Elucidating Recombination Mediator Function Using Biophysical Tools
Abstract
:Simple Summary
Abstract
1. Discovery and Initial Phenotypes Observed for RMPs
1.1. Discovery and Phenotype of Bacterial RMPs—RecFOR
1.2. Discovery and Phenotype of the Bacteriophages RMPs—UvsY/Orf
1.3. Discovery of the Eukaryotic RMP—RAD52/BRCA2
2. Biochemical Properties and Structural Insights on RMPs
2.1. Biochemical Properties and Structure of the Bacterial RMPs—RecFOR
2.2. Biochemical Properties and Structure of the Bacteriophage RMPs—UvsY and λOrf
2.3. Biochemical Properties and Structure of the Eukaryotic RMPs—RAD52 and BRCA2
3. Biophysical Tools to Capture Information of Dynamic Biochemical Reactions
3.1. In vivo Biophysical Tools
3.2. In vitro Biophysical Tools
4. Biophysical Tools to Further Investigate the Role of RMPs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Horii, Z.-I.; Clark, A.J. Genetic analysis of the recF pathway to genetic recombination in Escherichia coli k12: Isolation and characterization of mutants. J. Mol. Biol. 1973, 80, 327–344. [Google Scholar] [CrossRef]
- Kolodner, R.; Fishel, R.A.; Howard, M. Genetic recombination of bacterial plasmid DNA: Effect of RecF pathway mutations on plasmid recombination in Escherichia coli. J. Bacteriol. 1985, 163, 1060–1066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahdi, A.A.; Lloyd, R.G. Identification of the recR locus of Escherichia coli K-12 and analysis of its role in recombination and DNA repair. Mol. Gen. Genet. MGG 1989, 216, 503–510. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.L. Effects of overproduction of single-stranded DNA-binding protein on RecA protein-dependent processes in Escherichia coli. J. Mol. Biol. 1987, 194, 621–634. [Google Scholar] [CrossRef]
- Moreau, P.L. Overproduction of single-stranded-DNA-binding protein specifically inhibits recombination of UV-irradiated bacteriophage DNA in Escherichia coli. J. Bacteriol. 1988, 170, 2493–2500. [Google Scholar] [CrossRef] [Green Version]
- Lloyd, R.G.; Porton, M.C.; Buckman, C. Effect of recF, recJ, recN, recO and ruv mutations on ultraviolet survival and genetic recombination in a recD strain of Escherichia coli K12. Mol. Gen. Genet. MGG 1988, 212, 317–324. [Google Scholar] [CrossRef]
- Alonso, J.C.; Shirahige, K.; Ogasawara, N. Molecular cloning, genetic characterization and DNA sequence analysis of the recM region of Bacillus subtilis. Nucleic Acids Res. 1990, 18, 6771–6777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitby, M.C.; Lloyd, R.G. Altered SOS induction associated with mutations in recF, recO and recR. Mol. Gen. Genet. MGG 1995, 246, 174–179. [Google Scholar] [CrossRef]
- Courcelle, J.; Carswell-Crumpton, C.; Hanawalt, P.C. recF and recR are required for the resumption of replication at DNA replication forks in Escherichia coli. Proc. Natl. Acad. Sci. USA 1997, 94, 3714–3719. [Google Scholar] [CrossRef] [Green Version]
- Chow, K.H.; Courcelle, J. RecO Acts with RecF and RecR to Protect and Maintain Replication Forks Blocked by UV-induced DNA Damage in Escherichia coli. J. Biol. Chem. 2004, 279, 3492–3496. [Google Scholar] [CrossRef] [Green Version]
- Fujii, S.; Isogawa, A.; Fuchs, R.P. RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J. 2006, 25, 5754–5763. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawitzke, J.A.; Stahl, F.W. Phage lambda Has an Analog of Escherichia coli rec0, recR and recF Genes. Genetics 1992, 130, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Sawitzke, J.A.; Stahl, F.W. The phage λ orf gene encodes a trans-acting factor that suppresses Escherichia coli recO, recR, and recF mutations for recombination of λ but not of E. coli. J. Bacteriol. 1994, 176, 6730–6737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bentchikou, E.; Servant, P.; Coste, G.; Sommer, S. A major role of the RecFOR pathway in DNA double-strand-break repair through ESDSA in Deinococcus radiodurans. PLoS Genet. 2010, 6, e1000774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rocha, E.P.C.; Cornet, E.; Michel, B. Comparative and Evolutionary Analysis of the Bacterial Homologous Recombination Systems. PLoS Genet. 2005, 1, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marsin, S.; Mathieu, A.; Kortulewski, T.; Guerois, G.; Radicella, J.P. Unveiling novel RecO distant orthologues involved in homologous recombination. PLoS Genet. 2008, 4, e1000146. [Google Scholar] [CrossRef] [Green Version]
