Performance of Scoring Systems in Predicting Clinical Outcomes in Patients with Bacteremia of Listeria monocytogenes: A 9-Year Hospital-Based Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection and Definition
2.2. Scoring Systems
2.3. Statistical Analyses
3. Results
3.1. Demographics and Clinical Characteristics
3.2. Microbiology
3.3. Clinical Syndromes and Management
3.4. Laboratory Data and Scoring Systems
3.5. Primary Outcomes and Comorbidities
3.6. Univariate and Multivariate Analysis of Risk Factors
3.7. Receiver Operating Characteristic Curve (ROC)
4. Discussion
5. Limitations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the United States--major pathogens. Emerg. Infect. Dis. 2011, 17, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Hof, H. History and epidemiology of listeriosis. FEMS Immunol. Med. Microbiol. 2003, 35, 199–202. [Google Scholar] [CrossRef]
- Hof, H.; Nichterlein, T.; Kretschmar, M. Management of listeriosis. Clin. Microbiol. Rev. 1997, 10, 345–357. [Google Scholar] [CrossRef]
- Linke, K.; Ruckerl, I.; Brugger, K.; Karpiskova, R.; Walland, J.; Muri-Klinger, S.; Tichy, A.; Wagner, M.; Stessl, B. Reservoirs of listeria species in three environmental ecosystems. Appl. Environ. Microbiol. 2014, 80, 5583–5592. [Google Scholar] [CrossRef] [Green Version]
- Barbuddhe, S.B.; Chakraborty, T. Listeria as an enteroinvasive gastrointestinal pathogen. Curr. Top. Microbiol. Immunol. 2009, 337, 173–195. [Google Scholar]
- Jeffs, E.; Williman, J.; Brunton, C.; Gullam, J.; Walls, T. The epidemiology of listeriosis in pregnant women and children in New Zealand from 1997 to 2016: An observational study. BMC Public Health 2020, 20, 116. [Google Scholar] [CrossRef] [PubMed]
- Gerner-Smidt, P.; Ethelberg, S.; Schiellerup, P.; Christensen, J.J.; Engberg, J.; Fussing, V.; Jensen, A.; Jensen, C.; Petersen, A.M.; Bruun, B.G. Invasive listeriosis in Denmark 1994–2003: A review of 299 cases with special emphasis on risk factors for mortality. Clin. Microbiol. Infect. 2005, 11, 618–624. [Google Scholar] [CrossRef] [Green Version]
- Silk, B.J.; Mahon, B.E.; Griffin, P.M.; Gould, L.H.; Tauxe, R.V.; Crim, S.M.; Jackson, K.A.; Gerner-Smidt, P.; Herman, K.M.; Henao, O.L. Vital signs: Listeria illnesses, deaths, and outbreaks--United States, 2009–2011. MWR. Morb. Mortal. Wkly. Rep. 2013, 62, 448–452. [Google Scholar]
- World Health Organization. Listeriosis. Available online: https://www.who.int/news-room/fact-sheets/detail/listeriosis (accessed on 20 February 2018).
- Chiou, C.S.; Taiwan Centers for Disease Control. Surveillance and Control of Listeriosis: Building the Laboratory Capability in Sample Collection, Pathogen Isolation and Strain Characterization. Available online: https://www.cdc.gov.tw/En/Professional/ProgramResultInfo/ppxd4Xu5zcYwcLHniXKk6w?programResultId=QDST2Ir2TiD2q5W3wuApuA (accessed on 31 December 2019).
