The Cardiovascular Therapeutic Potential of Propolis—A Comprehensive Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cardiovascular Effects of Propolis
2.1. Anti-Atherosclerotic Effect
2.2. Anti-Hemostatic Activity
2.3. Antihypertensive Activity
2.4. Antiangiogenesis Activity
2.5. Endothelial-Protecting Activity
2.6. Myocardial-Protecting Activity
2.7. Antioxidant and Anti-Inflammatory Activities
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Daleprane, J.B.; Abdalla, D. Emerging Roles of Propolis: Antioxidant, Cardioprotective, and Antiangiogenic Actions. Evid. Based Complement. Altern. Med. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pasupuleti, V.R.; Sammugam, L.; Ramesh, N.; Gan, S.H. Honey, Propolis, and Royal Jelly: A Comprehensive Review of Their Biological Actions and Health Benefits. Oxidative Med. Cell. Longev. 2017, 2017, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Greenaway, W.; Scaysbrook, T.; Whatley, F.R. The Composition and Plant Origins of Propolis: A Report of Work at Oxford. Bee World 1990, 71, 107–118. [Google Scholar] [CrossRef]
- Silva-Carvalho, R.; Baltazar, F.; Almeida-Aguiar, C. Propolis: A Complex Natural Product with a Plethora of Biological Activities That Can Be Explored for Drug Development. Evid. Based Complement. Altern. Med. 2015, 2015, 1–29. [Google Scholar] [CrossRef]
- Brown, R. Hive Products: Pollen, Propolis and Royal Jelly. Bee World 1989, 70, 109–117. [Google Scholar] [CrossRef]
- Zabaiou, N.; Fouache, A.; Trousson, A.; Baron, S.; Zellagui, A.; Lahouel, M.; Lobaccaro, J.-M.A. Biological properties of propolis extracts: Something new from an ancient product. Chem. Phys. Lipids 2017, 207, 214–222. [Google Scholar] [CrossRef]
- Oryan, A.; Alemzadeh, E.; Moshiri, A. Potential role of propolis in wound healing: Biological properties and therapeutic activities. Biomed. Pharmacother. 2018, 98, 469–483. [Google Scholar] [CrossRef]
- El-Guendouz, S.; Aazza, S.; Lyoussi, B.; Bankova, V.; Lourenço, J.P.; Rosa Costa, A.M.; Mariano, J.F.; Miguel, M.G.; Faleiro, M.L. Impact of biohybrid magnetite nanoparticles and moroccan propolis on adherence of methicillin resistant strains of staphylococcus aureus. Molecules 2016, 21, 1208. [Google Scholar] [CrossRef] [Green Version]
- Piccinelli, A.L.; Mencherini, T.; Celano, R.; Mouhoubi, Z.; Tamendjari, A.; Aquino, R.P.; Rastrelli, L. Chemical Composition and Antioxidant Activity of Algerian Propolis. J. Agric. Food Chem. 2013, 61, 5080–5088. [Google Scholar] [CrossRef]
- Soltani, E.-K.; Cerezuela, R.; Charef, N.; Mezaache-Aichour, S.; Esteban, M.Á.; Zerroug, M.M. Algerian propolis extracts: Chemical composition, bactericidal activity and in vitro effects on gilthead seabream innate immune responses. Fish Shellfish. Immunol. 2017, 62, 57–67. [Google Scholar] [CrossRef]
- Salas, A.L.; Alberto, M.R.; Zampini, I.C.; Cuello, A.S.; Maldonado, L.; Ríos, J.L.; Schmeda-Hirschmann, G.; Isla, M.I. Biological activities of polyphenols-enriched propolis from Argentina arid regions. Phytomedicine 2016, 23, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Fangio, M.F.; Orallo, D.E.; Gende, L.B.; Churio, M.S. Chemical characterization and antimicrobial activity against Paenibacillus larvae of propolis from Buenos Aires province, Argentina. J. Apic. Res. 2019, 58, 626–638. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, C.; Wang, K.; Li, G.Q.; Hu, F.