In Silico Characterization and Virtual Screening of GntR/HutC Family Transcriptional Regulator MoyR: A Potential Monooxygenase Regulator in Mycobacterium tuberculosis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of GntR/HutC Regulators, Multiple Sequence Alignment and Secondary Structure Prediction
2.2. Identifying Conserved Residues in C-Terminal Domain of HutC Regulators
2.3. 3D Structure Modelling and Structure Assessment of the MoyR Model
2.4. 3D Structure Modelling, Structure Assessment and Functional Domain Prediction of the Adjacent Gene Encoding Proteins
2.5. Identifying Effector Binding Site and Druggability of MoyR
2.6. Virtual Screening Study
3. Results
3.1. Secondary Structure of MoyR
3.2. Genomic Locus of MoyR
3.3. Homology Modelling of MoyR
3.4. Homology Modelling and Functional Annotation of MoyR Adjacent Gene Encoding Proteins
3.5. Physiochemical Properties of MoyR
3.6. Effector Binding Site of MoyR
3.7. Druggability of MoyR and Virtual Screening Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gradmann, C. Robert Koch and the Pressures of Scientific Research: Tuberculosis and Tuberculin. Med. Hist. 2001, 45, 1–32. Available online: https://www.cambridge.org/core/product/identifier/S0025727300000028/type/journal_article (accessed on 2 July 2021). [CrossRef] [Green Version]
- Keshavjee, S.; Farmer, P.E. Tuberculosis, drug resistance, and the history of modern medicine. N. Engl. J. Med. 2012, 367, 931–936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jain, D. Allosteric control of transcription in GntR family of transcription regulators: A structural overview. IUBMB Life 2015, 67, 556–563. [Google Scholar] [CrossRef]
- Rigali, S.; Derouaux, A.; Giannotta, F.; Dusart, J. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J. Biol. Chem. 2002, 277, 12507–12515. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, M.H.; Scherer, M.; Rigali, S.; Golden, J.W. PlmA, a new member of the GntR family, has plasmid maintenance functions in Anabaena sp. strain PCC 7120. J. Bacteriol. 2003, 185, 4315–4325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoskisson, P.A.; Rigali, S.; Fowler, K.; Findlay, K.C.; Buttner, M.J. DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J. Bacteriol. 2006, 188, 5014–5023. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoskisson, P.A.; Rigali, S. Variation in Form and Function, The Helix-Turn-Helix Regulators of the GntR Superfamily. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2009; Volume 69, pp. 1–22. ISBN 9780123748249. [Google Scholar]
- Aravind, L.; Anantharaman, V. HutC/FarR-like bacterial transcription factors of the GntR family contain a small molecule-binding domain of the chorismate lyase fold. FEMS Microbiol. Lett. 2003, 222, 17–23. [Google Scholar] [CrossRef] [Green Version]
- Allison, S.L.; Phillips, A.T. Nucleotide sequence of the gene encoding the repressor for the histidine utilization genes of Pseudomonas putida. J. Bacteriol. 1990, 172, 5470–5476. [Google Scholar] [CrossRef] [Green Version]
- Quail, M.A.; Dempsey, C.E.; Guest, J.R. Identification of a fatty acyl responsive regulator (FarR) in Escherichia coli. FEBS Lett. 1994, 356, 183–187. [Google Scholar] [CrossRef] [Green Version]
- Schöck, F.; Dahl, M.K. Expression of the tre operon of Bacillus subtilis 168 is regulated by the repressor TreR. J. Bacteriol. 1996, 178, 4576–4581. [Google Scholar] [CrossRef] [Green Version]
