Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices—A Retrospective Comparative Cohort Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tham, Y.C.; Li, X.; Wong, T.Y.; Quigley, H.A.; Aung, T.; Cheng, C.Y. Global prevalence of glaucoma and projections of glaucoma burden through 2040: A systematic review and meta-analysis. Ophthalmology 2014, 121, 2081–2090. [Google Scholar] [CrossRef]
- Quigley, H.A.; Broman, A.T. The number of people with glaucoma worldwide in 2010 and 2020. Br. J. Ophthalmol. 2006, 90, 262–267. [Google Scholar] [CrossRef] [Green Version]
- Thylefors, B.; Negrel, A.D.; Pararajasegaram, R.; Dadzie, K.Y. Global data on blindness. Bull. World Health Organ. 1995, 73, 115–121. [Google Scholar] [PubMed]
- Wang, W.; He, M.; Li, Z.; Huang, W. Epidemiological variations and trends in health burden of glaucoma worldwide. Acta Ophthalmol. 2019, 97, e349–e355. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quigley, H.A. Ganglion cell death in glaucoma: Pathology recapitulates ontogeny. Aust. N. Z. J. Ophthalmol. 1995, 23, 85–91. [Google Scholar] [CrossRef]
- Levkovitch-Verbin, H. Retinal ganglion cell apoptotic pathway in glaucoma: Initiating and downstream mechanisms. Prog. Brain Res. 2015, 220, 37–57. [Google Scholar] [CrossRef]
- Leske, M.C.; Wu, S.Y.; Hennis, A.; Honkanen, R.; Nemesure, B. Risk factors for incident open-angle glaucoma: The Barbados Eye Studies. Ophthalmology 2008, 115, 85–93. [Google Scholar] [CrossRef] [PubMed]
- Tektas, O.Y.; Lutjen-Drecoll, E. Structural changes of the trabecular meshwork in different kinds of glaucoma. Exp. Eye Res. 2009, 88, 769–775. [Google Scholar] [CrossRef]
- Schmidl, D.; Schmetterer, L.; Garhofer, G.; Popa-Cherecheanu, A. Pharmacotherapy of glaucoma. J. Ocul. Pharmacol. Ther. 2015, 31, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Heijl, A.; Leske, M.C.; Bengtsson, B.; Hyman, L.; Hussein, M. Reduction of intraocular pressure and glaucoma progression: Results from the Early Manifest Glaucoma Trial. Arch. Ophthalmol. 2002, 120, 1268–1279. [Google Scholar] [CrossRef]
- Leske, M.C.; Heijl, A.; Hussein, M.; Bengtsson, B.; Hyman, L.; Komaroff, E. Factors for glaucoma progression and the effect of treatment: The early manifest glaucoma trial. Arch. Ophthalmol. 2003, 121, 48–56. [Google Scholar] [CrossRef]
- Razeghinejad, M.R.; Spaeth, G.L. A history of the surgical management of glaucoma. Optom. Vis. Sci. 2011, 88, E39–E47. [Google Scholar] [CrossRef]
- Zahid, S.; Musch, D.C.; Niziol, L.M.; Lichter, P.R. Risk of endophthalmitis and other long-term complications of trabeculectomy in the Collaborative Initial Glaucoma Treatment Study (CIGTS). Am. J. Ophthalmol. 2013, 155, 674–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, E.A.; Law, S.K.; Coleman, A.L.; Nouri-Mahdavi, K.; Giaconi, J.A.; Yu, F.; Lee, J.W.; Caprioli, J. Long-Term Bleb-Related Infections After Trabeculectomy: Incidence, Risk Factors, and Influence of Bleb Revision. Am. J. Ophthalmol. 2015, 159, 1082–1091. [Google Scholar] [CrossRef]
- Sheybani, A.; Lenzhofer, M.; Hohensinn, M.; Reitsamer, H.; Ahmed, I.I. Phacoemulsification combined with a new ab interno gel stent to treat open-angle glaucoma: Pilot study. J. Cataract Refract. Surg. 2015, 41, 1905–1909. [Google Scholar] [CrossRef]
