Metabolomic Profiling of Lipids and Fatty Acids: 3 Years Postoperative Laparoscopic Sleeve Gastrectomy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Inclusion/Exclusion Criteria
2.3. Anthropometry
2.4. Blood Lipid Profile
2.5. Determination of Plasma Fatty Acid Profile
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Apovian, C.M. Obesity: Definition, comorbidities, causes, and burden. Am. J. Manag. Care 2016, 22, s176–s185. [Google Scholar]
- Vats, M.G.; Mahboub, B.H.; Al Hariri, H.; Al Zaabi, A.; Vats, D. Obesity and sleep-related breathing disorders in middle east and UAE. Can. Respir. J. 2016, 2016, 1–5. [Google Scholar] [CrossRef]
- Nordmo, M.; Danielsen, Y.S.; Nordmo, M. The challenge of keeping it off, a descriptive systematic review of high-quality, follow-up studies of obesity treatments. Obes. Rev. 2019, 21, e12949. [Google Scholar] [CrossRef]
- McGrice, M.; Paul, K.D. Interventions to improve long-term weight loss in patients following bariatric surgery: Challenges and solutions. Diabetes Metab. Syndr. Obes. 2015, 8, 263–274. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.; King, W.C.; Gourash, W.; Belle, S.H.; Hinerman, A.; Pomp, A.; Dakin, G.; Courcoulas, A.P. Long-term weight change and health outcomes for sleeve gastrectomy (SG) and matched Roux-en-Y gastric bypass (RYGB) participants in the Longitudinal Assessment of Bariatric Surgery (LABS) study. Surgery 2018, 164, 774–783. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Martin, J.M.; Balsa, J.A.; Aracil, E.; Cuadrado-Ayuso, M.; Rosillo, M.; De la Peña, G.; Lasunción, M.A.; Escobar-Morreale, H.F.; Botella-Carretero, J.I. Beneficial changes on plasma apolipoproteins A and B, high density lipoproteins and oxidized low density lipoproteins in obese women after bariatric surgery: Comparison between gastric bypass and sleeve gastrectomy. Lipids Health Dis. 2018, 17, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lira, N.S.; Macedo, C.E.S.; Belo, G.M.; Santa-Cruz, F.; Siqueira, L.T.; Ferraz, Á.A.B. Análise do perfil lipídico de pacientes submetidos à gastrectomia vertical e à derivação gástrica em Y de Roux. Rev. Col. Bras. Cir. 2018, 45, e1967. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walle, P.; Takkunen, M.; Männistö, V.; Vaittinen, M.; Käkelä, P.; Ågren, J.; Schwab, U.; Lindström, J.; Tuomilehto, J.; Uusitupa, M.; et al. Alterations in fatty acid metabolism in response to obesity surgery combined with dietary counseling. Nutr. Diabetes 2017, 7, e285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauman-Fortin, J.; Ma, D.W.; Mutch, D.M.; Abdelmagid, S.A.; Badawi, A.; El-Sohemy, A.; Fontaine-Bisson, B. The association between plasma Omega-6/Omega-3 ratio and anthropometric traits differs by racial/ethnic groups and NFKB1 genotypes in healthy young adults. J. Pers. Med. 2019, 9, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A. The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed. Pharmacother. 2002, 56, 365–379. [Google Scholar] [CrossRef]
