NFX1, Its Isoforms and Roles in Biology, Disease and Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. NFX1 Homologs and Biologic Functions Across Species
2.1. Stc: Drosophila Homolog Studies
2.2. m-Nfx.1: Mouse Homolog Studies
2.3. FAP1: Saccharomyces cerevisiae Homolog Studies
2.4. AtNFXL1, AtNFXL2, and NF-X1: Plant Homolog Studies
2.5. NFX1: Large Animal Model Studies
3. NFX1 and NFXL1 Biologic Functions in Humans
4. NFX1 and NFXL1 Functions in Human Diseases
4.1. NFX1, High-Risk Human Papillomavirus, and Cancer Studies
4.2. Two Human NFX1 Isoforms in Epithelial Cells: NFX1-91 and NFX1-123
4.3. NFX1-91: A Transcriptional Regulator Destabilized by HR HPV
4.4. NFX1-123: A Post-Transcriptional Regulator Stabilized by HR HPV
4.5. NFX1-123: Increased in Epithelial Differentiation and Drives Differentiation Pathways
4.6. NFX1-123 Increased in Cervical Cancers and Co-Regulates Differentiation and Longevity
4.7. NFX1-123: Downregulation of Inflammation and Immune Regulation with HR HPV
5. NFX1 in HR HPV and Non-HR HPV Associated Cancers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Hume, C.R.; Lee, J.S. Congenital immunodeficiencies associated with absence of HLA class II antigens on lymphocytes result from distinct mutations in trans-acting factors. Hum. Immunol. 1989, 26, 288–309. [Google Scholar] [CrossRef]
- Song, Z.; Krishna, S.; Thanos, D.; Strominger, J.L.; Ono, S.J. A novel cysteine-rich sequence-specific DNA-binding protein interacts with the conserved X-box motif of the human major histocompatibility complex class II genes via a repeated Cys-His domain and functions as a transcriptional repressor. J. Exp. Med. 1994, 180, 1763–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stroumbakis, N.D.; Li, Z.; Tolias, P.P. A homolog of human transcription factor NF-X1 encoded by the Drosophila shuttle craft gene is required in the embryonic central nervous system. Mol. Cell. Biol. 1996, 16, 192–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tolias, P.P.; Stroumbakis, N.D. The Drosophila zygotic lethal gene shuttle craft is required maternally for proper embryonic development. Dev. Genes Evol. 1998, 208, 274–282. [Google Scholar] [CrossRef]
- Pasyukova, E.G.; Roshina, N.V.; Mackay, T.F.C. Shuttle craft: A candidate quantitative trait gene for Drosophila lifespan. Aging Cell 2004, 3, 297–307. [Google Scholar] [CrossRef]
- Roshina, N.V.; Symonenko, A.V.; Krementsova, A.V.; Trostnikov, M.V.; Pasyukova, E.G. Embryonic expression of shuttle craft, a Drosophila gene involved in neuron development, is associated with adult lifespan. Aging 2014, 6, 1076–1093. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arlotta, P.; Miyazaki, D.; Copeland, N.G.; Gilbert, D.J.; Jenkins, N.A.; Ono, S.J. Murine NFX.1: Isolation and characterization of its messenger RNA, mapping of its chromosomal location and assessment of its developmental expression. Immunology 2002, 106, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Kunz, J.; Loeschmann, A.; Deuter-Reinhard, M.; Hall, M.N. FAP1, a homologue of human transcription factor NF-X1, competes with rapamycin for binding to FKBP12 in yeast. Mol. Microbiol. 2000, 37, 1480–1493. [Google Scholar] [CrossRef]
- Velez, A.C.R.; Matos, E.P. Determining the Role, Expression and Interactions of FAP-1 in S. cerevisiae, Cultivated in a Nitrogen-limited Media. FASEB J. 2018, 32, 666.7. [Google Scholar] [CrossRef]
- Lisso, J.; Altmann, T.; Müssig, C. The AtNFXL1 gene encodes a NF-X1 type zinc finger protein required for growth under salt stress. FEBS Lett. 2006, 580, 4851–4856. [Google Scholar] [CrossRef] [Green Version]
- Larkindale, J.; Vierling, E. Core Genome Responses Involved in Acclimation to High Temperature. Plant Physiol. 2008, 146, 748–761. [Google Scholar] [CrossRef] [Green Version]