- Sandler, S.J. Overlapping functions for recF and priA in cell viability and UV-inducible SOS expression are distinguished by dnaC809 in Escherichia coli K-12. Mol. Microbiol. 1996, 19, 871–880. [Google Scholar] [CrossRef]
- Grompone, G.; Sanchez, N.; Ehrlich, S.D.; Michel, B. Requirement for RecFOR-mediated recombination in priA mutant. Mol. Microbiol. 2004, 52, 551–562. [Google Scholar] [CrossRef]
- Lenhart, J.S.; Brandes, E.R.; Schroeder, J.W.; Sorenson, R.J.; Showalter, H.D.; Simmons, A. RecO and RecR Are Necessary for RecA Loading in Response to DNA Damage and Replication Fork Stress. J. Bacteriol. 2014, 196, 2851–2860. [Google Scholar] [CrossRef] [Green Version]
- Odsbu, I.; Skarstad, K. DNA compaction in the early part of the SOS response is dependent on RecN and RecA. Microbiology 2014, 160, 872–882. [Google Scholar] [CrossRef] [Green Version]
- Henrikus, S.S.; Henry, C.; Ghodke, H.; Wood, E.A.; Mbele, N.; Saxena, R.; Basu, U.; van Oijen, A.M.; Cox, M.M.; Robinson, A. RecFOR epistasis group: RecF and RecO have distinct localizations and functions in Escherichia coli. Nucleic Acids Res. 2019, 47, 2946–2965. [Google Scholar] [CrossRef] [Green Version]
- Harm, W. Mutants of phage T4 with increased sensitivity to ultraviolet. Virology 1963, 19, 66–71. [Google Scholar] [CrossRef]
- Harm, W. On the control of UV-sensitivity of phage T4 by the gene x. Mutat. Res. Mol. Mech. Mutagen. 1964, 1, 344–354. [Google Scholar] [CrossRef]
- Boyle, J.M.; Symonds, N. Radiation-sensitive mutants of T4D I. T4y: A new radiation-sensitive mutant: Effect of the mutation on radiation survival, growth and recombination. Mutat. Res. Mol. Mech. Mutagen. 1969, 8, 431–439. [Google Scholar] [CrossRef]
- Ray, U.; Bartenstein, L.; Drake, J.W. Inactivation of Bacteriophage T4 by Ethyl Methanesulfonate: Influence of Host and Viral Genotypes. J. Virol. 1972, 9, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Hamlett, N.V.; Berger, H. Mutations altering genetic recombination and repair of DNA in bacteriophage T4. Virology 1975, 63, 539–567. [Google Scholar] [CrossRef]
- Takahashi, H.; Saito, H. Cloning of uvsW and uvsY genes of bacteriophage T4. Virology 1982, 120, 122–129. [Google Scholar] [CrossRef]
- Yonesaki, T.; Minagawa, T. Studies on the recombination genes of bacteriophage T4: Suppression of uvsX and uvsY mutations by uvsW mutations. Genetics 1987, 115, 219–227. [Google Scholar] [CrossRef]
- Miller, E.S.; Kutter, E.; Mosig, G.; Arisaka, F.; Kunisawa, T.; Rüger, W. Bacteriophage T4 Genome. Microbiol. Mol. Biol. Rev. 2003, 67, 86–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, B.M.; Frey, L. T4 Bacteriophage Gene 32: A Structural Protein in the Replication and Recombination of DNA. Nature 1970, 227, 1313–1318. [Google Scholar] [CrossRef]
- Bleuit, J.S.; Xu, H.; Ma, Y.; Wang, T.; Liu, J.; Morrical, S.W. Mediator proteins orchestrate enzyme-ssDNA assembly during T4 recombination-dependent DNA replication and repair. Proc. Natl. Acad. Sci. USA 2001, 98, 8298–8305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sawitzke, J.A.; Thomason, L.C.; Costantino, N.; Bubunenko, M.; Datta, S.; Court, D.L. Recombineering: In vivo Genetic Engineering in E. coli, S. enterica, and Beyond. Methods Enzymol. 2007, 421, 171–199. [Google Scholar] [PubMed]
- Maxwell, K.L.; Reed, P.; Zhang, R.G.; Beasley, S.; Walmsley, A.R.; Curtis, F.A.; Joachimiak, A.; Edwards, A.M.; Sharples, G.J. Functional similarities between phage λ Orf and Escherichia coli RecFOR in initiation of genetic exchange. Proc. Natl. Acad. Sci. USA 2005, 102, 11260–11265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, K.S.Y. The gene dosage effect of the rad52 mutation on X-ray survival curves of tetraploid yeast strains. Mutat. Res. Mol. Mech. Mutagen. 1975, 33, 165–171. [Google Scholar] [CrossRef]
- Rattray, A.J.; Symington, L.S. Multiple pathways for homologous recombination in Saccharomyces cerevisiae. Genetics 1995, 139, 45–56. [Google Scholar] [CrossRef]
- Mortensen, U.H.; Bendixen, C.; Sunjevaric, I.; Rothstein, R. DNA strand annealing is promoted by the yeast RaD52 protein. Proc. Natl. Acad. Sci. USA 1996, 93, 10729–10734. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, T.; New, J.H.; Kowalczykowski, S.C. DNA annealing by Rad52 protein is stimulated by specific interaction with the complex of replication protein A and single-stranded DNA. Proc. Natl. Acad. Sci. USA 1998, 95, 6049–6054. [Google Scholar] [CrossRef] [Green Version]