-L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trusheva, B.; Popova, M.; Bankova, V.; Simova, S.; Marcucci, M.C.; Miorin, P.L.; Pasin, F.D.R.; Tsvetkova, I. Bioactive Constituents of Brazilian Red Propolis. Evid. Based Complement. Altern. Med. 2006, 3, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Alencar, S.M.; Oldoni, T.L.C.; Castro, M.L.; Cabral, I.S.R.; Costa-Neto, C.M.; Cury, J.A.; Rosalen, P.; Ikegaki, M. Chemical composition and biological activity of a new type of Brazilian propolis: Red propolis. J. Ethnopharmacol. 2007, 113, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Bueno-Silva, B.B.; Rosalen, P.L.; Cury, J.A.; Ikegaki, M.; Souza, V.C.; Esteves, A.; De Alencar, S.M. Chemical Composition and Botanical Origin of Red Propolis, a New Type of Brazilian Propolis. Evid. Based Complement. Altern. Med. 2008, 5, 313–316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Righi, A.A.; Alves, T.R.; Negri, G.; Marques, L.M.; Breyer, H.; Salatino, A. Brazilian red propolis: Unreported substances, antioxidant and antimicrobial activities. J. Sci. Food Agric. 2011, 91, 2363–2370. [Google Scholar] [CrossRef]
- Paviani, L.C.; Fiorito, G.; Sacoda, P.; Cabral, F.A. Different Solvents for Extraction of Brazilian Green Propolis: Composition and Extraction Yield of Phenolic Compounds. In Proceedings of the III Iberoamerican Conference on Supercritical Fluids Cartagena de Indias (Colombia), Cartagena de Indias, Colombia, 1–5 April 2013; pp. 1–7. [Google Scholar]
- Quintino, R.L.; Reis, A.C.; Fernandes, C.C.; Martins, C.H.G.; Colli, A.C.; Crotti, A.E.M.; Squarisi, I.S.; Ribeiro, A.B.; Tavares, D.C.; Miranda, M.L.D. Brazilian Green Propolis: Chemical Compo-sition of Essential Oil and Their In Vitro Antioxidant, Antibacterial and Antiproliferative Activities. Braz. Arch. Biol. Technol. 2020, 63. [Google Scholar] [CrossRef]
- de Menezes da Silveira, C.C.S.; Fernandes, L.M.P.; Silva, M.L.; Luz, D.A.; Gomes, A.R.Q.; Monteiro, M.C.; Machado, C.S.; Torres, Y.R.; de Lira, T.O.; Ferreira, A.G.; et al. Neurobehavioral and Antioxidant Effects of Ethanolic Extract of Yellow Propolis. Oxid. Med. Cell Longev. 2016, 2016. [Google Scholar] [CrossRef] [Green Version]
- Machado, C.S.; Mokochinski, J.B.; De Lira, T.O.; Oliveira, F.D.C.E.D.; Cardoso, M.V.; Ferreira, R.G.; Sawaya, A.C.H.F.; Ferreira, A.G.; Pessoa, C.; Cuesta-Rubio, O.; et al. Comparative Study of Chemical Composition and Biological Activity of Yellow, Green, Brown, and Red Brazilian Propolis. Evid. Based Complement. Altern. Med. 2016, 2016, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, F.H.; Guterres, Z.D.R.; Violante, I.M.P.; Lopes, T.F.S.; Garcez, W.S.; Garcez, F.R. Evaluation of mutagenic and antimicrobial properties of brown propolis essential oil from the Brazilian Cerrado biome. Toxicol. Rep. 2015, 2, 1482–1488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lima, V.H.M.; Almeida, K.D.C.R.; Alves, C.C.F.; Rodrigues, M.L.; Crotti, A.E.M.; De Souza, J.M.; Ribeiro, A.B.; Squarisi, I.S.; Tavares, D.C.; Martins, C.H.; et al. Biological properties of volatile oil from Brazilian brown propolis. Rev. Bras. Farm. 2019, 29, 807–810. [Google Scholar] [CrossRef]
- Papachroni, D.; Graikou, K.; Kosalec, I.; Damianakos, H.; Ingram, V.; Chinou, I. Phytochemical Analysis and Biological Evaluation of Selected African Propolis Samples from Cameroon and Congo. Nat. Prod. Commun. 2015, 10, 67–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Montenegro, G.; Peña, R.C.; Avila, G.; Timmerman, B.N. Botanial origin and seasonal production hives of central Chile. Bol. Bot. Univ. Sāo Paulo. 2001, 19, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, O.; Peña, R.C.; Ureta, E.; Montenegro, G.; Caldwell, C.; Timmermann, B.N. Phenolic Compounds of Propolis from Central Chilean Matorral. Z. Nat. C 2001, 56, 273–277. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, M.G.; Antunes, M.D. Is propolis safe as an alternative medicine? J. Pharm. Bioallied Sci. 2011, 3, 479–495. [Google Scholar] [CrossRef] [PubMed]