- Asano, T.; Yasuda, M.; Nakashita, H.; Kimura, M.; Yamaguchi, K.; Nishiuchi, T. TheAtNFXL1gene functions as a signaling component of the type A trichothecene-dependent response. Plant Signal. Behav. 2008, 3, 991–992. [Google Scholar] [CrossRef] [Green Version]
- Asano, T.; Masuda, D.; Yasuda, M.; Nakashita, H.; Kudo, T.; Kimura, M.; Yamaguchi, K.; Nishiuchi, T. AtNFXL1, an Arabidopsis homologue of the human transcription factor NF-X1, functions as a negative regulator of the trichothecene phytotoxin-induced defense response. Plant J. 2007, 53, 450–464. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yang, Z.; Li, Z.; Zhang, F.; Hao, L. De novo transcriptome assembly and co-expression network analysis of Cynanchum thesioides: Identification of genes involved in resistance to drought stress. Gene 2019, 710, 375–386. [Google Scholar] [CrossRef] [PubMed]
- Müssig, C.; Schröder, F.; Usadel, B.; Lisso, J. Structure and putative function of NFX1-like proteins in plants. Plant Biol. 2010, 12, 381–394. [Google Scholar] [CrossRef]
- Sabino, M.; Carmelo, V.A.O.; Mazzoni, G.; Cappelli, K.; Capomaccio, S.; Ajmone-Marsan, P.; Verini-Supplizi, A.; Trabalza-Marinucci, M.; Kadarmideen, H.N. Gene co-expression networks in liver and muscle transcriptome reveal sex-specific gene expression in lambs fed with a mix of essential oils. BMC Genom. 2018, 19, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Messad, F.; Louveau, I.; Koffi, B.; Gilbert, H.; Gondret, F. Investigation of muscle transcriptomes using gradient boosting machine learning identifies molecular predictors of feed efficiency in growing pigs. BMC Genom. 2019, 20, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, L.Y.; Nguyen, L.T.; Reverter, A.; Moore, S.S.; Lynn, A.; McBride-Kelly, L.; Phillips-Rose, L.; Plath, M.; Macfarlane, R.; Vasudivan, V.; et al. Gene regulation could be attributed to TCF3 and other key transcription factors in the muscle of pubertal heifers. Veter Med. Sci. 2020, 6, 695–710. [Google Scholar] [CrossRef]
- Júnior, G.A.F.; Costa, R.B.; De Camargo, G.M.F.; Carvalheiro, R.; Rosa, G.J.M.; Baldi, F.; Garcia, D.A.; Gordo, D.G.M.; Espigolan, R.; Takada, L.; et al. Genome scan for postmortem carcass traits in Nellore cattle1. J. Anim. Sci. 2016, 94, 4087–4095. [Google Scholar] [CrossRef]
- Lorick, K.L.; Jensen, J.P.; Fang, S.; Ong, A.M.; Hatakeyama, S.; Weissman, A.M. RING fingers mediate ubiquitin-conjugating enzyme (E2)-dependent ubiquitination. Proc. Natl. Acad. Sci. USA 1999, 96, 11364–11369. [Google Scholar] [CrossRef] [Green Version]
- Aoki, S.; Morohashi, K.; Sunoki, T.; Kuramochi, K.; Kobayashi, S.; Sugawara, F. Screening of Paclitaxel-Binding Molecules from a Library of Random Peptides Displayed on T7 Phage Particles Using Paclitaxel-Photoimmobilized Resin. Bioconjugate Chem. 2007, 18, 1981–1986. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, P.; Nudel, R.; Hoischen, A.; Fernández, M.A.; Simpson, N.H.; Gilissen, C.; Reader, R.H.; Jara, L.; Echeverry, M.M.; Francks, C.; et al. Exome Sequencing in an Admixed Isolated Population Indicates NFXL1 Variants Confer a Risk for Specific Language Impairment. PLoS Genet. 2015, 11, e1004925. [Google Scholar] [CrossRef] [Green Version]
- Nudel, R. An investigation of NFXL1, a gene implicated in a study of specific language impairment. J. Neurodev. Disord. 2016, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Nudel, R.; Simpson, N.H.; Baird, G.; O’Hare, A.; Conti-Ramsden, G.; Bolton, P.F.; Hennessy, E.R.; Monaco, A.P.; Knight, J.C.; Winney, B.; et al. Associations of HLA alleles with specific language impairment. J. Neurodev. Disord. 2014, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Zhao, S.; Zhang, Q.; Yan, Z.; Wang, Y.; Wu, Y.; Li, X.; Liu, J.; Niu, Y.; Zhang, Y.; et al. Exome sequencing reveals a novel variant in NFX1 causing intracranial aneurysm in a Chinese family. J. NeuroInterv. Surg. 2019, 12, 221–226. [Google Scholar] [CrossRef]