- Lavia, C.; Dallorto, L.; Maule, M.; Ceccarelli, M.; Fea, A.M. Minimally-invasive glaucoma surgeries (MIGS) for open angle glaucoma: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0183142. [Google Scholar] [CrossRef] [PubMed]
- Grover, D.S.; Flynn, W.J.; Bashford, K.P.; Lewis, R.A.; Duh, Y.J.; Nangia, R.S.; Niksch, B. Performance and Safety of a New Ab Interno Gelatin Stent in Refractory Glaucoma at 12 Months. Am. J. Ophthalmol. 2017, 183, 25–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fea, A.M.; Durr, G.M.; Marolo, P.; Malinverni, L.; Economou, M.A.; Ahmed, I. XEN((R)) Gel Stent: A Comprehensive Review on Its Use as a Treatment Option for Refractory Glaucoma. Clin. Ophthalmol. 2020, 14, 1805–1832. [Google Scholar] [CrossRef] [PubMed]
- Buffault, J.; Graber, M.; Bensmail, D.; Bluwol, E.; Jeanteur, M.N.; Abitbol, O.; Benhatchi, N.; Sauvan, L.; Lachkar, Y. Efficacy and safety at 6 months of the XEN implant for the management of open angle glaucoma. Sci. Rep. 2020, 10, 4527. [Google Scholar] [CrossRef]
- Lenzhofer, M.; Kersten-Gomez, I.; Sheybani, A.; Gulamhusein, H.; Strohmaier, C.; Hohensinn, M.; Burkhard Dick, H.; Hitzl, W.; Eisenkopf, L.; Sedarous, F.; et al. Four-year results of a minimally invasive transscleral glaucoma gel stent implantation in a prospective multi-centre study. Clin. Exp. Ophthalmol. 2019, 47, 581–587. [Google Scholar] [CrossRef] [Green Version]
- Gabbay, I.E.; Allen, F.; Morley, C.; Pearsall, T.; Bowes, O.M.; Ruben, S. Efficacy and safety data for the XEN45 implant at 2 years: A retrospective analysis. Br. J. Ophthalmol. 2019, 104, 1125–1130. [Google Scholar] [CrossRef]
- Rits, I.A. Declaration of Helsinki. Recommendations Guidings Doctors in Clinical Research. World Med. J. 1964, 11, 281. [Google Scholar] [PubMed]
- Theilig, T.; Rehak, M.; Busch, C.; Bormann, C.; Schargus, M.; Unterlauft, J.D. Comparing the efficacy of trabeculectomy and XEN gel microstent implantation for the treatment of primary open-angle glaucoma: A retrospective monocentric comparative cohort study. Sci. Rep. 2020, 10, 19337. [Google Scholar] [CrossRef] [PubMed]
- Schargus, M.; Theilig, T.; Rehak, M.; Busch, C.; Bormann, C.; Unterlauft, J.D. Outcome of a single XEN microstent implant for glaucoma patients with different types of glaucoma. BMC Ophthalmol. 2020, 20, 490. [Google Scholar] [CrossRef]
- Shaarawy, T.; Grehn, F.; Sherwood, M. WGA Guidelines on Design and Reporting of Glaucoma Surgical Trials; Kugler Publications: Amsterdam, The Netherlands, 2009. [Google Scholar]
- Fontana, H.; Nouri-Mahdavi, K.; Lumba, J.; Ralli, M.; Caprioli, J. Trabeculectomy with mitomycin C: Outcomes and risk factors for failure in phakic open-angle glaucoma. Ophthalmology 2006, 113, 930–936. [Google Scholar] [CrossRef]
- Stalmans, I.; Gillis, A.; Lafaut, A.S.; Zeyen, T. Safe trabeculectomy technique: Long term outcome. Br. J. Ophthalmol. 2006, 90, 44–47. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, B.; Thompson, J.R.; Salmon, J.F.; Wormald, R.P. The National Survey of Trabeculectomy. II. Variations in operative technique and outcome. Eye 2001, 15, 441–448. [Google Scholar] [CrossRef] [Green Version]
