Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Vegetation Investigations
2.3. Vegetation Mapping
2.4. Soil Investigations
2.5. SEM/EDS, ICP ES/MS, AAS, and XRD Analyses
3. Results
3.1. Initial Stage of Vegetation Succession
3.2. Vegetation Changes
3.3. Flora Analysis
3.4. Potentially Toxic Metals’ Concentration in Soil
3.5. SEM Data
4. Discussion
4.1. Vegetation Changes
4.2. Geochemical and Mineralogical Transformation of Historical Waste
- -
- Lead in cerussite.
- -
- Zinc in smithsonite, monheimite, and hemimorphite.
- -
- Iron and manganese in oxides and hydroxides of Fe and Mn.
- -
- Cadmium (not present in its own phases) is bound to Zn carbonates.
- -
- Arsenic and antimony are bound in Fe oxides/hydroxides.
5. Conclusions
- Despite its small size, the area of the historic Zn-Pb ore washing plant has a varied relief and soil substrate, as well as a disappearing watercourse, which affects the heterogeneity of the habitat and the diversity of the flora in terms of ecological requirements.
- In comparison to 1999, there was an increase in the number of species, families, and genera in 2019. The lifeforms of plants have changed. The share of nanophanerephytes and hemicryptophytes has significantly increased, while the share of geophytes, hydrophytes, and therophytes has decreased.
- Changes in water relations affected the composition of the flora, especially the range of Molinia cereluea. Over a period of 20 years, a transformation of meadow vegetation (Molinietum caeruleae) into scrub and forest-plant communities took place. The development of thermophilous shrub communities with Prunus spinosa was recorded during this period of succession.
- Through SEM/EDS studies of the root zones, especially the mineral components, additional information can be obtained regarding the occurrence of potential toxic elements, as well as microelements important for vegetation. Furthermore, identifying certain biotic and mineral structures in the rhizosphere can provide interesting information on pedogenic processes.
- Mineralisation of plant roots, especially the formation of impermeable crusts on the epidermis can significantly impede vegetation, and plants that have the ability to sprout new trichomes can increase their ability to vegetate.
- The complete absence of primary sulphides of Zn, Pb, and Fe in the waste indicates that after 100 years their oxidation processes have reached an advanced stage. Despite the extreme contents of potentially toxic metals, vegetation development is not disturbed because the pool of bioavailable Zn, Pb, and Cd is limited due to their binding in immobile carbonate phases, oxides, and silicates.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Adriano, D.C. Trace Elements in Terrestrial Environments; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2001; pp. 219–261. [Google Scholar]
- Smolders, E.; Oorts, K.; van Sprang, P.; Schoeters, I.; Janssen, C.R.; McGrath, S.P.; McLaughlin, M.J. Toxicity of trace metals in soil as affected by soil type and aging after contamination: Using calibrated bioavailability models to set ecological soil standards. Environ. Toxicol. Chem. 2009, 28, 1633–1642. [Google Scholar] [CrossRef]
- El Hasnaoui, S.; Fahr, M.; Keller, C.; Levard, C.; Angeletti, B.; Chaurand, P.; Triqui, Z.E.A.; Guedira, A.; Rhazi, L.; Colin, F.; et al. Screening of native plants growing on a pb/Zn mining area in Eastern Morocco: Perspectives for phytoremediation. Plants 2020, 9, 1458. [Google Scholar] [CrossRef] [PubMed]
- Sanyaolu, V.; Adeniran, A. Determination of heavy metal fallout on the surrounding flora and aquifer: Case study of a scrap metal smelting factory in Odogunyan Area, Ikorodu, Lagos-State, Nigeria. Int. Res. J. Environ. Sci. 2014, 3, 93–100. [Google Scholar]