- Ohnishi, H.; Saito, Y. Eicosapentaenoic acid (EPA) reduces cardiovascular events: Relationship with the EPA/arachidonic acid ratio. J. Atheroscler. Thromb. 2013, 20, 861–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Dirbashi, O.Y.; Sharma, C.; Al Dahouri, N.; Al Aidaros, A.; Al-Muhairi, S.; Beiram, R.; Gariballa, S.; Al Kaabi, J. Role of functional biomarkers to identify early vitamin B12 deficiency in patients with sleeve gastrectomy: A cross-sectional study. Medicina 2020, 56, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fried, M.; Yumuk, V.; Oppert, J.M.; Scopinaro, N.; Torres, A.; Weiner, R.; Yashkov, Y.; Frühbeck, G. Interdisciplinary European guidelines on metabolic and bariatric surgery. Obes. Surg. 2014, 24, 42–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Aidaros, A.; Sharma, C.; Langhans, C.-D.; Okun, J.G.; Hoffmann, G.F.; Dasouki, M.; Chakraborty, P.; Aljasmi, F.; Al-Dirbashi, O.Y. Targeted metabolomic profiling of total fatty acids in human plasma by liquid chromatography-tandem mass spectrometry. Metabolites 2020, 10, 400. [Google Scholar] [CrossRef] [PubMed]
- Murakami, K.; Sasaki, S.; Takahashi, Y.; Uenishi, K.; Watanabe, T.; Kohri, T.; Yamasaki, M.; Watanabe, R.; Baba, K.; Shibata, K.; et al. Lower estimates of δ-5 desaturase and elongase activity are related to adverse profiles for several metabolic risk factors in young Japanese women. Nutr. Res. 2008, 28, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Grundy, S.M.; Stone, N.J.; Bailey, A.L.; Beam, C.; Birtcher, K.K.; Blumenthal, R.S.; Braun, L.T.; De Ferranti, S.; Faiella-Tommasino, J.; Forman, D.E.; et al. 2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA guideline on the management of blood cholesterol: A report of the American college of cardiology/American heart association task force on clinical practice guidelines. Circulation 2019, 139, e1082–e1143. [Google Scholar] [CrossRef]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic. WHO Expert Consultation; Technical Report Series No. 894; WHO: Geneva, Switzerland, 2000. [Google Scholar]
- Svendsen, K.; Olsen, T.; Rusvik, T.C.N.; Ulven, S.M.; Holven, K.B.; Retterstøl, K.; Telle-Hansen, V.H. Fatty acid profile and estimated desaturase activities in whole blood are associated with metabolic health. Lipids Health Dis. 2020, 19, 1–9. [Google Scholar] [CrossRef]
- Risé, P.; Eligini, S.; Ghezzi, S.; Colli, S.; Galli, C. Fatty acid composition of plasma, blood cells and whole blood: Relevance for the assessment of the fatty acid status in humans. Prostaglandins Leukot. Essent. Fat. Acids 2007, 76, 363–369. [Google Scholar] [CrossRef]