- Edmunds, B.; Thompson, J.R.; Salmon, J.F.; Wormald, R.P. The National Survey of Trabeculectomy. III. Early and late complications. Eye 2002, 16, 297–303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirwan, J.F.; Lockwood, A.J.; Shah, P.; Macleod, A.; Broadway, D.C.; King, A.J.; McNaught, A.I.; Agrawal, P. Trabeculectomy in the 21st century: A multicenter analysis. Ophthalmology 2013, 120, 2532–2539. [Google Scholar] [CrossRef]
- Reitsamer, H.; Sng, C.; Vera, V.; Lenzhofer, M.; Barton, K.; Stalmans, I. Two-year results of a multicenter study of the ab interno gelatin implant in medically uncontrolled primary open-angle glaucoma. Graefes Arch. Clin. Exp. Ophthalmol. 2019, 257, 983–996. [Google Scholar] [CrossRef] [Green Version]
- Heidinger, A.; Schwab, C.; Lindner, E.; Riedl, R.; Mossbock, G. A Retrospective Study of 199 Xen45 Stent Implantations From 2014 to 2016. J. Glaucoma 2019, 28, 75–79. [Google Scholar] [CrossRef] [PubMed]
- Schlenker, M.B.; Gulamhusein, H.; Conrad-Hengerer, I.; Somers, A.; Lenzhofer, M.; Stalmans, I.; Reitsamer, H.; Hengerer, F.H.; Ahmed, I.I.K. Efficacy, Safety, and Risk Factors for Failure of Standalone Ab Interno Gelatin Microstent Implantation versus Standalone Trabeculectomy. Ophthalmology 2017, 124, 1579–1588. [Google Scholar] [CrossRef] [PubMed]
- Hengerer, F.H.; Kohnen, T.; Mueller, M.; Conrad-Hengerer, I. Ab Interno Gel Implant for the Treatment of Glaucoma Patients With or Without Prior Glaucoma Surgery: 1-Year Results. J. Glaucoma 2017, 26, 1130–1136. [Google Scholar] [CrossRef]
- Galal, A.; Bilgic, A.; Eltanamly, R.; Osman, A. XEN Glaucoma Implant with Mitomycin C 1-Year Follow-Up: Result and Complications. J. Ophthalmol. 2017, 2017, 5457246. [Google Scholar] [CrossRef]
- Karimi, A.; Lindfield, D.; Turnbull, A.; Dimitriou, C.; Bhatia, B.; Radwan, M.; Gouws, P.; Hanifudin, A.; Amerasinghe, N.; Jacob, A. A multi-centre interventional case series of 259 ab-interno Xen gel implants for glaucoma, with and without combined cataract surgery. Eye 2019, 33, 469–477. [Google Scholar] [CrossRef] [Green Version]
- Mansouri, K.; Guidotti, J.; Rao, H.L.; Ouabas, A.; D’Alessandro, E.; Roy, S.; Mermoud, A. Prospective Evaluation of Standalone XEN Gel Implant and Combined Phacoemulsification-XEN Gel Implant Surgery: 1-Year Results. J. Glaucoma 2018, 27, 140–147. [Google Scholar] [CrossRef]
- Ibanez-Munoz, A.; Soto-Biforcos, V.S.; Rodriguez-Vicente, L.; Ortega-Renedo, I.; Chacon-Gonzalez, M.; Rua-Galisteo, O.; Arrieta-Los Santos, A.; Lizuain-Abadia, M.E.; Del Rio Mayor, J.L. XEN implant in primary and secondary open-angle glaucoma: A 12-month retrospective study. Eur. J. Ophthalmol. 2019, 30, 1034–1041. [Google Scholar] [CrossRef]
- Gillmann, K.; Bravetti, G.E.; Rao, H.L.; Mermoud, A.; Mansouri, K. Combined and stand-alone XEN 45 gel stent implantation: 3-year outcomes and success predictors. Acta Ophthalmol. 2020. [CrossRef]
- Ch’ng, T.W.; Gillmann, K.; Hoskens, K.; Rao, H.L.; Mermoud, A.; Mansouri, K. Effect of surgical intraocular pressure lowering on retinal structures—Nerve fibre layer, foveal avascular zone, peripapillary and macular vessel density: 1 year results. Eye 2020, 34, 562–571. [Google Scholar] [CrossRef]
- Raghu, N.; Pandav, S.S.; Kaushik, S.; Ichhpujani, P.; Gupta, A. Effect of trabeculectomy on RNFL thickness and optic disc parameters using optical coherence tomography. Eye 2012, 26, 1131–1137. [Google Scholar] [CrossRef] [Green Version]