- Rahmonov, O.; Krzysztofik, R.; Środek, D.; Smolarek-Lach, J. Vegetation- and environmental changes on non-reclaimed spoil heaps in Southern Poland. Biology 2020, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Szarek-Łukaszewska, G. Vegetation of reclaimed and spontaneously vegetated Zn-Pb mine wastes in southern Poland. Pol. J. Environ. Stud. 2009, 18, 717–733. [Google Scholar]
- Lock, K.; Janssens, F.; Janssen, C. Effects of metal contamination on the activity and diversity of springtails in an ancient Pb-Zn mining area at Plombières, Belgium. Eur. J. Soil Biol. 2003, 39, 25–29. [Google Scholar] [CrossRef]
- Baker, A.J.M.; Ernst, W.H.O.; van der Ent, A.; Malaisse, F.; Ginocchio, R. Metallophytes: The Unique Biological Resource, Its Ecology and Conservational Status in Europe, Central Africa and Latin America; Batty, L.C., Hallberg, K.B., Eds.; Cambridge University Press, British Ecological Safety: Cambridge, UK, 2012; pp. 7–40. [Google Scholar]
- Monterroso, C.; Rodríguez, F.; Chaves, R.; Diez, J.; Becerra-Castro, C.; Kidd, P.; Macías, F. Heavy metal distribution in mine-soils and plants growing in a Pb/Zn-mining area in NW Spain. Appl. Geochem. 2014, 44, 3–11. [Google Scholar] [CrossRef]
- Miler, M.; Gosar, M. Characteristics and potential environmental influences of mine waste in the area of the closed Mežica Pb–Zn mine (Slovenia). J. Geochem. Explor. 2012, 112, 152–160. [Google Scholar] [CrossRef]
- Žibret, G.; Gosar, M.; Miler, M.; Alijagić, J. Impacts of mining and smelting activities on environment and landscape degradation—Slovenian case studies. Land Degrad. Dev. 2018, 29, 4457–4470. [Google Scholar] [CrossRef] [Green Version]
- Zhan, H.Y.; Jiang, Y.F.; Yuan, J.M.; Hu, X.F.; Nartey, O.D.; Wang, B.L. Trace metal pollution in soil and wild plants from lead–zinc smelting areas in Huixian County, Northwest China. J. Geochem. Explor. 2014, 147, 182–188. [Google Scholar] [CrossRef]
- Hu, W.; Huang, B.; He, Y.; Kalkhajeh, Y.K. Assessment of potential health risk of heavy metals in soils from a rapidly developing region of China. Hum. Ecol. Risk Assess. Int. J. 2016, 22, 211–225. [Google Scholar] [CrossRef]
- Zhu, G.; Xiao, H.; Guo, Q.; Song, B.; Zheng, G.; Zhang, Z.; Zhao, J.; Okoli, C.P. Heavy metal contents and enrichment characteristics of dominant plants in wasteland of the downstream of a lead-zinc mining area in Guangxi, Southwest China. Ecotoxicol. Environ. Saf. 2018, 151, 266–271. [Google Scholar] [CrossRef]
- Midhat, L.; Ouazzani, N.; Hejjaj, A.; Ouhammou, A.; Mandi, L. Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicol. Environ. Saf. 2019, 169, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Tordoff, G.; Baker, A.; Willis, A. Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 2000, 41, 219–228. [Google Scholar] [CrossRef]
- Prach, K.; Pyšek, P. Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecol. Eng. 2001, 17, 55–62. [Google Scholar] [CrossRef]
- Sheoran, V.; Sheoran, A.S.; Poonia, P. Soil reclamation of abandoned mine land by revegetation: A review. Int. J. Soil Sediment Water 2010, 3, 2. [Google Scholar]
- Yang, S.-X.; Liao, B.; Yang, Z.-H.; Chai, L.-Y.; Li, J.-T. Revegetation of extremely acid mine soils based on aided phytostabilization: A case study from southern China. Sci. Total Environ. 2016, 562, 427–434. [Google Scholar] [CrossRef]
- Venkateswarlu, K.; Nirola, R.; Kuppusamy, S.; Thavamani, P.; Naidu, R.; Megharaj, M. Abandoned metalliferous mines: Ecological impacts and potential approaches for reclamation. Rev. Environ. Sci. Bio Technol. 2016, 15, 327–354. [Google Scholar] [CrossRef]
- Cabala, J.; Teper, L. Metalliferous Constituents of Rhizosphere Soils Contaminated by Zn–Pb Mining in Southern Poland. Water Air Soil Pollut. 2007, 178, 351–362. [Google Scholar] [CrossRef]