- Huang, S.L.; Chou, Y.T.; Hsieh, Y.C.; Huang, Y.C.; Lin, T.Y.; Chiu, C.H. Epidemiology and clinical characteristics of Listeria monocytogenes bacteremia in a Taiwanese medical center. J. Microbiol. Immunol. Infect. 2010, 43, 485–490. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.T.; Kuo, Y.W.; Lee, M.R.; Tsai, Y.H.; Teng, L.J.; Tsai, M.S.; Liao, C.H.; Hsueh, P.R. Clinical and molecular epidemiology of human listeriosis in Taiwan. Int. J. Infect. Dis. 2021, 104, 718–724. [Google Scholar] [CrossRef]
- Huang, Y.T.; Liao, C.H.; Yang, C.J.; Teng, L.J.; Wang, J.T.; Hsueh, P.R. Listeriosis, Taiwan, 1996–2008. Emerg. Infect. Dis. 2011, 17, 1731–1733. [Google Scholar] [CrossRef]
- Guevara, R.E.; Mascola, L.; Sorvillo, F. Risk factors for mortality among patients with nonperinatal listeriosis in Los Angeles County, 1992–2004. Clin. Infect. Dis. 2009, 48, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Scobie, A.; Kanagarajah, S.; Harris, R.J.; Byrne, L.; Amar, C.; Grant, K.; Godbole, G. Mortality risk factors for listeriosis—A 10 year review of non-pregnancy associated cases in England 2006–2015. J. Infect. 2019, 78, 208–214. [Google Scholar] [CrossRef]
- Charlier, C.; Perrodeau, E.; Leclercq, A.; Cazenave, B.; Pilmis, B.; Henry, B.; Lopes, A.; Maury, M.M.; Moura, A.; Goffinet, F.; et al. Clinical features and prognostic factors of listeriosis: The MONALISA national prospective cohort study. Lancet Infect. Dis. 2017, 17, 510–519. [Google Scholar] [CrossRef]
- Nielsen, S.L. The incidence and prognosis of patients with bacteremia. Dan. Med. J. 2015, 62, B5128. [Google Scholar]
- Al-Hasan, M.N.; Baddour, L.M. Resilience of the Pitt Bacteremia Score: 3 Decades and Counting. Clin. Infect. Dis. 2020, 70, 1834–1836. [Google Scholar] [CrossRef]
- Al-Hasan, M.N.; Lahr, B.D.; Eckel-Passow, J.E.; Baddour, L.M. Predictive scoring model of mortality in Gram-negative bloodstream infection. Clin. Microbiol. Infect. 2013, 19, 948–954. [Google Scholar] [CrossRef] [Green Version]
- Wei, X.; Ma, H.; Liu, R.; Zhao, Y. Comparing the effectiveness of three scoring systems in predicting adult patient outcomes in the emergency department. Medicine 2019, 98, e14289. [Google Scholar] [CrossRef]
- Chang, S.H.; Hsieh, C.H.; Weng, Y.M.; Hsieh, M.S.; Goh, Z.N.L.; Chen, H.Y.; Chang, T.; Ng, C.J.; Seak, J.C.; Seak, C.K.; et al. Performance Assessment of the Mortality in Emergency Department Sepsis Score, Modified Early Warning Score, Rapid Emergency Medicine Score, and Rapid Acute Physiology Score in Predicting Survival Outcomes of Adult Renal Abscess Patients in the Emergency Department. BioMed. Res. Int. 2018, 2018, 6983568. [Google Scholar]
- Hu, H.; Yao, N.; Qiu, Y. Comparing Rapid Scoring Systems in Mortality Prediction of Critically Ill Patients With Novel Coronavirus Disease. Acad. Emerg. Med. 2020, 27, 461–468. [Google Scholar] [CrossRef] [Green Version]
- Pagliano, P.; Ascione, T.; Boccia, G.; De Caro, F.; Esposito, S. Listeria monocytogenes meningitis in the elderly: Epidemiological, clinical and therapeutic findings. Infez. Med. 2016, 24, 105–111. [Google Scholar]
- Koopmans, M.M.; Bijlsma, M.W.; Brouwer, M.C.; van de Beek, D.; van der Ende, A. Listeria monocytogenes meningitis in the Netherlands, 1985–2014: A nationwide surveillance study. J. Infect. 2017, 75, 12–19. [Google Scholar] [CrossRef] [Green Version]
- Munoz-Gallego, I.; Candela Ganoza, G.; Chaves, F.; San Juan, R.; Orellana, M.A. Listeria monocytogenes bacteraemia over an 11-year period: Clinical and epidemiologic characteristics in the south area of Madrid. J. Infect. 2017, 75, 276–278. [Google Scholar] [CrossRef]
- Goulet, V.; Hebert, M.; Hedberg, C.; Laurent, E.; Vaillant, V.; De Valk, H.; Desenclos, J.C. Incidence of listeriosis and related mortality among groups at risk of acquiring listeriosis. Clin. Infect. Dis. 2012, 54, 652–660. [Google Scholar] [CrossRef] [Green Version]