- Chang, P.T.; Sekhon, N.; Budenz, D.L.; Feuer, W.J.; Park, P.W.; Anderson, D.R. Effect of lowering intraocular pressure on optical coherence tomography measurement of peripapillary retinal nerve fiber layer thickness. Ophthalmology 2007, 114, 2252–2258. [Google Scholar] [CrossRef]
- Sanchez, F.G.; Sanders, D.S.; Moon, J.J.; Gardiner, S.K.; Reynaud, J.; Fortune, B.; Mansberger, S.L. Effect of Trabeculectomy on OCT Measurements of the Optic Nerve Head Neuroretinal Rim Tissue. Ophthalmol. Glaucoma 2020, 3, 32–39. [Google Scholar] [CrossRef]
- Gietzelt, C.; von Goscinski, C.; Lemke, J.; Schaub, F.; Hermann, M.M.; Dietlein, T.S.; Cursiefen, C.; Heindl, L.M.; Enders, P. Dynamics of structural reversal in Bruch’s membrane opening-based morphometrics after glaucoma drainage device surgery. Graefes Arch. Clin. Exp. Ophthalmol. 2020, 258, 1227–1236. [Google Scholar] [CrossRef] [PubMed]
- Chua, J.; Kadziauskiene, A.; Wong, D.; Asoklis, R.; Lesinskas, E.; Quang, N.D.; Chong, R.; Tan, B.; Girard, M.J.A.; Mari, J.M.; et al. One year structural and functional glaucoma progression after trabeculectomy. Sci. Rep. 2020, 10, 2808. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.J.; Kim, K.N.; Sung, J.Y.; Kim, J.Y.; Kim, C.S. Relationship between preoperative high intraocular pressure and retinal nerve fibre layer thinning after glaucoma surgery. Sci. Rep. 2019, 9, 13901. [Google Scholar] [CrossRef] [Green Version]
TE | Solo XEN | Combined XEN | Kruskal–Wallis-Test p= | |
---|---|---|---|---|
age (years) | 69.9 ± 9.2 | 73.3 ± 5.9 | 73.4 ± 6.2 | 0.24 |
sex | 29 female 23 male | 20 female 18 male | 26 female 16 male | 0.36 |
n= | 52 | 38 | 42 | 0.41 |
lens status before surgery/pseudophakic (n;%) | 23; 44 | 38; 100 | 0; 0 | 0.01 |
Length of glaucoma diagnosis (years) | 7.2 ± 5.4 | 8.4 ± 5.2 | 7.5 ± 5.7 | 0.35 |
Percentage of taken preservative free glaucoma eye drops (n; %) | 19; 37 | 12; 32 | 15; 36 | 0.72 |
laterality | 24 left (46%) 28 right (54%) | 21 left (55%) 17 right (45%) | 25 left (60%) 17 right (40%) | 0.56 |
IOP (mmHg) | 24.9 ± 5.9 | 24.1 ± 4.7 | 25.4 ± 5.6 | 0.61 |
medication (n) | 3.3 ± 1.2 | 3.3 ± 0.8 | 2.7 ± 1.2 | 0.11 |
visual acuity (logMAR) | 0.14 ± 0.18 | 0.23 ± 0.26 | 0.26 ± 0.22 | 0.02 |
mean visual field defect (dB) | 8.5 ± 4.9 | 11.4 ± 4.4 | 10.3 ± 4.0 | 0.04 |
mean RNFL thickness (µm) | 67.8 ± 18.2 | 58.2 ± 16.9 | 60.6 13.8 | 0.04 |
preoperative annual increase of mean defect (dB/year) | 3.4 ± 1.2 | 2.9 ± 1.1 | 3.2 ± 1.0 | 0.14 |
preoperative annual RNFL loss (µm/year) | −8.7 ± 5.5 | −8.2 ± 3.1 | −7.6 ± 2.3 | 0.84 |
TE | Comparison to Baseline (Wilcoxon-Test) p= | Solo XEN | Comparison to Baseline (Wilcoxon-Test) p= | Combined XEN | Comparison to Baseline (Wilcoxon-Test) p= | Intergroup Comparison (Kruskal–Wallis-Test) p= | ||
---|---|---|---|---|---|---|---|---|
IOP (mmHg) | baseline | 24.9 ± 5.9 | n.a. | 24.1 ± 4.7 | n.a. | 25.4 ± 5.6 | n.a. | 0.61 |
6 months | 14.1 ± 4.8 | <0.001 | 15.6 ± 3.4 | <0.001 | 15.0 ± 3.4 | <0.001 | 0.19 | |
12 months | 13.9 ± 4.3 | <0.001 | 15.2 ± 2.9 | <0.001 | 15.3 ± 2.9 | <0.001 | 0.12 | |
24 months | 13.9 ± 4.2 | <0.001 | 15.7 ± 3.0 | <0.001 | 14.7 ± 3.2 | <0.001 | 0.04 | |
medication | baseline | 3.2 ± 1.2 | n.a. | 3.3 ± 0.8 | n.a. | 2.7 ± 1.2 | n.a. | 0.11 |