- Gutiérrez, M.; Mickus, K.; Camacho, L.M. Abandoned Pb Zn mining wastes and their mobility as proxy to toxicity: A review. Sci. Total Environ. 2016, 565, 392–400. [Google Scholar] [CrossRef] [PubMed]
- Mahar, A.; Wang, P.; Ali, A.; Awasthi, M.K.; Lahori, A.H.; Wang, Q.; Li, R.; Zhang, Z. Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Ecotoxicol. Environ. Saf. 2016, 126, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Broadley, M.R.; White, P.J.; Hammond, J.P.; Zelko, I.; Lux, A. Zinc in plants: Tansley review. New Phytol. 2007, 173, 677–702. [Google Scholar] [CrossRef] [PubMed]
- Stefanowicz, A.M.; Stanek, M.; Woch, M.W.; Kapusta, P. The accumulation of elements in plants growing spontaneously on small heaps left by the historical Zn-Pb ore mining. Environ. Sci. Pollut. Res. 2016, 23, 6524–6534. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cabala, J.; Krupa, P.; Misz-Kennan, M. Heavy metals in mycorrhizal rhizospheres contaminated by zn–pb mining and smelting around Olkusz in Southern Poland. Water Air Soil Pollut. 2009, 199, 139–149. [Google Scholar] [CrossRef]
- Cappuyns, V.; Swennen, R.; Devivier, A. Dredged river sediments: Potential chemical time bombs? A case study. Water Air Soil Pollut. 2006, 171, 49–66. [Google Scholar] [CrossRef]
- Merrington, G.; Alloway, B.J. The transfer and fate of Cd, Cu and Zn from two historic metalliferous mine sites in the UK. Appl. Geochem. 1994, 9, 677–687. [Google Scholar] [CrossRef]
- Cabała, J.; Warchulski, R.; Rozmus, D.; Środek, D.; Szełęg, E. Pb-rich slags, minerals, and pollution resulted from a medieval AG-pb smelting and mining operation in the Silesian-Cracovian region (Southern Poland). Minerals 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J. Yerbeston Tops Sac Monitoring, Monitoring Round 2 (2007–2012)—Molinion Caeruleae, Molinia Meadows on Calcareous, Peaty or Clayey-Silt-Laden Soils (6410) & Marsh Fritillary Euphydryas Aurinia (1831); SAC Monitoring Report; Natural Resources Wales: Cardiff, Wales, 2012. [Google Scholar]
- Rostański, A. Spontaneous Plant Cover on Colliery Spoil Heaps in Upper Silesia (Southern Poland); University of Silesia Publisher: Katowice, Poland, 2006; p. 230. [Google Scholar]
- Woźniak, G. Diversity of Vegetation on Coalmine Heaps of the Upper Silesia (Poland); W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2010. [Google Scholar]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R. Environmental management and landscape transformation on self-heating coal-waste dumps in the upper Silesian Coal Basin. Land 2020, 10, 23. [Google Scholar] [CrossRef]
- Różkowski, J.; Rahmonov, O.; Zarychta, R.; Zarychta, A. Environmental transformation and the current state of hydrogeological condition in the Wojkowice Area—Southern Poland. Resources 2021, 10, 54. [Google Scholar] [CrossRef]
- Matuszkiewicz, W.; Faliński, J.B.; Kostrowicki, A.S.; Matuszkiewicz, J.M.; Olaczek, R.; Wojterski, T. Potencjalna Roślinność Naturalna Polski. Mapa Przeglądowa 1:300 000. Arkusze 1–12; IGiPZ PAN: Warsaw, Poland, 1995. [Google Scholar]
- Nagendra, H. Opposite trends in response for the Shannon and Simpson indices of landscape diversity. Appl. Geogr. 2002, 22, 175–186. [Google Scholar] [CrossRef]
- Rutkowski, L. Key for Vascular Plants Identification; Polish Scientific Press: Warsaw, Poland, 2011. [Google Scholar]
- Mirek, Z.; Piękoś-Mirkowa, H.; Zając, A.; Zając, M. Flowering Plants and Pteridophytes of Poland. A Checklist; W. Szafer Institute of Botany, Polish Academy of Sciences: Krakow, Poland, 2002. [Google Scholar]
- Google Earth. Available online: https://earth.google.com (accessed on 21 October 2021).