- Bhowmick, R.; Minocherhomji, S.; Hickson, I.D. RAD52 Facilitates Mitotic DNA Synthesis Following Replication Stress. Mol. Cell 2016, 64, 1117–1126. [Google Scholar] [CrossRef] [Green Version]
- Minocherhomji, S.; Ying, S.; Bjerregaard, V.A.; Bursomanno, S.; Aleliunaite, A.; Wu, W.; Mankouri, H.W.; Shen, H.; Liu, Y.; Hickson, I.D. Replication stress activates DNA repair synthesis in mitosis. Nature 2015, 528, 286–290. [Google Scholar] [CrossRef]
- Sotiriou, S.K.; Kamileri, I.; Lugli, N.; Evangelou, K.; Da-Ré, C.; Huber, F.; Padayachy, L.; Tardy, S.; Nicati, N.L.; Barriot, S.; et al. Mammalian RAD52 Functions in Break-Induced Replication Repair of Collapsed DNA Replication Forks. Mol. Cell 2016, 64, 1127–1134. [Google Scholar] [CrossRef] [Green Version]
- Min, J.; Wright, W.E.; Shay, J.W. Alternative Lengthening of Telomeres Mediated by Mitotic DNA Synthesis Engages Break-Induced Replication Processes. Mol. Cell. Biol. 2017, 37, 1–16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, P.; Dilley, R.L.; Zhang, T.; Gyparaki, M.T.; Li, Y.; Greenberg, R.A. RAD52 and SLX4 act nonepistatically to ensure telomere stability during alternative telomere lengthening. Genes Dev. 2019, 33, 221–235. [Google Scholar] [CrossRef] [Green Version]
- Wooster, R.; Neuhausen, S.L.; Mangion, J.; Quirk, Y.; Ford, D.; Collins, N.; Nguyen, K.; Seal, S.; Tran, T.; Averill, D.; et al. Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 1994, 265, 2088–2090. [Google Scholar] [CrossRef]
- Morimatsu, M.; Donoho, G.; Hasty, P. Cells deleted for Brca2 COOH terminus exhibit hypersensitivity to γ- radiation and premature senescence. Cancer Res. 1998, 58, 3441–3447. [Google Scholar] [PubMed]
- Wong, J.M.S.; Ionescu, D.; Ingles, C.J. Interaction between BRCA2 and replication protein A is compromised by a cancer-predisposing mutation in BRCA2. Oncogene 2003, 22, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Kojic, M.; Kostrub, C.F.; Buchman, A.R.; Holloman, W.K. BRCA2 homolog required for proficiency in DNA repair, recombination, and genome stability in Ustilago maydis. Mol. Cell 2002, 10, 683–691. [Google Scholar] [CrossRef]
- Martinez, J.S.; Von Nicolai, C.; Kim, T.; Ehlén, Å.; Mazin, A.V.; Kowalczykowski, S.C.; Carreira, A. BRCA2 regulates DMC1-mediated recombination through the BRC repeats. Proc. Natl. Acad. Sci. USA 2016, 113, 3515–3520. [Google Scholar] [CrossRef] [Green Version]
- Feng, Z.; Scott, S.P.; Bussen, W.; Sharma, G.G.; Guo, G.; Pandita, T.K.; Powell, S.N. Rad52 inactivation is synthetically lethal with BRCA2 deficiency. Proc. Natl. Acad. Sci. USA 2011, 108, 686–691. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Heyer, W.D. Who’s who in human recombination: BRCA2 and RAD52. Proc. Natl. Acad. Sci. USA 2011, 108, 441–442. [Google Scholar] [CrossRef] [Green Version]
- Korolev, S. Advances in structural studies of recombination mediator proteins. Biophys. Chem. 2017, 225, 27–37. [Google Scholar] [CrossRef]
- Makharashvili, N.; Koroleva, O.; Bera, S.; Grandgenett, D.P.; Korolev, S. A novel structure of DNA repair protein RecO from Deinococcus radiodurans. Structure 2004, 12, 1881–1889. [Google Scholar] [CrossRef]
- Leiros, I.; Timmins, J.; Hall, D.R.; McSweeney, S. Crystal structure and DNA-binding analysis of RecO from Deinococcus radiodurans. EMBO J. 2005, 24, 906–918. [Google Scholar] [CrossRef]
- Timmins, J.; Leiros, I.; McSweeney, S. Crystal structure and mutational study of RecOR provide insight into its mode of DNA binding. EMBO J. 2007, 26, 3260–3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radzimanowski, J.; Dehez, F.; Round, A.; Bidon-Chanal, A.; McSweeney, S.; Timmins, J. An “open” structure of the RecOR complex supports ssDNA binding within the core of the complex. Nucleic Acids Res. 2013, 41, 7972–7986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryzhikov, M.; Koroleva, O.; Postnov, D.; Tran, A.; Korolev, S. Mechanism of RecO recruitment to DNA by single-stranded DNA binding protein. Nucleic Acids Res. 2011, 39, 6305–6314. [Google Scholar] [CrossRef] [Green Version]
- Luisi-DeLuca, C.; Kolodner, R. Purification and Characterization of the Escherichia coli RecO Protein. J. Mol. Biol. 1994, 236, 124–138. [Google Scholar] [CrossRef]