- Tosi, F.; Sartori, F.; Guarini, P.; Olivieri, O.; Martinelli, N. Delta-5 and delta-6 desaturases: Crucial enzymes in polyunsaturated fatty acid-related pathways with pleiotropic influences in health and disease. Adv. Exp. Med. Biol. 2014, 824, 61–81. [Google Scholar] [CrossRef]
- Aguilar, P.S.; De Mendoza, D. Control of fatty acid desaturation: A mechanism conserved from bacteria to humans. Mol. Microbiol. 2006, 62, 1507–1514. [Google Scholar] [CrossRef]
- Kihara, A. Very long-chain fatty acids: Elongation, physiology and related disorders. J. Biochem. 2012, 152, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.; Våge, V.; Mjøs, S.A.; Kvalheim, O.M. Changes in serum fatty acid levels during the first year after bariatric surgery. Obes. Surg. 2015, 26, 1735–1742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simopoulos, A.P. The importance of the Omega-6/Omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Climent, E.; Benaiges, D.; Goday, A.; Villatoro, M.; Julià, H.; Ramón, J.M.; Flores, J.A.; Pedro-Botet, J. Obesidad mórbida y dislipemia: Impacto de la cirugía bariátrica. Clin. Investig. Arterioscler. 2020, 32, 79–86. [Google Scholar] [CrossRef] [PubMed]
- Genua, I.; Ramos, A.; Caimari, F.; Balagué, C.; Sánchez-Quesada, J.L.; Pérez, A.; Miñambres, I. Effects of bariatric surgery on HDL cholesterol. Obes. Surg. 2020, 30, 1793–1798. [Google Scholar] [CrossRef]
- Heffron, S.P.; Lin, B.-X.; Parikh, M.; Scolaro, B.; Adelman, S.J.; Collins, H.L.; Berger, J.S.; Fisher, E.A. Changes in high-density lipoprotein cholesterol efflux capacity after bariatric surgery are procedure dependent. Arter. Thromb. Vasc. Biol. 2018, 38, 245–254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Aicha, S.; Badimon, L.; Vilahur, G. Advances in HDL: Much more than lipid transporters. Int. J. Mol. Sci. 2020, 21, 732. [Google Scholar] [CrossRef] [Green Version]
- Asztalos, B.F.; Swarbrick, M.M.; Schaefer, E.J.; Dallal, G.E.; Horvath, K.V.; Ai, M.; Stanhope, K.L.; Austrheim-Smith, I.; Wolfe, B.M.; Ali, M.; et al. Effects of weight loss, induced by gastric bypass surgery, on HDL remodeling in obese women. J. Lipid Res. 2010, 51, 2405–2412. [Google Scholar] [CrossRef]
- Wijayatunga, N.N.; Sams, V.G.; Dawson, J.A.; Mancini, M.L.; Mancini, G.J.; Moustaid-Moussa, N. Roux-en-Y gastric bypass surgery alters serum metabolites and fatty acids in patients with morbid obesity. Diabetes Metab. Res. Rev. 2018, 34, e3045. [Google Scholar] [CrossRef] [Green Version]
- Schoenfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef] [Green Version]
- Nagao, K.; Yanagita, T. Medium-chain fatty acids: Functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacol. Res. 2010, 61, 208–212. [Google Scholar] [CrossRef] [PubMed]