- Open-Access Regional Spatial Information System–ORSIP. Available online: https://www.mapy.orsip.pl (accessed on 21 December 2020).
- Braun-Blanquet, J. Pflansensoziologie; Springer: Vienna, Austria, 1964; p. 631. [Google Scholar]
- Cabała, J. Heavy Metals in Ground Soil Environment of the Olkusz Area Od Zn-Pb Ore Exploitation; University of Silesia: Prace Naukowe, Poland, 2009; p. 2729. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemistry of Trace Elements, 2nd ed.; PWN: Warsaw, Poland, 1999. [Google Scholar]
- Salminen, R. (Ed.) Geochemical Atlas of Europe, Part I; Geological Survey of Finland: Espoo, Finland, 2005. [Google Scholar]
- Wiegleb, G.; Felinks, B. Predictability of early stages of primary succession in post-mining landscapes of Lower Lusatia, Germany. Appl. Veg. Sci. 2001, 4, 5–18. [Google Scholar] [CrossRef]
- Remon, E.; Bouchardon, J.-L.; Cornier, B.; Guy, B.; Leclerc, J.-C.; Faure, O. Soil characteristics, heavy metal availability and vegetation recovery at a former metallurgical landfill: Implications in risk assessment and site restoration. Environ. Pollut. 2005, 137, 316–323. [Google Scholar] [CrossRef] [PubMed]
- Pająk, M.; Halecki, W.; Gąsiorek, M. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere 2017, 168, 851–859. [Google Scholar] [CrossRef]
- Rahmonov, O.; Snytko, V.A.; Szczypek, T.; Parusel, T. Vegetation development on post-industrial territories of the Silesian Upland (Southern Poland). Geogr. Nat. Resour. 2013, 34, 96–103. [Google Scholar] [CrossRef]
- Paul, A.; Erskine, P.; van der Ent, A. Metallophytes on Zn-Pb mineralised soils and mining wastes in Broken Hill, NSW, Australia. Aust. J. Bot. 2018, 66, 124. [Google Scholar] [CrossRef] [Green Version]
- Brown, S.C.; Veneman, P.L.M. Effectiveness of compensatory wetland mitigation in Massachusetts, USA. Wetlands 2001, 21, 508–518. [Google Scholar] [CrossRef]
- Mill, W. Dynamic modelling of Polish forest soil response to changes in atmospheric acid deposition. Environ. Prot. Eng. 2007, 33, 39–45. [Google Scholar]
- Coppola, V.; Boni, M.; Gilg, A.H.; Strzelska-Smakowska, B. Nonsulfide zinc deposits in the Silesia–Cracow district, Southern Poland. Miner. Depos. 2009, 44, 559–580. [Google Scholar] [CrossRef]
- Nachtegaal, M.; Sparks, D.L. Effect of iron oxide coatings on zinc sorption mechanisms at the clay-mineral/water interface. J. Colloid Interface Sci. 2004, 276, 13–23. [Google Scholar] [CrossRef]
- Janeček, Š.; Janečková, P.; Lepš, J. Effect of competition and soil quality on root topology of the perennial grass Molinia caerulea. Preslia 2007, 79, 23–32. [Google Scholar]
- Taylor, K.; Rowland, A.P.; Jones, H.E. Molinia caerulea (L.) Moench. J. Ecol. 2001, 89, 126–144. [Google Scholar] [CrossRef]