- McLauchlin, J.; Grant, K.A.; Amar, C.F.L. Human foodborne listeriosis in England and Wales, 1981 to 2015. Epidemiol. Infect. 2020, 148, e54. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, B.; Gerner-Smidt, P. The epidemiology of human listeriosis. Microbes Infect. 2007, 9, 1236–1243. [Google Scholar] [CrossRef] [Green Version]
- Wong, H.C.; Chao, W.L.; Lee, S.J. Incidence and characterization of Listeria monocytogenes in foods available in Taiwan. Appl. Environ. Microbiol. 1990, 56, 3101–3104. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.H.; Adams, P.J.; Huang, J.F.; Sun, Y.F.; Lin, J.H.; Robertson, I.D. Contamination of chicken carcasses and the abattoir environment with Listeria monocytogenes in Taiwan. Br. Poult. Sci. 2021, 62, 1–9. [Google Scholar] [CrossRef]
- Rowan, N.J.; Anderson, J.G. Effects of above-optimum growth temperature and cell morphology on thermotolerance of Listeria monocytogenes cells suspended in bovine milk. Appl. Environ. Microbiol. 1998, 64, 2065–2071. [Google Scholar] [CrossRef] [Green Version]
- Rogalla, D.; Bomar, P.A. Listeria Monocytogenes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Gonzalez-Fandos, E.; Martinez-Laorden, A.; Perez-Arnedo, I. Combined Effect of Organic Acids and Modified Atmosphere Packaging on Listeria monocytogenes in Chicken Legs. Animals 2020, 10, 1818. [Google Scholar] [CrossRef]
- Gonzalez-Fandos, E.; Martinez-Laorden, A.; Perez-Arnedo, I. Efficacy of combinations of lactic acid and potassium sorbate against Listeria monocytogenes in chicken stored under modified atmospheres. Food Microbiol. 2021, 93, 103596. [Google Scholar] [CrossRef] [PubMed]
- Siegman-Igra, Y.; Levin, R.; Weinberger, M.; Golan, Y.; Schwartz, D.; Samra, Z.; Konigsberger, H.; Yinnon, A.; Rahav, G.; Keller, N.; et al. Listeria monocytogenes infection in Israel and review of cases worldwide. Emerg. Infect. Dis. 2002, 8, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Ruangsomboon, O.; Boonmee, P.; Limsuwat, C.; Chakorn, T.; Monsomboon, A. The utility of the rapid emergency medicine score (REMS) compared with SIRS, qSOFA and NEWS for Predicting in-hospital Mortality among Patients with suspicion of Sepsis in an emergency department. BMC Emerg. Med. 2021, 21, 2. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Yang, C.Y.; Lee, C.H.; Chi, C.H.; Lee, C.C. Validation of MEDS score in predicting short-term mortality of adults with community-onset bacteremia. Am. J. Emerg. Med. 2020, 38, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Liu, V.X.; Lu, Y.; Carey, K.A.; Gilbert, E.R.; Afshar, M.; Akel, M.; Shah, N.S.; Dolan, J.; Winslow, C.; Kipnis, P.; et al. Comparison of Early Warning Scoring Systems for Hospitalized Patients With and Without Infection at Risk for In-Hospital Mortality and Transfer to the Intensive Care Unit. JAMA Netw. Open. 2020, 3, e205191. [Google Scholar] [CrossRef]
- Shapiro, N.I.; Wolfe, R.E.; Moore, R.B.; Smith, E.; Burdick, E.; Bates, D.W. Mortality in Emergency Department Sepsis (MEDS) score: A prospectively derived and validated clinical prediction rule. Crit. Care Med. 2003, 31, 670–675. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Zhang, K.; Zheng, X.; Cui, W.; Hong, Y.; Zhang, Z. Performance of the MEDS score in predicting mortality among emergency department patients with a suspected infection: A meta-analysis. Emerg. Med. J. 2020, 37, 232–239. [Google Scholar] [CrossRef]
- Royal College of Physicians, London. National Early Warning Score (NEWS) 2: Standardising the Assessment of Acute-Illness Severity in the NHS—Update Report of a Working Party. Available online: https://www.rcplondon.ac.uk/projects/outputs/national-early-warning-score-news-2 (accessed on 19 December 2017).