- Gebhard, S.; Busby, J.N.; Fritz, G.; Moreland, N.J.; Cook, G.M.; Lott, J.S.; Baker, E.N.; Money, V.A. Crystal structure of PhnF, a GntR-family transcriptional regulator of phosphate transport in Mycobacterium smegmatis. J. Bacteriol. 2014, 196, 3472–3481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resch, M.; Schiltz, E.; Titgemeyer, F.; Muller, Y.A. Insight into the induction mechanism of the GntR/HutC bacterial transcription regulator YvoA. Nucleic Acids Res. 2010, 38, 2485–2497. [Google Scholar] [CrossRef]
- Fillenberg, S.B.; Friess, M.D.; Korner, S.; Böckmann, R.A.; Muller, Y.A. Crystal structures of the global regulator DasR from streptomyces coelicolor: Implications for the allosteric regulation of GntR/HutC Repressors. PLoS ONE 2016, 11, e0157691. [Google Scholar] [CrossRef] [PubMed]
- Vindal, V.; Ranjan, S.; Ranjan, A. In silico analysis and characterization of GntR family of regulators from Mycobacterium tuberculosis. Tuberculosis 2007, 87, 242–247. [Google Scholar] [CrossRef]
- Suvorova, I.A.; Korostelev, Y.D.; Gelfand, M.S. GntR Family of Bacterial Transcription Factors and Their DNA Binding Motifs: Structure, Positioning and Co-Evolution. PLoS ONE 2015, 10, e0132618. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Sela, I.; Ashkenazy, H.; Katoh, K.; Pupko, T. GUIDANCE2: Accurate detection of unreliable alignment regions accounting for the uncertainty of multiple parameters. Nucleic Acids Res. 2015, 43, W7–W14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robert, X.; Gouet, P. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 2014, 42, 320–324. [Google Scholar] [CrossRef] [Green Version]
- Drozdetskiy, A.; Cole, C.; Procter, J.; Barton, G.J. JPred4: A protein secondary structure prediction server. Nucleic Acids Res. 2015, 43, W389–W394. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Hutchinson, E.G.; Michie, A.D.; Wallace, A.C.; Jones, M.L.; Thornton, J.M. PDBsum: A web-based database of summaries and analyses of all PDB structures. Trends Biochem. Sci. 1997, 22, 488–490. Available online: https://linkinghub.elsevier.com/retrieve/pii/S0968000497011407 (accessed on 2 July 2021). [CrossRef]
- Schneider, T.D.; Stephens, R.M. Sequence logos: A new way to display consensus sequences. Nucleic Acids Res. 1990, 18, 6097–6100. [Google Scholar] [CrossRef]
- Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; De Beer, T.A.P.; Rempfer, C.; Bordoli, L.; et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 2018, 46, W296–W303. [Google Scholar] [CrossRef] [Green Version]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinform. 2008, 9, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bowie, J.U.; Luthy, R.; Eisenberg, D. A Method to Identify Protein Sequences That Fold into a Known Three-Dimentional Structure. Science 1991, 253, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Lüthy, R.; Bowie, J.U.; Eisenberg, D. Assessment of protein models with three-dimentional profiles. Nature 1992, 356, 83–85. [Google Scholar] [CrossRef]
- Wiederstein, M.; Sippl, M.J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res. 2007, 35 (Suppl. 2), 407–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, H.-B.; Chou, K.-C. Gpos-PLoc: An ensemble classifier for predicting subcellular localization of Gram-positive bacterial proteins. Protein Eng. Des. Sel. 2007, 20, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Yu, N.Y.; Wagner, J.R.; Laird, M.R.; Melli, G.; Rey, S.; Lo, R.; Dao, P.; Cenk Sahinalp, S.; Ester, M.; Foster, L.J.; et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010, 26, 1608–1615. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.-S.; Chen, Y.-C.; Lu, C.-H.; Hwang, J.-K. Prediction of Protein Subcellular Localization. PROTEINS Struct. Funct. Bioinform. 2006, 64, 643–651. [Google Scholar] [CrossRef]