- Kantake, N.; Madiraju, M.V.V.M.; Sugiyama, T.; Kowalczykowski, S.C. Escherichia coli RecO protein anneals ssDNA complexed with its cognate ssDNA-binding protein: A common step in genetic recombination. Proc. Natl. Acad. Sci. USA 2002, 99, 15327–15332. [Google Scholar] [CrossRef] [Green Version]
- Umezu, K.; Kolodner, R.D. Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J. Biol. Chem. 1994, 269, 30005–30013. [Google Scholar] [CrossRef]
- Lee, B.; Kim, K.H.; Park, S.J.; Eom, S.H.; Song, H.K.; Suh, S.W. Ring-shaped architecture of RecR: Implications for its role in homologous recombinational DNA repair. EMBO J. 2004, 23, 2029–2038. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Liu, Y.P.; Yan, X.X.; Liang, D.C. Structural and functional characterization of Cys4 zinc finger motif in the recombination mediator protein RecR. DNA Repair 2014, 24, 10–14. [Google Scholar] [CrossRef]
- Che, S.; Chen, Y.; Liang, Y.; Zhang, Q.; Bartlam, M. Crystal structure of RecR, a member of the RecFOR DNA-repair pathway, from Pseudomonas aeruginosa PAO1. Acta Crystallogr. Sect. F Struct. Biol. Commun. 2018, 74, 222–230. [Google Scholar] [CrossRef] [PubMed]
- Honda, M.; Inoue, J.; Yoshimasu, M.; Ito, Y.; Shibata, T.; Mikawa, T. Identification of the RecR Toprim domain as the binding site for both recF and recO: A role of recR in recFOR assembly at double-stranded DNA-single-stranded DNA junctions. J. Biol. Chem. 2006, 281, 18549–18559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, J.C.; Stiege, A.C.; Dobrinski, B.; Lurz, R. Purification and properties of the RecR protein from Bacillus subtilis 168. J. Biol. Chem. 1993, 268, 1424–1429. [Google Scholar] [CrossRef]
- Webb, B.L.; Cox, M.M.; Inman, R.B. An interaction between the Escherichia coli RecF and RecR proteins dependent on ATP and double-stranded DNA. J. Biol. Chem. 1995, 270, 31397–31404. [Google Scholar] [CrossRef] [Green Version]
- Shinn, M.K.; Kozlov, A.G.; Lohman, T.M. Allosteric effects of SSB C-terminal tail on assembly of E. coli RecOR proteins. Nucleic Acids Res. 2021, 49, 1987–2004. [Google Scholar] [CrossRef]
- Manfredi, C.; Carrasco, B.; Ayora, S.; Alonso, J.C. Bacillus subtilis RecO nucleates RecA onto SsbA-coated single-stranded DNA. J. Biol. Chem. 2008, 283, 24837–24847. [Google Scholar] [CrossRef] [Green Version]
- Hobbs, M.D.; Sakai, A.; Cox, M.M. SSB protein limits RecOR binding onto single-stranded DNA. J. Biol. Chem. 2007, 282, 11058–11067. [Google Scholar] [CrossRef] [Green Version]
- Sakai, A.; Cox, M.M. RecFOR and RecOR as distinct RecA loading pathways. J. Biol. Chem. 2008, 284, 3264–3272. [Google Scholar] [CrossRef] [Green Version]
- Raychaudhury, P.; Marians, K.J. The recombination mediator proteins RecFOR maintain RecA* levels for maximal DNA polymerase V Mut activity. J. Biol. Chem. 2019, 294, 852–860. [Google Scholar] [CrossRef] [Green Version]
- Koroleva, O.; Makharashvili, N.; Courcelle, C.T.; Courcelle, J.; Korolev, S. Structural conservation of RecF and Rad50: Implications for DNA recognition and RecF function. EMBO J. 2007, 26, 867–877. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, Y.P.; Shan, H.H.; Tian, L.F.; Zhang, J.Z.; Yan, X.X. ATP-dependent conformational change in ABC-ATPase RecF serves as a switch in DNA repair. Sci. Rep. 2018, 8, 2127. [Google Scholar] [CrossRef] [PubMed]
- Griffin, T.J., IV; Kolodner, R.D. Purification and preliminary characterization of the Escherichia coli K-12 RecF protein. J. Bacteriol. 1990, 172, 6291–6299. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madiraju, M.V.V.; Clark, A.J. Evidence for ATP binding and double-stranded DNA binding by Escherichia coli RecF protein. J. Bacteriol. 1992, 174, 7705–7710. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, B.L.; Cox, M.M.; Inman, R.B. ATP hydrolysis and DNA binding by the Escherichia coli RecF protein. J. Biol. Chem. 1999, 274, 15367–15374. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Webb, B.L.; Cox, M.M.; Inman, R.B. Recombinational DNA Repair: The RecF and RecR Proteins Limit the Extension of RecA Filaments beyond Single-Strand DNA Gaps. Cell 1997, 91, 347–356. [Google Scholar] [CrossRef] [Green Version]
