Both/C | |
|---|---|---|---|
| glycine | 0.98 | 0.98 | 0.83 |
| betaine | 0.81 | 1.02 | 0.79 |
| serine | 0.98 | 0.96 | 0.77 |
| asparagine | 0.98 | 0.94 | 0.83 |
| glutamine | 1 | 0.95 | 0.88 |
| N-acetyl-aspartyl-glutamate (NAAG) | 0.9 | 1.1 | 1.44 |
| S-1-pyrroline-5-carboxylate | 0.96 | 0.94 | 0.85 |
| histidine | 1.03 | 1.02 | 0.97 |
| lysine | 0.94 | 0.9 | 0.81 |
| glutarate (pentanedioate) | 1 | 1.19 | 1.58 |
| 3-(3-hydroxyphenyl)propionate sulfate | 1.94 | 2.47 | 2.73 |
| 3-(3-hydroxyphenyl)propionate | 1.63 | 2.59 | 2.4 |
| 3-(4-hydroxyphenyl)propionate | 2.09 | 4.64 | 5.51 |
| 4-hydroxycinnamate sulfate | 3.51 | 4.15 | 4.36 |
| 3-hydroxyphenylacetate sulfate | 2.11 | 3.05 | 2.32 |
| kynurenate | 1.01 | 1.31 | 1.03 |
| anthranilate | 1.62 | 1.62 | 1.39 |
| picolinate | 1.25 | 1.31 | 1.3 |
| isovalerylcarnitine (C5) | 1.46 | 0.85 | 1.2 |
| 3-methylglutaconate | 1.29 | 1.07 | 0.62 |
| tiglylcarnitine (C5:1-DC) | 1.47 | 1.11 | 1.64 |
| ethylmalonate | 1.26 | 1.17 | 1.23 |
| valine | 0.91 | 0.92 | 0.85 |
| isobutyrylcarnitine (C4) | 1.86 | 1.02 | 1.85 |
| methionine | 1.23 | 1.19 | 1.24 |
| methionine sulfoxide | 1.62 | 1.28 | 1.38 |
| 2-aminobutyrate | 0.75 | 0.78 | 0.7 |
| taurine | 1.01 | 0.93 | 0.83 |
| ornithine | 0.93 | 0.92 | 0.82 |
| homoarginine | 1.03 | 0.73 | 0.71 |
| guanidinoacetate | 0.76 | 0.72 | 0.54 |
| gamma-glutamylmethionine | 1.33 | 1.25 | 1.39 |
| Phenylacetylcarnitine | 2.44 | 1.37 | 2.16 |
Means in red are increasing p < 0.05.
Means in green are decreasing p < 0.05.Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panickar, K.S.; DeBey, M.C.; Jewell, D.E. Dietary Carnitine and Carnosine Increase Body Lean in Healthy Cats in a Preliminary Study. Biology 2021, 10, 299. https://doi.org/10.3390/biology10040299
Panickar KS, DeBey MC, Jewell DE. Dietary Carnitine and Carnosine Increase Body Lean in Healthy Cats in a Preliminary Study. Biology. 2021; 10(4):299. https://doi.org/10.3390/biology10040299
Chicago/Turabian StylePanickar, Kiran S., Mary C. DeBey, and Dennis E. Jewell. 2021. "Dietary Carnitine and Carnosine Increase Body Lean in Healthy Cats in a Preliminary Study" Biology 10, no. 4: 299. https://doi.org/10.3390/biology10040299
APA StylePanickar, K. S., DeBey, M. C., & Jewell, D. E. (2021). Dietary Carnitine and Carnosine Increase Body Lean in Healthy Cats in a Preliminary Study. Biology, 10(4), 299. https://doi.org/10.3390/biology10040299