- Banfield, J.; Barker, W.W.; Welch, S.; Taunton, A. Biological impact on mineral dissolution: Application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci. USA 1999, 96, 3404–3411. [Google Scholar] [CrossRef] [Green Version]
- Courchesne, F.; Laberge, J.-F.; Dufresne, A. Influence of soil organic matter on sulfate retention in two Podzols in Quebec, Canada. Can. J. Soil Sci. 1999, 79, 103–109. [Google Scholar] [CrossRef]
- Degryse, F.; Smolders, E. Mobility of Cd and Zn in polluted and unpolluted Spodosols. Eur. J. Soil Sci. 2006, 57, 122–133. [Google Scholar] [CrossRef] [Green Version]
- Eckel, W.P.; Rabinowitz, M.B.; Foster, G.D. Investigation of unrecognized former secondary lead smelting sites: Confirmation by historical sources and elemental ratios in soil. Environ. Pollut. 2002, 117, 273–279. [Google Scholar] [CrossRef]
- Rahmonov, O.; Skreczko, S.; Rahmonov, M. Changes in soil features and phytomass during vegetation succession in sandy areas. Land 2021, 10, 265. [Google Scholar] [CrossRef]
- Rahmonov, O.; Cabala, J.; Bednarek, R.; Rozek, D.; Florkiewicz, A. Role of soil algae on the initial stages of soil formation in sandy polluted areas. Ecol. Chem. Eng. S 2015, 22, 675–690. [Google Scholar] [CrossRef] [Green Version]
- Marynowski, L.; Rahmonov, O.; Smolarek-Lach, J.; Rybicki, M.; Simoneit, B.R. Origin and significance of saccharides during initial pedogenesis in a temperate climate region. Geoderma 2020, 361, 114064. [Google Scholar] [CrossRef]
- Krzaklewski, W.; Barszcz, J.; Małek, S.; Kozioł, K.; Pietrzykowski, M. Contamination of forest soils in the vicinity of the sedimentation pond after zinc and lead ore flotation (in the region of Olkusz, Southern Poland). Water Air Soil Pollut. 2004, 159, 151–164. [Google Scholar] [CrossRef]
- Kirmer, A.; Mahn, E.-G. Spontaneous and initiated succession on unvegetated slopes in the abandoned lignite-mining area of Goitsche, Germany. Appl. Veg. Sci. 2001, 4, 19–27. [Google Scholar] [CrossRef]
No. | Vegetations | Surface in 1999 (%) | Surface in 2019 (%) |
---|---|---|---|
1. | Molinietum caeruleae | 26.8 | 10.7 |
2. | Arrhenatherion elatioris | 21.0 | 5.1 |
3. | Shrubs of Prunus spinosa and Rhamnus cathartica | 0.7 | 22.3 |
4. | Wellspring zone | 1.9 | 3.7 |
5. | Xerothermic limestone grasslands | 28.2 | - |
6. | Sand grasslands | 11.0 | - |
7. | Surfaces devoid of vegetation | 6.7 | - |
8. | Cirsietum rivularis | 1.7 | - |
9. | Water | 1.6 | - |
10. | Community with Batrachium aquatile | 0.9 | - |
11. | Ruderal vegetation | 0.3 | - |
12. | Community with Sparganium erectum | 0.2 | - |
13. | Community with Armeria maritima | - | 12.7 |
14. | Community with Libanotis pyrenaica | - | 18.5 |