- Nair, R.; Rost, B. Mimicking cellular sorting improves prediction of subcellular localization. J. Mol. Biol. 2005, 348, 85–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Li, Y.; Lin, B.; Schroeder, M.; Huang, B. Identification of cavities on protein surface using multiple computational approaches for drug binding site prediction. Bioinformatics 2011, 27, 2083–2088. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Wang, S.; Hu, Q.; Gao, S.; Ma, X.; Zhang, W.; Shen, Y.; Chen, F.; Lai, L.; Pei, J. CavityPlus: A web server for protein cavity detection with pharmacophore modelling, allosteric site identification and covalent ligand binding ability prediction. Nucleic Acids Res. 2018, 46, W374–W379. [Google Scholar] [CrossRef] [PubMed]
- Nagarajan, D.; Chandra, N. PocketMatch (version 2.0): A parallel algorithm for the detection of structural similarities between protein ligand binding-sites. In Proceedings of the 2013 National Conference on Parallel Computing Technologies (PARCOMPTECH), Bangalore, India, 21–23 February 2013; pp. 1–6. [Google Scholar]
- Ashkenazy, H.; Abadi, S.; Martz, E.; Chay, O.; Mayrose, I.; Pupko, T.; Ben-Tal, N. ConSurf 2016: An improved methodology to estimate and visualize evolutionary conservation in macromolecules. Nucleic Acids Res. 2016, 44, W344–W350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hussein, H.A.; Borrel, A.; Geneix, C.; Petitjean, M.; Regad, L.; Camproux, A.C. PockDrug-Server: A new web server for predicting pocket druggability on holo and apo proteins. Nucleic Acids Res. 2015, 43, W436–W442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dallakyan, S.; Olson, A.J. Small-Molecula Library Screening by Docking with PyRx. Methods Mol. Biol. 2015, 1263, 243–250. [Google Scholar] [PubMed]
- Accelrys Discovery Studio Visualizer v 3.5; Accelrys Software Inc.: San Diego, CA, USA, 2010.
- Kataoka, M.; Tanaka, T.; Kohno, T.; Kajiyama, Y. The carboxyl-terminal domain of TraR, a Streptomyces HutC family repressor, functions in oligomerization. J. Bacteriol. 2008, 190, 7164–7169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Titgemeyer, F.; Reizer, J.; Reizer, A.; Tang, J.; Parr, T.R.; Saier, M.H. Nucleotide sequence of the region between crr and cysM in Salmonella typhimurium: Five novel ORFs including one encoding a putative transcriptional regulator of the phosphotransferase system. DNA Seq. 1995, 5, 145–152. [Google Scholar] [CrossRef]
- Hillerich, B.; Westpheling, J. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J. Bacteriol. 2006, 188, 7477–7487. [Google Scholar] [CrossRef] [Green Version]
- Wu, K.; Xu, H.; Zheng, Y.; Wang, L.; Zhang, X.; Yin, Y. CpsR, a GntR family regulator, transcriptionally regulates capsular polysaccharide biosynthesis and governs bacterial virulence in Streptococcus pneumoniae. Sci. Rep. 2016, 6, 1–12. [Google Scholar] [CrossRef]
- Casali, N.; White, A.M.; Riley, L.W. Regulation of the Mycobacterium tuberculosis mce1 operon. J. Bacteriol. 2006, 188, 441–449. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lord, D.M.; Uzgoren Baran, A.; Soo, V.W.C.; Wood, T.K.; Peti, W.; Page, R. McbR/YncC: Implications for the Mechanism of Ligand and DNA Binding by a Bacterial GntR Transcriptional Regulator Involved in Biofilm Formation. Biochemistry 2014, 53, 7223–7231. [Google Scholar] [CrossRef] [PubMed]