- Zhang, R.; Gehlen, J.; Kawalia, A.; Melissari, M.-T.; Dakal, T.C.; Menon, A.M.; Höfele, J.; Riedhammer, K.; Waffenschmidt, L.; Fabian, J.; et al. Human exome and mouse embryonic expression data implicate ZFHX3, TRPS1, and CHD7 in human esophageal atresia. PLoS ONE 2020, 15, e0234246. [Google Scholar] [CrossRef]
- Minchenko, D.O. Insulin resistance in obese adolescents affects the expression of genes associated with immune response. Endocr. Regul. 2019, 53, 71–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muñoz, N.; Bosch, F.X.; De Sanjosé, S.; Herrero, R.; Castellsagué, X.; Shah, K.V.; Snijders, P.J.; Meijer, C.J. Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer. N. Engl. J. Med. 2003, 348, 518–527. [Google Scholar] [CrossRef] [Green Version]
- Gewin, L.; Myers, H.; Kiyono, T.; Galloway, D.A. Identification of a novel telomerase repressor that interacts with the human papillomavirus type-16 E6/E6-AP complex. Genes Dev. 2004, 18, 2269–2282. [Google Scholar] [CrossRef] [Green Version]
- Katzenellenbogen, R.A.; Egelkrout, E.M.; Vliet-Gregg, P.; Gewin, L.C.; Gafken, P.R.; Galloway, D.A. NFX1-123 and Poly(A) Binding Proteins Synergistically Augment Activation of Telomerase in Human Papillomavirus Type 16 E6-Expressing Cells. J. Virol. 2007, 81, 3786–3796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grishin, N.V. The R3H motif: A domain that binds single-stranded nucleic acids. Trends Biochem. Sci. 1998, 23, 329–330. [Google Scholar] [CrossRef]
- Xu, M.; Luo, W.; Elzi, D.J.; Grandori, C.; Galloway, D.A. NFX1 Interacts with mSin3A/Histone Deacetylase To Repress hTERT Transcription in Keratinocytes. Mol. Cell. Biol. 2008, 28, 4819–4828. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, S.; Fujii, K.; Zhao, C.; Takagi, H.; Katakura, Y. Involvement of the NFX1-repressor complex in PKC-δ-induced repression of hTERT transcription. J. Biochem. 2016, 160, 309–313. [Google Scholar] [CrossRef]
- Bedard, K.M.; Underbrink, M.P.; Howie, H.L.; Galloway, D.A. The E6 Oncoproteins from Human Betapapillomaviruses Differentially Activate Telomerase through an E6AP-Dependent Mechanism and Prolong the Lifespan of Primary Keratinocytes. J. Virol. 2008, 82, 3894–3902. [Google Scholar] [CrossRef] [Green Version]
- Xu, M.; Katzenellenbogen, R.A.; Grandori, C.; Galloway, D.A. NFX1 Plays a Role in Human Papillomavirus Type 16 E6 Activation of NFκB Activity. J. Virol. 2010, 84, 11461–11469. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Lu, D.; Gao, J.; Zhu, H.; Zhou, Y.; Gao, D.; Zhou, H. Identification of a USP9X Substrate NFX1-123 by SILAC-Based Quantitative Proteomics. J. Proteome Res. 2019, 18, 2654–2665. [Google Scholar] [CrossRef]
- Rolén, U.; Kobzeva, V.; Gasparjan, N.; Ovaa, H.; Winberg, G.; Kisseljov, F.; Masucci, M.G. Activity profiling of deubiquitinating enzymes in cervical carcinoma biopsies and cell lines. Mol. Carcinog. 2006, 45, 260–269. [Google Scholar] [CrossRef]
- Katzenellenbogen, R.A.; Vliet-Gregg, P.; Xu, M.; Galloway, D.A. NFX1-123 Increases hTERT Expression and Telomerase Activity Posttranscriptionally in Human Papillomavirus Type 16 E6 Keratinocytes. J. Virol. 2009, 83, 6446–6456. [Google Scholar] [CrossRef] [Green Version]
- Vliet-Gregg, P.A.; Robinson, K.L.; Levan, J.; Matsumoto, L.R.; Katzenellenbogen, R.A. NFX1-123 is highly expressed in cervical cancer and increases growth and telomerase activity in HPV 16E6 expressing cells. Cancer Lett. 2019, 449, 106–113. [Google Scholar] [CrossRef]