6 months | 0.4 ± 0.9 | <0.001 | 0.9 ± 1.2 | <0.001 | 0.5 ± 1.1 | <0.001 | 0.08 | |
12 months | 0.6 ± 1.2 | <0.001 | 0.8 ± 1.2 | <0.001 | 0.5 ± 1.1 | <0.001 | 0.37 | |
24 months | 0.5 ± 1.1 | <0.001 | 0.8 ± 1.2 | <0.001 | 0.4 ± 1.0 | <0.001 | 0.19 | |
visual acuity (logMAR) | baseline | 0.14 ± 0.18 | n.a. | 0.23 ± 0.26 | n.a. | 0.26 ± 0.22 | n.a. | 0.02 |
6 months | 0.16 ± 0.19 | 0.19 | 0.28 ± 0.30 | 0.08 | 0.18 ± 0.22 | 0.01 | 0.17 | |
12 months | 0.17 ± 0.17 | 0.09 | 0.27 ± 0.29 | 0.15 | 0.18 ± 0.23 | 0.01 | 0.33 | |
24 months | 0.16 ± 0.17 | 0.41 | 0.28 ± 0.29 | 0.12 | 0.16 ± 0.22 | 0.001 | 0.11 |
Success Levels | Groups | 12 Months | 24 Months | ||
---|---|---|---|---|---|
Complete | Qualified | Complete | Qualified | ||
A | TE | 36; 69% | 7; 14% | 35; 67% | 7; 14% |
solo XEN | 23; 61% | 11; 29% | 22; 58% | 9; 24% | |
combined XEN | 31; 74% | 4; 10% | 31; 74% | 6; 14% | |
B | TE | 36;69 % | 5; 10% | 35; 67% | 7; 14% |
solo XEN | 20; 53% | 10; 26% | 20; 53% | 9; 24% | |
combined XEN | 28; 67% | 4; 10% | 28; 67% | 4; 10% | |
C | TE | 35; 67% | 1; 2% | 33; 64% | 4; 8% |
solo XEN | 18; 47% | 8; 21% | 11; 29% | 5; 13% | |
combined XEN | 22; 52% | 0; 0% | 24; 57% | 1; 2% |
TE | Solo XEN | Combined XEN | Inter-Group Comparison (Kruskal–Wallis-Test) p= | |
---|---|---|---|---|
baseline | 8.5 ± 0.8 | 11.4 ± 0.8 | 10.3 ± 0.7 | 0.06 |
6 months | 7.9 ± 0.8 | 12.5 ± 0.8 | 10.9 ± 0.7 | 0.27 |
12 months | 8.0 ± 0.8 | 12.5 ± 0.8 | 10.4 ± 0.7 | 0.20 |
24 months | 8.1 ± 0.8 | 12.6 ± 0.7 | 10.6 ± 0.8 | 0.22 |
baseline | 67.8 ± 2.9 | 58.3 ± 3.1 | 60.6 ± 2.5 | 0.04 |
6 months | 64.3 ± 2.9 | 57.6 ± 2.9 | 61.8 ± 2.7 | 0.001 |
12 months | 63.2 ± 2.9 | 55.9 ± 2.8 | 60.8 ± 2.6 | 0.001 |
24 months | 63.4 ± 2.9 | 56.4 ± 2.9 | 60.0 ± 2.6 | 0.001 |
baseline | r = −0.77/p = 0.001 | r = −0.58/p = 0.001 | R = −0.71/p = 0.001 | n.a. |
6 months | r = −0.84/p = 0.001 | r = −0.61/p = 0.001 | r = −0.77/p = 0.001 | n.a. |
12 months | r = −0.79/p = 0.001 | r = −0.70/p = 0.001 | r = −0.82/p = 0.001 | n.a. |
24 months | r = −0.82/p = 0.001 | r = −0.65/p = 0.001 | r = −0.75/p = 0.001 | n.a. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schargus, M.; Busch, C.; Rehak, M.; Meng, J.; Schmidt, M.; Bormann, C.; Unterlauft, J.D. Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices—A Retrospective Comparative Cohort Study. Biology 2021, 10, 273. https://doi.org/10.3390/biology10040273
Schargus M, Busch C, Rehak M, Meng J, Schmidt M, Bormann C, Unterlauft JD. Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices—A Retrospective Comparative Cohort Study. Biology. 2021; 10(4):273. https://doi.org/10.3390/biology10040273
Chicago/Turabian StyleSchargus, Marc, Catharina Busch, Matus Rehak, Jie Meng, Manuela Schmidt, Caroline Bormann, and Jan Darius Unterlauft. 2021. "Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices—A Retrospective Comparative Cohort Study" Biology 10, no. 4: 273. https://doi.org/10.3390/biology10040273
APA StyleSchargus, M., Busch, C., Rehak, M., Meng, J., Schmidt, M., Bormann, C., & Unterlauft, J. D. (2021). Functional Monitoring after Trabeculectomy or XEN Microstent Implantation Using Spectral Domain Optical Coherence Tomography and Visual Field Indices—A Retrospective Comparative Cohort Study. Biology, 10(4), 273. https://doi.org/10.3390/biology10040273