- Ge, F.; Walewski, J.L.; Torghabeh, M.H.; Lobdell, H.; Hu, C.; Zhou, S.; Dakin, G.; Pomp, A.; Bessler, M.; Schrope, B.; et al. Facilitated long chain fatty acid uptake by adipocytes remains upregulated relative to BMI for more than a year after major bariatric surgical weight loss. Obesity 2015, 24, 113–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patterson, E.; Wall, R.; Fitzgerald, G.F.; Ross, R.P.; Stanton, C. Health implications of high dietary omega-6 polyunsaturated fatty acids. J. Nutr. Metab. 2012, 2012, 1–16. [Google Scholar] [CrossRef] [PubMed]
LSG Group | Control Group | |
---|---|---|
(n = 71) | (n = 63) | |
Age (years) | 36.55 ± 8.65 | 35.44 ± 9.51 |
Sex (%) | ||
Female | 80.6 | 94.0 |
Occupation (%) | ||
Employed | 67.6 | 17.5 *** |
Housewife | 15.5 | 66.7 |
Unemployed/Retired | 16.9 | 15.9 |
Nationality (%) | ||
GCC countries | 2.8 | 0 |
UAE | 97.2 | 100.0 |
Marital status (%) | ||
Married | 67.6 | 68.3 |
Divorced/Single/Widowed | 32.4 | 31.8 |
Level of education (%) | ||
Primary/Secondary school | 45.1 | 540 * |
University/Graduated | 53.5 | 36.5 |
Illiterate | 1.4 | 9.5 |
Height (cm) | 162.08 ± 12.54 | 159.33 ± 6.90 |
Weight (kg) | 86.09 ± 21.71 | 81.97 ± 14.52 |
BMI (kg/m2) | 31.49 ± 6.43 | 32.29 ± 5.38 |
SBP (mmHg) | 113.76 ± 12.62 | 118.92 ± 12.82 * |
DBP (mmHg) | 69.93 ± 10.84 | 73.54 ± 8.01 |
Type 2 diabetes (%) | 9.9 | 1.6 ** |
Family history of diabetes (%) | 76.1 | 66.7 |
LSG Group | Control Group | |
---|---|---|
(n = 71) | (n = 61) | |
TC (mmol/L) | 4.91 ± 0.93 | 4.67 ± 0.71 |
LDL-C (mmol/L) | 3.05 ± 0.87 | 2.78 ± 0.67 * |
HDL-C (mmol/L) | 1.53 ± 0.33 | 1.02 ± 0.30 *** |
TG (mmol/L) | 0.79 ± 0.36 | 1.03 ± 0.55 ** |
LSG Group | Control Group | |
---|---|---|
(n = 71) | (n = 63) | |
Octanoic acid C8:0 | 79.11 ± 6.62 | 68.29 ± 6.40 *** |
Decenoic acid C10:1 | 3.44 ± 1.47 | 3.22 ± 1.45 |
Decanoic acid C10:0 | 19.93 ± 1.86 | 18.77 ± 1.78 *** |
Laureloic acid C12:1 | 2.04 ± 0.57 | 2.24 ± 0.52 * |
Lauric C12:0 | 60.04 ± 15.08 | 52.53 ± 22.19 * |
Myristoleic acid C14:1 | 6.38 ± 4.35 | 7.17 ± 4.22 |
Myristic acid C14:0 | 85.65 ± 33.65 | 82.67 ± 39.70 |
Tetradecadienoic acid C14:2 n-6 | 23.58 ± 10.42 | 28.13 ± 10.07 * |
Palmitoleic acid C16:1 n-7 | 138.61 ± 77.04 | 181.01 ± 91.38 ** |
Palmitic acid C16:0 | 1862.92 ± 429.32 | 1926.67 ± 514.09 |
Stearedonic acid C18:4 n-3 | 1.65 ± 1.46 | 1.69 ± 1.53 |
αLinolenic acid C18:3 n-3 | 9.42 ± 4.37 | 12.52 ± 7.53 ** |
γLinolenic acid C18:3 n-6 | 16.92 ± 12.12 | 19.32 ± 10.36 |
Linoleic acid C18:2 n-6 | 1826.11 ± 412.33 | 1702.98 ± 460.91 |
Oleic acid C18:1 n-9 | 1157.44 ± 357.78 | 1097.16 ± 299.79 |
Stearic acid C18:0 | 586.03 ± 129.40 | 573.71 ± 130.04 |
Pristanic acid C19:0 | 0.64 ± 0.24 | 0.58 ± 0.17 |
Phytanic acid C20:0 | 1.99 ± 0.79 | 1.43 ± 0.53 *** |
EPAC20:5 n-3 | 30.53 ± 17.39 | 42.82 ± 26.83 ** |
AA C20:4 n-6 | 290.17 ± 115.80 | 371.21 ± 118.16 *** |
dihomo-γ-Linolenic Acid C20:3 n-6 | 40.19 ± 13.87 | 40.52 ± 13.68 |