- Usman, O.A.; Usman, A.A.; Ward, M.A. Comparison of SIRS, qSOFA, and NEWS for the early identification of sepsis in the Emergency Department. Am. J. Emerg. Med. 2019, 37, 1490–1497. [Google Scholar] [CrossRef]
General Data | Patients (n = 38) | Survival (n = 24) | Mortality (n = 14) | P Value |
---|---|---|---|---|
Age (years) | 59.9 ± 19.6 | 57.3 ± 21.4 | 63.4 ± 15.9 | 0.732 |
Male (%) | 16(42.1%) | 10(41.7%) | 6(42.9%) | 1.000 |
LOS (days) | 23.3 ± 20.9 | 25.3 ± 20.5 | 19.9 ± 21.9 | 0.232 |
Clinical syndromes | ||||
Fever | 26(68.4%) | 18(75%) | 8(57.1%) | 0.296 |
GI | 13(34.2%) | 8(33.3%) | 5(35.7%) | 1.000 |
Respiratory | 6(15.8%) | 2(8.3%) | 4(28.6%) | 0.167 |
Neurology | 12(31.6%) | 7(29.2%) | 5(35.7%) | 0.728 |
Other a | 1(2.6%) | 1(4.2%) | 0(0.00%) | 1.000 |
Clinical conditions | ||||
Shock | 7(18.4%) | 2(8.3%) | 5(35.7%) | 0.077 |
Meningitis | 11(28.9%) | 6(25.0%) | 5(35.7%) | 0.712 |
Comorbidities | ||||
Neoplasm | 19(50%) | 9(37.5%) | 10(71.4%) | 0.093 |
Cardiovascular disease | 16(42.1%) | 9(37.5%) | 7(50.0%) | 0.680 |
CKD | 10(26.3%) | 5(20.8%) | 5(35.7%) | 0.449 |
DM | 6(15.8%) | 4(16.7%) | 2(14.3%) | 1.000 |
Chronic liver disease | 3(7.9%) | 1(4.2%) | 2(14.3%) | 0.542 |
Autoimmune | 6(15.8%) | 6(25.0%) | 0(0.00%) | 0.067 |
Immunocompromised | 32(84.2%) | 19(79.2%) | 13(92.9%) | 0.383 |
Maternal–fetal | 2(8.33%) | 2(8.33%) | 0(0.00%) | 0.522 |
Vital signs | ||||
SBP (mmHg) | 138.5 ± 28.3 | 142.5 ± 30.0 | 131.5 ± 24.6 | 0.535 |
MAP (mmHg) | 99.7 ± 19.8 | 104.2 ± 21.0 | 92.1 ± 15.4 | 0.209 |
HR (bpm) | 104.3 ± 27.4 | 102.2 ± 38.2 | 107.9 ± 26.8 | 0.606 |
RR (bpm) | 19.9 ± 2.9 | 19.4 ± 2.2 | 20.7 ± 3.7 | 0.381 |
BT (°C) | 38.1 ± 1.0 | 38.0± 0.8 | 38.4 ± 1.2 | 0.525 |
SpO2 (%) | 95.2 ± 5.2 | 96.0 ± 5.0 | 93.7 ± 5.4 | 0.111 |
GCS | 13.7 ± 2.9 | 14.3 ± 1.6 | 12.5 ± 4.0 | 0.209 |
Laboratory data | ||||
WBC (counts/uL) | 10,526.3 ± 6646.4 | 11,468.3 ± 7034.8 | 8911.4 ± 5807.4 | 0.377 |
Hb (g/dL) | 11.0 ± 2.4 | 11.2 ± 2.5 | 10.9 ± 2.2 | 0.397 |
Plt (×103 counts/uL) | 144.0 ± 85.0 | 160.4 ± 94.7 | 116.0 ± 56.7 | 0.215 |
Cre (mg/dL) | 2.1 ± 2.6 | 2.0 ± 2.7 | 2.2 ± 2.5 | 0.341 |
ALK-P (U/L) | 238.4 ± 0.6 | 158.0 ± 132.8 | 443.8 ± 591.1 | 0.054 |
AST (U/L) | 109.3 ± 212.4 | 41.0 ± 12.8 | 221.0 ± 322.5 | 0.07 |
ALT (U/L) | 65.0 ± 63.9 | 49.0 ± 30.5 | 91.4 ± 92.2 | 0.491 |
LDH (U/L) | 529.4 ± 538.9 | 306.9 ± 110.0 | 770.3 ± 706.0 | 0.016 * |