15. | Artificial mixed forest | - | 10.9 |
16. | Community with Solidago canadensis | - | 3.6 |
17. | Thicket of Pinus sylvestris | - | 7.6 |
18. | Caricetum paniculatae | - | 2.3 |
19. | Thicket of Populus tremula | - | 1.7 |
20. | Planting with Betula pendula | - | 0.9 |
Family | 1999 | 2019 |
---|---|---|
Compositae | 4 * | 7 |
Rosaceae | 2 | 7 |
Poacea | 6 | 5 |
Cyperaceae | 3 | 5 |
Lamiaceae | 2 | 4 |
Caryophyllaceae | 2 | 2 |
Orchidaceae | 2 | 1 |
Plantaginaceae | 3 | 3 |
Salicaceae | 2 | 3 |
Adoxaceae | 1 | 2 |
Apiaceae | 2 | 2 |
Betulaceae | 0 | 2 |
Caprifoliaceae | 1 | 2 |
Juncaceae | 0 | 2 |
Ranunculaceae | 2 | 1 |
Rhamnaceae | 2 | 2 |
Raunkiar’s life forms (%) | ||
Megaphanerophyte (M) | 3.5 | 6.3 |
Nanophanerophyte (N) | 10.5 | 18.8 |
Herbaceous chamaephyte (C) | 5.3 | 4.7 |
Hemicryptophyte (H) | 45.6 | 56.3 |
Geophyte (G) | 14.03 | 6.3 |
Therophyte (T) | 7.01 | 0.0 |
Hydrophyte (Hy) | 14 | 7.8 |
Shannon biodiversity index | 0.633 | 0.898 |
Simson biodiversity index | 0.761 | 0.861 |
Sample Number | Cu | Pb | Zn | Ag | Ni | Mn | Fe | As | Sr | Cd |
---|---|---|---|---|---|---|---|---|---|---|
mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | % | mg kg−1 | mg kg−1 | mg kg−1 | |
ZKW 1 | 21 | 1860 | >10,000 | 1.7 | 76 | 4430 | 6.1 | 390 | 53 | 320 |
ZKW 2 | 16 | >10,000 | >10,000 | 1.2 | 27 | 1040 | 3.7 | 380 | 56 | 140 |
ZKW 3 | 18 | 4130 | >10,000 | 0.6 | 57 | 2340 | 5.6 | 380 | 49 | 290 |
ZKW 4 | 32 | >10,000 | >10,000 | 3.3 | 43 | 1770 | 6.3 | 730 | 59 | 190 |
ZKW 5 | 49 | 26,780 | 85,360 | 2.4 | 41 | 1530 | 5.5 | 620 | 53 | 340 |
ZKW 6 | 32 | 28,300 | 45,250 | 1.4 | 52 | 12,020 | 10.2 | 1200 | 46 | 180 |
Sb | Ca | P | Mg | Ba | Al | Na | K | S | Tl | |
mg kg−1 | % | % | % | mg kg−1 | % | % | % | % | mg kg−1 | |
ZKW 1 | 1.6 | 6.9 | 0.05 | 3.6 | 170 | 3.4 | 0.05 | 0.9 | <0.1 | 9.8 |
ZKW 2 | 1.4 | 7.0 | 0.04 | 3.8 | 140 | 1.8 | 0.07 | 0.6 | <0.1 | 2.6 |
ZKW 3 | 1.3 | 6.4 | 0.05 | 3.6 | 160 | 2.9 | 0.06 | 0.8 | <0.1 | 6.6 |
ZKW 4 | 2.3 | 8.5 | 0.05 | 4.8 | 140 | 2.1 | 0.05 | 0.5 | <0.1 | 4.1 |
ZKW 5 | 1.7 | 10.1 | 0.04 | 5.4 | 80 | 1.8 | 0.03 | 0.4 | 0.07 | bdl |
ZKW 6 | 2.3 | 8.0 | 0.04 | 4.4 | 420 | 1.9 | 0.05 | 0.5 | 0.27 | bdl |
Sample Number | Fraction (mm) | Zn | Pb | Fe | Mn | Cd | Tl |
---|---|---|---|---|---|---|---|
(mg·kg−1) | |||||||
ZK1 | >0.71 | 26,500 | 16,550 | 51,300 | 4100 | 190 | bdl |
>0.355 | 27,950 | 19,050 | 69,150 | 3800 | 110 | bdl | |
>0.180 | 31,750 | 20,850 | 84,150 | 5100 | 110 | bdl | |
>0.09 | 34,700 | 30,050 | 87,200 | 5550 | 120 | bdl | |
>0.045 | 38,750 | 40,700 | 99,250 | 8750 | 180 | bdl | |
<0.045 | 12,450 | 12,900 | 31,700 | 2550 | 55 | bdl | |
>0.71 | 72,000 | 21,300 | 48,050 | 1350 | 315 | 9.9 | |