- Morimatsu, K.; Kowalczykowski, S.C. RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: A universal step of recombinational repair. Mol. Cell 2003, 11, 1337–1347. [Google Scholar] [CrossRef]
- Morimatsu, K.; Wu, Y.; Kowalczykowski, S.C. RecFOR Proteins Target RecA Protein to a DNA Gap with Either DNA or RNA at the 5’ Terminus Implication for Repair of Stalled Replication Forks. J. Biol. Chem. 2012, 287, 35621–35630. [Google Scholar] [CrossRef] [Green Version]
- Lusetti, S.L.; Hobbs, M.D.; Stohl, E.A.; Chitteni-Pattu, S.; Inman, R.B.; Seifert, H.S.; Cox, M.M. The RecF protein antagonizes RecX function via direct interaction. Mol. Cell 2006, 21, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Handa, N.; Morimatsu, K.; Lovett, S.T.; Kowalczykowski, S.C. Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev. 2009, 23, 1234–1245. [Google Scholar] [CrossRef] [Green Version]
- Gajewski, S.; Waddell, M.B.; Vaithiyalingam, S.; Nourse, A.; Li, Z.; Woetzel, N.; Alexander, N.; Meiler, J.; White, S.W. Structure and mechanism of the phage T4 recombination mediator protein UvsY. Proc. Natl. Acad. Sci. USA 2016, 113, 3275–3280. [Google Scholar] [CrossRef] [Green Version]
- Sweezy, M.A.; Morrical, S.W. Biochemical interactions within a ternary complex of the bacteriophage T4 recombination proteins uvsY and gp32 bound to single-stranded DNA. Biochemistry 1999, 38, 936–944. [Google Scholar] [CrossRef] [PubMed]
- Sweezy, M.A.; Morrical, S.W. Single-stranded DNA binding properties of the uvsY recombination protein of bacteriophage T4. J. Mol. Biol. 1997, 266, 927–938. [Google Scholar] [CrossRef]
- Kagawa, W.; Kurumizaka, H.; Ishitani, R.; Fukai, S.; Nureki, O.; Shibata, T.; Yokoyama, S. Crystal structure of the homologous-pairing domain from the human Rad52 recombinase in the undecameric form. Mol. Cell 2002, 10, 359–371. [Google Scholar] [CrossRef]
- Saotome, M.; Saito, K.; Yasuda, T.; Ohtomo, H.; Sugiyama, S.; Nishimura, Y.; Kurumizaka, H.; Kagawa, W. Structural Basis of Homology-Directed DNA Repair Mediated by RAD52. Iscience 2018, 3, 50–62. [Google Scholar] [CrossRef] [Green Version]
- Kagawa, W.; Kagawa, A.; Saito, K.; Ikawa, S.; Shibata, T.; Kurumizaka, H.; Yokoyama, S. Identification of a second DNA binding site in the human Rad52 protein. J. Biol. Chem. 2008, 283, 24264–24273. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Sung, P. Functional Interactions among Yeast Rad51 Recombinase, Rad52 Mediator, and Replication Protein A in DNA Strand Exchange. J. Biol. Chem. 2000, 275, 15895–15904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, H.P.; Ma, X.; Vaquero, J.; Brinkmeyer, M.; Guo, F.; Heyer, W.D.; Liu, J. DSS1 and ssDNA regulate oligomerization of BRCA2. Nucleic Acids Res. 2020, 48, 7818–7833. [Google Scholar] [CrossRef]
- Pellegrini, L.; Yu, D.S.; Lo, T.; Anand, S.; Lee, M.Y.; Blundell, T.L.; Venkitaraman, A.R. Insights into DNA recombination from the structure of a RAD51-BRCA2 complex. Nature 2002, 420, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Vaithiyalingam, S.; San Filippo, J.; Maranon, D.G.; Jimenez-Sainz, J.; Fontenay, G.V.; Kwon, Y.; Leung, S.G.; Lu, L.; Jensen, R.B.; et al. Promotion of BRCA2-Dependent Homologous Recombination by DSS1 via RPA Targeting and DNA Mimicry. Mol. Cell 2015, 59, 176–187. [Google Scholar] [CrossRef] [Green Version]
- Poteete, A.R. Modulation of DNA Repair and Recombination by the Bacteriophage λ Orf Function in Escherichia coli K-12. J. Bacteriol. 2004, 186, 2699–2707. [Google Scholar] [CrossRef] [Green Version]
- Bochkarev, A.; Bochkareva, E.; Frappier, L.; Edwards, A.M. The crystal structure of the complex of replication protein A subunits RPA32 and RPA14 reveals a mechanism for single-stranded DNA binding. EMBO J. 1999, 18, 4498–4504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliver, A.W.; Swift, S.; Lord, C.J.; Ashworth, A.; Pearl, L.H. Structural basis for recruitment of BRCA2 by PALB2. EMBO Rep. 2009, 10, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Ducy, M.; Sesma-Sanz, L.; Guitton-Sert, L.; Lashgari, A.; Gao, Y.; Brahiti, N.; Rodrigue, A.; Margaillan, G.; Caron, M.C.; Côté, J.; et al. The Tumor Suppressor PALB2: Inside Out. Trends Biochem. Sci. 2019, 44, 226–240. [Google Scholar] [CrossRef] [PubMed]
- Goldman, R.D.; Swedlow, J.; Spector, D.L. Live Cell Imaging: A Laboratory Manual; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2010. [Google Scholar]