Lactate (mg/dL) | 10.6 ± 23.1 | 19.8 ± 22.3 | 23.8 ± 25.1 | 0.670 |
CRP (mg/dL) | 21.4 ± 7.5 | 8.3 ± 7.8 | 14.3 ± 5.4 | 0.003 * |
pH | 7.4 ± 0.1 | 7.4 ± 0.1 | 7.4 ± 0.1 | 0.283 |
Scoring systems | ||||
REMS | 5.8 ± 3.4 | 5.4 ± 3.4 | 6.43 ± 3.5 | 0.454 |
RAPS | 2.2 ± 2.1 | 2.1 ± 2.2 | 2.4 ± 2.0 | 0.630 |
MEWS | 3.32 ± 1.8 | 3.0 ± 1.62 | 3.86 ± 2.1 | 0.26 |
MEDS | 8.7 ± 5.0 | 6.6 ± 4.0 | 12.4 ± 4.4 | <0.001 * |
NEWS | 5.3 ± 3.4 | 3.9 ± 2.8 | 8.0 ± 3.0 | 0.001 * |
qSOFA | 0.6 ± 0.7 | 0.4 ± 0.5 | 0.9 ± 0.8 | 0.041 * |
Clinical management | ||||
O2 use | 22(57.9%) | 8(33.3%) | 14(100.0%) | <0.001 * |
Vasopressor use | 6(15.8%) | 1(4.2%) | 5(35.7%) | 0.0018 * |
Characteristics | Hazard Ratios | 95% Confidence Interval | P Value |
---|---|---|---|
Age (years) | 1.02 | (0.99–1.05) | 0.267 |
Male | 0.73 | (0.24–5.14) | 0.594 |
Clinical syndromes | |||
Fever | 0.64 | (0.21–1.95) | 0.43 |
GI | 1.43 | (0.46–4.44) | 0.531 |
Respiratory | 5.66 | (1.57–20.37) | 0.008 * |
Neurology | 0.66 | (0.19–2.25) | 0.508 |
Other a | 0.05 | (0.00–219) | 0.735 |
Clinical conditions | |||
Shock | 4.46 | (1.39–14.38) | 0.012 * |
Meningitis | 0.79 | (0.24–2.57) | 0.696 |
Vital signs | |||
SBP (mmHg) | 0.98 | (0.94–1.04) | 0.186 |
MAP (mmHg) | 0.96 | (0.92–1.00) | 0.069 |
HR (bpm) | 1.02 | (1.00–1.04) | 0.119 |
RR (bpm) | 1.34 | (1.09–1.64) | 0.005 * |
BT (°C) | 1.35 | (0.78–2.35) | 0.281 |
SpO2 (%) | 0.91 | (0.84–0.99) | 0.032 * |
GCS | 0.93 | (0.81–1.07) | 0.303 |
Comorbidities | |||
Cardiovascular disease | 1.86 | (0.62–5.60) | 0.269 |
DM | 1.19 | (0.26–5.45) | 0.825 |
CKD | 2.06 | (0.67–6.35) | 0.209 |
Chronic liver disease | 2.23 | (0.48–10.39) | 0.305 |
Neoplasm | 5.00 | (1.35–18.53) | 0.016 * |
Autoimmune | 0.04 | (0.00–12.89) | 0.267 |
Maternal–fetal | 0.05 | (0.00–114352) | 0.682 |
Immunocompromised | 29.17 | (0.06–13487) | 0.281 |
Laboratory data | |||
WBC (counts/uL) | 1.00 | (1.00–1.00) | 0.163 |
Hb (g/dL) | 0.92 | (0.74–1.16) | 0.485 |
Plt (×103 counts/uL) | 1.00 | (0.99–1.00) | 0.265 |
Cre (mg/dL) | 1.03 | (0.85–1.25) | 0.754 |
ALK-P (U/L) | 1.001 | (1.0001–1.002) | 0.033 * |
AST (U/L) | 1.003 | (1.001–1.004) | 0.007 * |
ALT (U/L) | 1.01 | (1.0004–1.01) | 0.038 * |
LDH (U/L) | 1.002 | (1.001–1.00) | 0.001 * |
CRP (mg/dL) | 1.09 | (1.01–1.17) | 0.031 * |
Lactate (mg/dL) | 1.02 | (0.99–1.04) | 0.168 |
pH | 2.33 | (0.00–265) | 0.814 |
Scoring systems | |||