- Truong-bolduc, Q.C.; Hooper, D.C. The Transcriptional Regulators NorG and MgrA Modulate Resistance to both Quinolones and beta-Lactams in Staphylococcus aureus. J. Bacteriol. 2007, 189, 2996–3005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arun, P.V.P.S.; Miryala, S.K.; Rana, A.; Kurukuti, S. System-wide coordinates of higher order functions in host-pathogen environment upon Mycobacterium tuberculosis infection. Sci. Rep. 2018, 8, 5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemieux, M.J.; Ference, C.; Cherney, M.M.; Wang, M.; Garen, C.; James, M.N.G. The crystal structure of Rv0793, a hypothetical monooxygenase from M. tuberculosis. J. Struct. Funct. Genomics 2005, 6, 245–257. [Google Scholar] [CrossRef]
- Rigali, S.; Titgemeyer, F.; Barends, S.; Mulder, S.; Thomae, A.W.; Hopwood, D.A.; van Wezel, G.P. Feast or famine: The global regulator DasR links nutrient stress to antibiotic production by Streptomyces. EMBO Rep. 2008, 9, 670–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeywickrama, T.D.; Perera, I.C. RV0792c; a potential drug target for Mycobacterium tuberculosis. In Proceedings of the Seventh International Conference on Advances in Applied Science and Environmental Technology-ASET 2017, Bangkok, Thailand, 23–24 September 2017; p. 33. [Google Scholar]
MoyR. | DasR | NagR |
---|---|---|
ARG 141 | ARG 142 | ARG 133 |
THR 177 | SER 175 | SER 165 |
TYR 179 | TYR 177 | TYR 167 |
VAL 221 | LEU 219 | ILE 209 |
ARG 223 | ARG 212 | ARG 211 |
GLU 234 | GLU 232 | GLU 222 |
CavityPlus Server | PockDrug Server | ||
---|---|---|---|
Ligandability Pred. Max pKd | Drug score | Druggability | |
Cavity 1 | 9.31 | 3129 | 0.92 |
Cavity 2 | 11.34 | 2694 | 0.93 |
Cavity 3 | 11.35 | 1445 | 0.91 |
Cavity 4 | 10.24 | 1014 | 0.94 |
Compound. | Molecular Formula | Binding Energy (kcal/mol) | Interacting Residues in Binding Pockets 3 and 4 |
---|---|---|---|
3-(4-fluorobenzyl)-4-methyl-2-oxo-2H-chromen-7-yl 3-(trifluoromethyl)benzene-1-sulfonate | C27H23 F3 N4 O4 | −11.1 | VAL113, PRO111, ILE100, VAL 97, VAL153, VAL236, HIS240, THR177, THR101, PHE 238, ARG 223 |
N-[3-[3-[(phenylsulfonyl)amino]-5-(trifluoromethyl)benzyl]-5-(trifluoromethyl)phenyl]benzenesulfonamide | C27H20F6N2O4 S2 | −11 | ARG98, VAL221, VAL153, ALA155, VAL113, ARG141 THR101, TYR179,ARG223, PHE238, ILE139, GLU176, ALA173 |
N’1-[3-(trifluoromethyl)benzoyl]-2-[2,6-dimethyl-4-(3-methyl-4-oxo-3,4-dihydrophthalazin-1-yl)phenoxy]ethanohydrazide | C27H23F3N4 O4 | −10.9 | PRO111, VAL113, VAL236, VAL153, ILE100, TYR179, ALA 173, HIS240, ARG223, GLU234, PHE238, GLU92 |
CHEMBL3222137—name undefined | C29H27NO8 | −10.6 | VAL 221, HIS 195, VAL 97, VAL 153, VAL236, ILE100, ALA173, TYR179, THR101, GLN 112, VAL113 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abeywickrama, T.D.; Perera, I.C. In Silico Characterization and Virtual Screening of GntR/HutC Family Transcriptional Regulator MoyR: A Potential Monooxygenase Regulator in Mycobacterium tuberculosis. Biology 2021, 10, 1241. https://doi.org/10.3390/biology10121241
Abeywickrama TD, Perera IC. In Silico Characterization and Virtual Screening of GntR/HutC Family Transcriptional Regulator MoyR: A Potential Monooxygenase Regulator in Mycobacterium tuberculosis. Biology. 2021; 10(12):1241. https://doi.org/10.3390/biology10121241
Chicago/Turabian StyleAbeywickrama, Thanusha Dhananji, and Inoka Chinthana Perera. 2021. "In Silico Characterization and Virtual Screening of GntR/HutC Family Transcriptional Regulator MoyR: A Potential Monooxygenase Regulator in Mycobacterium tuberculosis" Biology 10, no. 12: 1241. https://doi.org/10.3390/biology10121241
APA StyleAbeywickrama, T. D., & Perera, I. C. (2021). In Silico Characterization and Virtual Screening of GntR/HutC Family Transcriptional Regulator MoyR: A Potential Monooxygenase Regulator in Mycobacterium tuberculosis. Biology, 10(12), 1241. https://doi.org/10.3390/biology10121241