>0.355 | 37,050 | 10,950 | 34,100 | 550 | 110 | 8.3 | |
ZK2 | >0.180 | 40,400 | 15,600 | 41,350 | 900 | 110 | bdl |
>0.09 | 63,900 | 47,600 | 72,100 | 1900 | 190 | bdl | |
Zk2 | >0.045 | 25,150 | 10,4400 | 50,300 | 1700 | 190 | bdl |
<0.045 | 36,900 | 64,750 | 39,400 | 1500 | 180 | bdl | |
>0.71 | 13,900 | 6850 | 33,450 | 900 | 80 | bdl | |
>0.355 | 7200 | 4150 | 17,600 | 500 | 35 | bdl | |
ZK3 | >0.180 | 7800 | 4650 | 20,100 | 600 | 40 | bdl |
>0.09 | 13,200 | 8100 | 34,650 | 850 | 70 | bdl | |
Zk3 | >0.045 | 14,050 | 11,050 | 41,500 | 1050 | 70 | bdl |
<0.045 | 10,300 | 6700 | 40,200 | 900 | 50 | bdl | |
>0.355 | 45,200 | 2900 | 61,050 | 3600 | 200 | bdl | |
ZK4 | >0.180 | 52,850 | 2500 | 52,650 | 2600 | 195 | bdl |
>0.09 | 94,650 | 2900 | 58,850 | 2150 | 345 | bdl | |
Zk4 | >0.045 | 11,1150 | 2750 | 62,300 | 2450 | 495 | bdl |
Zk4 | <0.045 | 1400 | 2250 | 59,200 | 2900 | 380 | bdl |
Phases | Minerals | Relative Frequency |
---|---|---|
Barren phases from Triassic rock | K aluminosilicates, Na aluminosilicates, and others from the group of clay minerals Silica SiO2 Ca carbonate-calcite CaCO3 K-feldspar and Na-feldspar | +++++ +++ ++ + |
Primary phases from Zn-Pb ores | Ca-Mg carbonate-dolomite CaMg(CO3)2 Ankerite-Ca(Fe,Mg,Mn)(CO3)2 Barite BaSO4 | +++ + + |
Secondary phases formed in the oxidation process | Pb carbonate-cerussite PbCO3 Zn carbonate-smithsonite ZnCO3 Monheimite-ZnFeCO3 Fe (hydro)oxides-goethite α FeO(OH) and lepidokrokite β FeO(OH) Zn silicate-hemimorfite Zn4Si2O7(OH)2 H2O Fe-Mn oxides, Mn oxides, e.g., chalcophanite ZnMn3O7⋅3H2O, birnessite group, [Na,Ca,Mn(II)]Mn7O14⋅2.8H2O, and amorphous Mn oxides Ti oxides Ca sulphate-gipsum CaSO4 2H2O Pyromorfite (Pb5[Cl(PO4)3]) | ++ + x +++ + + x x x |
Minor phases | Quartz SiO2 Magnetite Fe3O4, Ti oxide-rutile TiO2 and ilmenite FeTiO3 Ce,La phosphates with RRE | +++ + + + |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmonov, O.; Cabała, J.; Krzysztofik, R. Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant. Biology 2021, 10, 1242. https://doi.org/10.3390/biology10121242
Rahmonov O, Cabała J, Krzysztofik R. Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant. Biology. 2021; 10(12):1242. https://doi.org/10.3390/biology10121242
Chicago/Turabian StyleRahmonov, Oimahmad, Jerzy Cabała, and Robert Krzysztofik. 2021. "Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant" Biology 10, no. 12: 1242. https://doi.org/10.3390/biology10121242
APA StyleRahmonov, O., Cabała, J., & Krzysztofik, R. (2021). Vegetation and Environmental Changes on Contaminated Soil Formed on Waste from an Historic Zn-Pb Ore-Washing Plant. Biology, 10(12), 1242. https://doi.org/10.3390/biology10121242