Eicosadienoic acid C20:2 n-6 | 5.82 ± 1.79 | 5.46 ± 1.73 |
Gondoic acid C20:1 | 5.61 ± 1.70 | 4.65 ± 1.23 *** |
Arachidic acid C20:0 | 16.99 ± 4.06 | 16.69 ± 3.63 |
Docosahexaenoic acid C22:6 n-3 | 79.28 ± 40.69 | 117.11 ± 49.85 *** |
Docosapentaenoic acid C22:5 n-3 | 13.29 ± 6.58 | 13.28 ± 4.29 |
Docosatetraenoic acid C22:4 n-6 | 22.93 ± 9.44 | 22.35 ± 7.28 |
Docosatrienoic acid C22:3 n-3 | 0.33 ± 0.11 | 0.31 ± 0.10 |
Docosadienoic acid C22:2 n-6 | 0.85 ± 0.25 | 0.80 ± 0.23 |
Docosenoic acid C22:1 | 1.39 ± 0.43 | 1.39 ± 0.42 |
Docosanoic acid C22:0 | 44.59 ± 10.59 | 41.08 ± 10.87 |
Nervonic acid C24:1 | 70.37 ± 20.71 | 65.72 ± 20.49 |
Tetracosanoic acid C24:0 | 42.30 ± 8.93 | 36.37 ± 10.56 ** |
Hexacosenoic acid C26:1 | 0.62 ± 0.20 | 0.51 ± 0.18 ** |
Hexacosanoic acid C26:0 | 0.61 ± 0.11 | 0.56 ± 0.13 * |
SFAs | 2798.15 ± 590.03 | 2817.36 ± 686.88 |
MUFAs | 1385.88 ± 437.28 | 1362.81 ± 381.11 |
PUFAs | 2361.08 ± 540.62 | 2378.87 ± 605.08 |
n-6 | 2226.58 ± 495.79 | 2191.14 ± 555.42 |
n-3 | 134.50 ± 64.04 | 187.72 ± 78.05 *** |
n-3 PUFA/n-6 PUFA | 0.06 ± 0.02 | 0.09 ± 0.03 *** |
MCFAs | 164.55 ± 19.36 | 144.79 ± 26.48 *** |
EPA/AA | 0.10 ± 0.03 | 0.11 ± 0.06 |
LSG Group | Control Group | |
---|---|---|
(n = 71) | (n = 63) | |
C18Δ9 desaturase | 1.97 ± 0.35 | 1.92 ± 0.29 |
C16Δ9 desaturase | 0.07 ± 0.03 | 0.09 ± 0.03 *** |
Δ6 desaturase | 0.02 ± 0.01 | 0.02 ± 0.01 |
Δ5 desaturase | 7.46 ± 2.27 | 9.71 ± 3.43 *** |
Elongase | 0.32 ± 0.03 | 0.30 ± 0.04 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, C.; Platat, C.; Gariballa, S.; Muhairi, S.J.A.; Aidaros, A.A.; Mannaerts, G.H.H.; Al Afari, H.S.; Yasin, J.; Y. Al-Dirbashi, O.; Alkaabi, J. Metabolomic Profiling of Lipids and Fatty Acids: 3 Years Postoperative Laparoscopic Sleeve Gastrectomy. Biology 2021, 10, 298. https://doi.org/10.3390/biology10040298
Sharma C, Platat C, Gariballa S, Muhairi SJA, Aidaros AA, Mannaerts GHH, Al Afari HS, Yasin J, Y. Al-Dirbashi O, Alkaabi J. Metabolomic Profiling of Lipids and Fatty Acids: 3 Years Postoperative Laparoscopic Sleeve Gastrectomy. Biology. 2021; 10(4):298. https://doi.org/10.3390/biology10040298
Chicago/Turabian StyleSharma, Charu, Carine Platat, Salah Gariballa, Shamma Jauaan Al Muhairi, Anas Al Aidaros, Guido Hein Huib Mannaerts, Hamouda Salim Al Afari, Javed Yasin, Osama Y. Al-Dirbashi, and Juma Alkaabi. 2021. "Metabolomic Profiling of Lipids and Fatty Acids: 3 Years Postoperative Laparoscopic Sleeve Gastrectomy" Biology 10, no. 4: 298. https://doi.org/10.3390/biology10040298
APA StyleSharma, C., Platat, C., Gariballa, S., Muhairi, S. J. A., Aidaros, A. A., Mannaerts, G. H. H., Al Afari, H. S., Yasin, J., Y. Al-Dirbashi, O., & Alkaabi, J. (2021). Metabolomic Profiling of Lipids and Fatty Acids: 3 Years Postoperative Laparoscopic Sleeve Gastrectomy. Biology, 10(4), 298. https://doi.org/10.3390/biology10040298