- LeVan, J.; Vliet-Gregg, P.A.; Robinson, K.L.; Matsumoto, L.R.; Katzenellenbogen, R.A. HPV type 16 E6 and NFX1–123 augment JNK signaling to mediate keratinocyte differentiation and L1 expression. Virology 2019, 531, 171–182. [Google Scholar] [CrossRef]
- Vliet-Gregg, P.A.; Hamilton, J.R.; Katzenellenbogen, R.A. Human papillomavirus 16E6 and NFX1-123 potentiate Notch signaling and differentiation without activating cellular arrest. Virology 2015, 478, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vliet-Gregg, P.A.; Hamilton, J.R.; Katzenellenbogen, R.A. NFX1-123 and Human Papillomavirus 16E6 Increase Notch Expression in Keratinocytes. J. Virol. 2013, 87, 13741–13750. [Google Scholar] [CrossRef] [Green Version]
- Chintala, S.; LeVan, J.; Robinson, K.; Quist, K.; A Katzenellenbogen, R. Genes Regulated by HPV 16 E6 and High Expression of NFX1-123 in Cervical Cancers. OncoTargets Ther. 2020, 13, 6143–6156. [Google Scholar] [CrossRef] [PubMed]
- LeVan, J.; Vliet-Gregg, P.A.; Robinson, K.L.; Katzenellenbogen, R.A. Human papillomavirus type 16 E6 and NFX1-123 mislocalize immune signaling proteins and downregulate immune gene expression in keratinocytes. PLoS ONE 2017, 12, e0187514. [Google Scholar] [CrossRef] [Green Version]
- Kaliamurthi, S.; Selvaraj, G.; Kaushik, A.C.; Gu, K.-R.; Wei, D.-Q. Designing of CD8+ and CD8+-overlapped CD4+ epitope vaccine by targeting late and early proteins of human papillomavirus. Biol. Targets Ther. 2018, 12, 107–125. [Google Scholar] [CrossRef] [Green Version]
- CDC. Centers for Disease Control and Prevention. Cancers Associated with Human Papillomavirus, United States—2013–2017. USCS Data Brief, no 18. Atlanta, GA, USA. Available online: https://www.cdc.gov/cancer/uscs/about/data-briefs/no18-hpv-assoc-cancers-UnitedStates-2013-2017.htm (accessed on 16 February 2021).
- Sitaram, R.T.; Degerman, S.; Ljungberg, B.; Andersson, E.; Oji, Y.; Sugiyama, H.; Roos, G.; Li, A. Wilms’ tumour 1 can suppress hTERT gene expression and telomerase activity in clear cell renal cell carcinoma via multiple pathways. Br. J. Cancer 2010, 103, 1255–1262. [Google Scholar] [CrossRef] [Green Version]
- Donner, I.; Katainen, R.; Tanskanen, T.; Kaasinen, E.; Aavikko, M.; Ovaska, K.; Artama, M.; Pukkala, E.; Aaltonen, L.A. Candidate susceptibility variants for esophageal squamous cell carcinoma. Genes Chromosom. Cancer 2017, 56, 453–459. [Google Scholar] [CrossRef]
- Aka, J.A.; Lin, S.-X. Comparison of Functional Proteomic Analyses of Human Breast Cancer Cell Lines T47D and MCF7. PLoS ONE 2012, 7, e31532. [Google Scholar] [CrossRef]
- Azizi, E.; Namazi, A.; Kaabinejadian, S.; Fouladdel, S.; Rezaei, P.; Ramezani, M. Molecular analysis of MEN1 expression in MCF7, T47D and MDA-MB 468 breast cancer cell lines treated with adriamycin using RT-PCR and immunocytochemistry. DARU J. Pharm. Sci. 2010, 18, 17–22. [Google Scholar]
- Gaba, R.C.; Groth, J.V.; Parvinian, A.; Guzman, G.; Casadaban, L.C. Gene Expression in Hepatocellular Carcinoma: Pilot Study of Potential Transarterial Chemoembolization Response Biomarkers. J. Vasc. Interv. Radiol. 2015, 26, 723–732. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chintala, S.; Katzenellenbogen, R.A. NFX1, Its Isoforms and Roles in Biology, Disease and Cancer. Biology 2021, 10, 279. https://doi.org/10.3390/biology10040279
Chintala S, Katzenellenbogen RA. NFX1, Its Isoforms and Roles in Biology, Disease and Cancer. Biology. 2021; 10(4):279. https://doi.org/10.3390/biology10040279
Chicago/Turabian StyleChintala, Sreenivasulu, and Rachel A. Katzenellenbogen. 2021. "NFX1, Its Isoforms and Roles in Biology, Disease and Cancer" Biology 10, no. 4: 279. https://doi.org/10.3390/biology10040279
APA StyleChintala, S., & Katzenellenbogen, R. A. (2021). NFX1, Its Isoforms and Roles in Biology, Disease and Cancer. Biology, 10(4), 279. https://doi.org/10.3390/biology10040279