- Snapp, E. Design and Use of Fluorescent Fusion Proteins in Cell Biology. Curr. Protoc. Cell Biol. 2005, 27, 1099–1103. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Lamothe, R.; Possoz, C.; Danilova, O.; Sherratt, D.J. Independent Positioning and Action of Escherichia coli Replisomes in Live Cells. Cell 2008, 133, 90–102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snapp, E.L. Fluorescent proteins: A cell biologist’s user guide. Trends Cell Biol. 2009, 19, 649–655. [Google Scholar] [CrossRef] [Green Version]
- Dubiel, K.; Henry, C.; Spenkelink, L.M.; Kozlov, A.G.; Wood, E.A.; Jergic, S.; Dixon, N.E.; van Oijen, A.M.; Cox, M.M.; Lohman, T.M.; et al. Development of a single-stranded DNA-binding protein fluorescent fusion toolbox. Nucleic Acids Res. 2020, 48, 6053–6067. [Google Scholar] [CrossRef]
- Balleza, E.; Kim, J.M.; Cluzel, P. Systematic characterization of maturation time of fluorescent proteins in living cells. Nat. Methods 2018, 15, 47–51. [Google Scholar] [CrossRef]
- Shashkova, S.; Leake, M.C. Single-molecule fluorescence microscopy review: Shedding new light on old problems. Biosci. Rep. 2017, 37, BSR20170031. [Google Scholar] [CrossRef] [Green Version]
- Ritchie, K.; Lill, Y.; Sood, C.; Lee, H.; Zhang, S. Single-molecule imaging in live bacteria cells. Phil. Trans. R Soc. B 2013, 368, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Reyes-Lamothe, R.; Sherratt, D.J.; Leake, M.C. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science 2010, 328, 498–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yu, J.; Xiao, J.; Ren, X.; Lao, K.; Xie, X.S. Probing gene expression in live cells, one protein molecule at a time. Science 2006, 311, 1600–1603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, L.; Friedman, N.; Xie, X.S. Stochastic protein expression in individual cells at the single molecule level. Nature 2006, 440, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Clark, A.J.; Sandler, S.J. Homologous genetic recombination: The pieces begin to fall into place. Crit. Rev. Microbiol. 1994, 20, 125–142. [Google Scholar] [CrossRef]
- Smith, K.C.; Wang, T.-C.V. recA-dependent DNA repair processes. BioEssays 1989, 10, 12–16. [Google Scholar] [CrossRef]
- Wang, T.-C.V.; Chang, H.-Y.; Hung, J.-L. Cosuppression of recF, recR and recO mutations by mutant recA alleles in Escherichia coli cells. Mutat. Res. Repair 1993, 294, 157–166. [Google Scholar] [CrossRef]
- Lavery, P.E.; Kowalczykowski, S.C. Biochemical basis of the temperature-inducible constitutive protease activity of the recA441 protein of Escherichia coli. J. Mol. Biol. 1988, 203, 861–874. [Google Scholar] [CrossRef]
- Madiraju, M.V.V.S.; Lavery, P.E.; Kowalczykowski, S.C.; Clark, A.J. Enzymic properties of the RecA803 protein, a partial suppressor of recF mutations. Biochemistry 1992, 31, 10529–10535. [Google Scholar] [CrossRef]
- Madiraju, M.V.V.S.; Templin, A.; Clark, A.J. Properties of a mutant recA-encoded protein reveal a possible role for Escherichia coli recF-encoded protein in genetic recombination. Proc. Natl. Acad. Sci. USA 1988, 85, 6592–6596. [Google Scholar] [CrossRef] [Green Version]
- Lesterlin, C.; Ball, G.; Schermelleh, L.; Sherratt, D.J. RecA bundles mediate homology pairing between distant sisters during DNA break repair. Nature 2014, 506, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Rajendram, M.; Zhang, L.; Reynolds, B.J.; Auer, G.K.; Tuson, H.H.; Ngo, K.V.; Cox, M.M.; Yethiraj, A.; Cui, Q.; Weibel, D.B. Anionic Phospholipids stabilize RecA filament bundles in Escherichia coli. Mol. Cell 2016, 60, 374–384. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amarh, V.; White, M.A.; Leach, D.R.F. Dynamics of RecA-mediated repair of replication- dependent DNA breaks. J. Cell Biol. 2018, 217, 2299–2307. [Google Scholar] [CrossRef] [PubMed]
- Essers, J.; Houtsmuller, A.B.; van Veelen, L.; Paulusma, C.; Nigg, A.L.; Pastink, A.; Vermeulen, W.; Hoeijmakers, J.H.J.; Kanaar, R. Nuclear dynamics of RAD52 group homologous recombination proteins in response to DNA damage. EMBO J. 2002, 21, 2030–2037. [Google Scholar] [CrossRef] [Green Version]
- Reuter, M.; Zelensky, A.; Smal, I.; Meijering, E.; van Cappellen, W.A.; de Gruiter, H.M.; van Belle, G.J.; van Royen, M.E.; Houtsmuller, A.B.; Essers, J.; et al. BRCA2 diffuses as oligomeric clusters with RAD51 and changes mobility after DNA damage in live cells. J. Cell Biol. 2014, 207, 599–613. [Google Scholar] [CrossRef] [PubMed]