REMS | 1.15 | (0.96–1.39) | 0.128 |
RAPS | 1.05 | (0.82–1.34) | 0.701 |
MEWS | 1.34 | (1.03–1.75) | 0.028 * |
MEDS | 1.30 | (1.13–1.49) | <0.001 * |
NEWS | 1.41 | (1.18–1.68) | <0.001 * |
qSOFA | 2.77 | (1.28–5.99) | 0.01 * |
Clinical management | |||
O2 use | 55.21 | (0.58–5220) | 0.084 |
Vasopressor use | 5.31 | (1.66–17.00) | 0.005 * |
Variables | Univariate | Multivariate | ||||
---|---|---|---|---|---|---|
HR | 95% CI | P Value | HR | 95% CI | P Value | |
CRP | 1.09 | (1.01–1.17) | 0.031 * | 1.07 | (0.98–1.17) | 0.155 a |
MEDS | 1.30 | (1.13–1.49) | <0.001 ** | 1.25 | (1.09–1.43) | 0.001 ** |
NEWS | 1.41 | (1.18–1.68) | <0.001 ** | 1.35 | (1.11–1.64) | 0.003 ** |
Variables | AUC | Cut-Off Point | Sensitivity | Specificity | PPV | NPV | Accuracy | SE | P Value |
---|---|---|---|---|---|---|---|---|---|
MEDS | 0.829 | 10 | 78.6% | 79.2% | 68.8% | 86.4% | 78.9% | 0.08 | 0.001 ** |
NEWS | 0.815 | 8 | 57.1% | 91.7% | 80.0% | 78.6% | 78.9% | 0.07 | 0.001 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, S.-H.; Hsieh, M.-S.; Hu, S.-Y.; Huang, S.-C.; Tsai, C.-A.; Hsu, C.-Y.; Lin, T.-C.; Lee, Y.-C.; Liao, S.-H. Performance of Scoring Systems in Predicting Clinical Outcomes in Patients with Bacteremia of Listeria monocytogenes: A 9-Year Hospital-Based Study. Biology 2021, 10, 1073. https://doi.org/10.3390/biology10111073
Huang S-H, Hsieh M-S, Hu S-Y, Huang S-C, Tsai C-A, Hsu C-Y, Lin T-C, Lee Y-C, Liao S-H. Performance of Scoring Systems in Predicting Clinical Outcomes in Patients with Bacteremia of Listeria monocytogenes: A 9-Year Hospital-Based Study. Biology. 2021; 10(11):1073. https://doi.org/10.3390/biology10111073
Chicago/Turabian StyleHuang, Shang-Hsuan, Ming-Shun Hsieh, Sung-Yuan Hu, Shih-Che Huang, Che-An Tsai, Chiann-Yi Hsu, Tzu-Chieh Lin, Yi-Chen Lee, and Shu-Hui Liao. 2021. "Performance of Scoring Systems in Predicting Clinical Outcomes in Patients with Bacteremia of Listeria monocytogenes: A 9-Year Hospital-Based Study" Biology 10, no. 11: 1073. https://doi.org/10.3390/biology10111073
APA StyleHuang, S. -H., Hsieh, M. -S., Hu, S. -Y., Huang, S. -C., Tsai, C. -A., Hsu, C. -Y., Lin, T. -C., Lee, Y. -C., & Liao, S. -H. (2021). Performance of Scoring Systems in Predicting Clinical Outcomes in Patients with Bacteremia of Listeria monocytogenes: A 9-Year Hospital-Based Study. Biology, 10(11), 1073. https://doi.org/10.3390/biology10111073