- Kaniecki, K.; De Tullio, L.; Greene, E.C. A change of view: Homologous recombination at single-molecule resolution. Nat. Rev. Genet. 2018, 19, 191–207. [Google Scholar] [CrossRef]
- Candelli, A.; Modesti, M.; Peterman, E.J.G.; Wuite, G.J.L. Single-molecule views on homologous recombination. Q. Rev. Biophys. 2013, 46, 323–348. [Google Scholar] [CrossRef]
- De Vlaminck, I.; Dekker, C. Recent Advances in Magnetic Tweezers. Annu. Rev. Biophys. 2012, 41, 453–472. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moffitt, J.R.; Chemla, Y.R.; Smith, S.B.; Bustamante, C. Recent Advances in Optical Tweezers. Annu. Rev. Biochem. 2008, 77, 205–228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakowicz, J.R. Energy Transfer. In Principles of Fluorescence Spectroscopy; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2006; pp. 443–475. [Google Scholar]
- Stryer, L. Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 1978, 47, 819–846. [Google Scholar] [CrossRef]
- Dupaigne, P.; Tavares, E.M.; Piétrement, O.; Le Cam, E. Recombinases and Related Proteins in the Context of Homologous Recombination Analyzed by Molecular Microscopy. In Molecular Motors. Methods in Molecular Biology; Lavelle, C., Ed.; Humana Press: New York, NY, USA, 2018; Volume 1805, pp. 251–270. [Google Scholar]
- Manfredi, C.; Suzuki, Y.; Yadav, T.; Takeyasu, K.; Alonso, J.C. RecO-mediated DNA homology search and annealing is facilitated by SsbA. Nucleic Acids Res. 2010, 38, 6920–6929. [Google Scholar] [CrossRef] [Green Version]
- Hwang, J.; Kim, J.-Y.; Kim, C.; Park, S.; Joo, S.; Kim, S.K.; Lee, N.K. Single-molecule observation of ATP-independent SSB displacement by RecO in Deinococcus radiodurans. Elife 2020, 9, e50945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.-Y.; Kim, C.; Lee, N.K. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering. Nat. Commun. 2015, 6, 6992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pant, K.; Karpel, R.L.; Rouzina, I.; Williams, M.C. Salt dependent binding of T4 gene 32 protein to single and double-stranded DNA: Single molecule force spectroscopy measurements. J. Mol. Biol. 2005, 349, 317–330. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, J.S.; Dharmadhikari, J.A.; Dharmadhikari, A.K.; Navadgi, V.; Mathur, D.; Rao, B.J. Human Rad52 binding renders ssDNA unfolded: Image and contour length analyses by atomic force microscopy. Curr Sci. 2006, 91, 1641–1648. [Google Scholar]
- Pokhrel, N.; Caldwell, C.C.; Corless, E.I.; Tillison, E.A.; Tibbs, J.; Jocic, N.; Tabei, S.M.A.; Wold, M.S.; Spies, M.; Antony, E. Dynamics and selective remodeling of the DNA-binding domains of RPA. Nat. Struct. Mol. Biol. 2019, 26, 129–136. [Google Scholar] [CrossRef]
- Shivji, M.K.K.; Mukund, S.R.; Rajendra, E.; Chen, S.; Short, J.M.; Savill, J.; Klenerman, D.; Venkitaraman, A.R. The BRC repeats of human BRCA2 differentially regulate RAD51 binding on single- versus double-stranded DNA to stimulate strand exchange. Proc. Natl. Acad. Sci. USA 2009, 106, 13254–13259. [Google Scholar] [CrossRef] [Green Version]
- Belan, O.; Barroso, C.; Kaczmarczyk, A.; Anand, R.; Federico, S.; O’Reilly, N.; Newton, M.D.; Maeots, E.; Enchev, R.I.; Martinez-Perez, E.; et al. Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Mol. Cell 2021, 81, 1058–1073. [Google Scholar] [CrossRef]
- Bell, J.C.; Plank, J.L.; Dombrowski, C.C.; Kowalczykowski, S.C. Direct imaging of RecA nucleation and growth on single molecules of SSB-coated ssDNA. Nature 2012, 491, 274–278. [Google Scholar] [CrossRef] [Green Version]
- Ghodke, H.; Paudel, B.; Lewis, J.S.; Jergic, S.; Gopal, K.; Romero, Z.; Wood, E.A.; Woodgate, R.; Cox, M.M.; van Oijen, A.M. Spatial and temporal organization of RecA in the Escherichia coli DNA-damage response. Elife 2019, 8, e42761. [Google Scholar] [CrossRef]
- Shee, C.; Cox, B.D.; Gu, F.; Luengas, E.M.; Joshi, M.C.; Chiu, L.Y.; Magnan, D.; Halliday, J.A.; Frisch, R.L.; Gibson, J.L.; et al. Engineered proteins detect spontaneous DNA breakage in human and bacterial cells. Elife 2013, 2, e01222. [Google Scholar] [CrossRef]
- Lepore, A.; Taylor, H.; Landgraf, D.; Okumus, B.; Jaramillo-Riveri, S.; McLaren, L.; Bakshi, S.; Paulsson, J.; Karoui, M. El Quantification of very low-abundant proteins in bacteria using the HaloTag and epi-fluorescence microscopy. Sci. Rep. 2019, 9, 7902. [Google Scholar] [CrossRef] [Green Version]
- Henrikus, S.S.; Wood, E.A.; McDonald, J.P.; Cox, M.M.; Woodgate, R.; Goodman, M.F.; van Oijen, A.M.; Robinson, A. DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli. PLoS Genet. 2018, 14, e1007161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Henrikus, S.S.; Henry, C.; Mcgrath, A.E.; Jergic, S.; Mcdonald, J.P.; Hellmich, Y.; Bruckbauer, S.T.; Ritger, M.L.; Cherry, M.E.; Wood, E.A.; et al. Single-molecule live-cell imaging reveals RecB-dependent function of DNA polymerase IV in double strand break repair. Nucleic Acids Res. 2020, 48, 8490–8508. [Google Scholar] [CrossRef]
- Cheng, K.; Xu, G.; Xu, H.; Zhao, Y.; Hua, Y. Deinococcus radiodurans DR1088 is a novel RecF-interacting protein that stimulates single-stranded DNA annealing. Mol. Microbiol. 2017, 106, 518–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soltermann, F.; Foley, E.D.B.; Pagnoni, V.; Galpin, M.; Benesch, J.L.P.; Kukura, P.; Struwe, W.B. Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry. Angew. Chem. Int. Ed. 2020, 59, 10774–10779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lawson, M.J.; Camsund, D.; Larsson, J.; Baltekin, Ö.; Fange, D.; Elf, J. In situ genotyping of a pooled strain library after characterizing complex phenotypes. Mol. Syst. Biol. 2017, 13, 947. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.M.; Koskella, B.; Lin, H.C. Phage therapy: An alternative to antibiotics in the age of multi-drug resistance. World J. Gastrointest. Pharmacol. Ther. 2017, 8, 162. [Google Scholar] [CrossRef]
- Kim, D.-S.; Camacho, C.V.; Kraus, W.L. Alternate therapeutic pathways for PARP inhibitors and potential mechanisms of resistance. Exp. Mol. Med. 2021, 53, 42–51. [Google Scholar] [CrossRef]
- Chandramouly, G.; McDevitt, S.; Sullivan, K.; Kent, T.; Luz, A.; Glickman, J.F.; Andrake, M.; Skorski, T.; Pomerantz, R.T. Small-Molecule Disruption of RAD52 Rings as a Mechanism for Precision Medicine in BRCA-Deficient Cancers. Chem. Biol. 2015, 22, 1491–1504. [Google Scholar] [CrossRef] [Green Version]
- Sirbu, B.M.; McDonald, W.H.; Dungrawala, H.; Badu-Nkansah, A.; Kavanaugh, G.M.; Chen, Y.; Tabb, D.L.; Cortez, D. Identification of proteins at active, stalled, and collapsed replication forks using isolation of proteins on nascent DNA (iPOND) coupled with mass spectrometry. J. Biol. Chem. 2013, 288, 31458–31467. [Google Scholar] [CrossRef] [Green Version]
- Mohni, K.N.; Wessel, S.R.; Zhao, R.; Wojciechowski, A.C.; Luzwick, J.W.; Layden, H.; Eichman, B.F.; Thompson, P.S.; Mehta, K.P.M.; Cortez, D. HMCES Maintains Genome Integrity by Shielding Abasic Sites in Single-Strand DNA. Cell 2019, 176, 144–153.e13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paul, M.W.; Zelensky, A.N.; Wyman, C.; Kanaar, R. Single-Molecule Dynamics and Localization of DNA Repair Proteins in Cells, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; Volume 600. [Google Scholar]
1. Bacteria | 2. Phages T4 or Lambda | 3. Eukaryotes | |||
---|---|---|---|---|---|
Single-strand binding protein | SSB | T4 gp32 | E.coli SSB | RPA | |
RMP(s) | RecF, RecO, RecR | UvsY | λOrf (NinB) | RAD52 | BRCA2 |
Recombinase | RecA | UvsX | λBeta or E.coli RecA | RAD51/DMC1 | Rad51/DMC1 |
Pathways facilitated by RMPs | HR, SOS, TLS, replication | HR and RDR | HR, SOS, TLS, replication, phage cycle | HR, SSDA | HR |
Additional partners | RecQ, RecJ, RecN, RecG, RecX | UvsW helicase | λExo and λMu | RAD50, MRE11, XRS2, RAD54, RAD55, RAD57, RAD59, TID1 | RAD50, MRE11, XRS2, PALB2, DSS1, BRCA1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henry, C.; Henrikus, S.S. Elucidating Recombination Mediator Function Using Biophysical Tools. Biology 2021, 10, 288. https://doi.org/10.3390/biology10040288
Henry C, Henrikus SS. Elucidating Recombination Mediator Function Using Biophysical Tools. Biology. 2021; 10(4):288. https://doi.org/10.3390/biology10040288
Chicago/Turabian StyleHenry, Camille, and Sarah S. Henrikus. 2021. "Elucidating Recombination Mediator Function Using Biophysical Tools" Biology 10, no. 4: 288. https://doi.org/10.3390/biology10040288
APA StyleHenry, C., & Henrikus, S. S. (2021). Elucidating Recombination Mediator Function Using Biophysical Tools. Biology, 10(4), 288. https://doi.org/10.3390/biology10040288