- Graikou, K.; Popova, M.; Gortzi, O.; Bankova, V.; Chinou, I. Characterization and biological evaluation of selected Mediterranean propolis samples. Is it a new type? LWT Food Sci. Technol. 2016, 65, 261–267. [Google Scholar] [CrossRef]
- Bankova, V. Recent trends and important developments in propolis research. Evid. Based Complement. Altern. Med. 2005, 2, 29–32. [Google Scholar] [CrossRef] [Green Version]
- Hegazi, A.G.; El-Hady, F.K.A. Egyptian propolis: 3. Antioxidant, antimicrobial activities and chemical composition of propolis from reclaimed lands. Z. Nat. C 2002, 57, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Rushdi, A.I.; Adgaba, N.; Bayaqoob, N.I.M.; Al-Ghamdi, A.; Simoneit, B.R.T.; El-Mubarak, A.H.; Al-Mutlaq, K.F. Characteristics and chemical compositions of propolis from Ethiopia. SpringerPlus 2014, 3, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Velikova, M.; Bankova, V.; Sorkun, K.; Houcine, S.; Tsvetkova, I.; Kujumgiev, A. Propolis from the Mediterranean region: Chemical composition and antimicrobial activity. Z. Nat. C 2000, 55, 790–793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bankova, V.; Popova, M.; Bogdanov, S.; Sabatini, A.-G. Chemical composition of European propolis: Expected and unexpected results. Z. Nat. C 2002, 57, 530–533. [Google Scholar] [CrossRef] [PubMed]
- Melliou, E.; Chinou, I. Chemical Analysis and Antimicrobial Activity of Greek Propolis. Planta Med. 2004, 70, 515–519. [Google Scholar] [CrossRef] [PubMed]
- Banskota, A.H.; Tezuka, Y.; Kadota, S. Recent progress in pharmacological research of propolis. Phytother. Res. 2001, 15, 561–571. [Google Scholar] [CrossRef]
- Petrova, A.; Popova, M.; Kuzmanova, C.; Tsvetkova, I.; Naydenski, H.; Muli, E.; Bankova, V. New biologically active compounds from Kenyan propolis. Fitoterapia 2010, 81, 509–514. [Google Scholar] [CrossRef]
- Popova, M.; Trusheva, B.; Antonov, D.; Cutajar, S.; Mifsud, D.; Farrugia, C.; Tsvetkova, I.; Najdenski, H.; Bankova, V. The specific chemical profile of Mediterranean propolis from Malta. Food Chem. 2011, 126, 1431–1435. [Google Scholar] [CrossRef] [Green Version]
- Toreti, V.C.; Sato, H.H.; Pastore, G.M.; Park, Y.K. Recent Progress of Propolis for Its Biological and Chemical Compositions and Its Botanical Origin. Evid. Based Complement. Altern. Med. 2013, 2013, 1–13. [Google Scholar] [CrossRef]
- Siheri, W.; Zhang, T.; Ebiloma, G.U.; Biddau, M.; Woods, N.; Hussain, M.Y.; Clements, C.J.; Fearnley, J.; Ebel, R.E.; Paget, T.; et al. Chemical and Antimicrobial Profiling of Propolis from Different Regions within Libya. PLoS ONE 2016, 11, e0155355. [Google Scholar] [CrossRef] [Green Version]
- Siheri, W.; Igoli, J.O.; Gray, A.I.; Nasciemento, T.G.; Zhang, T.; Fearnley, J.; Clements, C.J.; Carter, K.C.; Carruthers, J.; Edrada-Ebel, R.; et al. The Isolation of Antiprotozoal Compounds from Libyan Propolis. Phytother. Res. 2014, 28, 1756–1760. [Google Scholar] [CrossRef] [Green Version]
- Martinotti, S.; Ranzato, E. Propolis: A new frontier for wound healing? Burn. Trauma 2015, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Popova, M.; Lyoussi, B.; Aazza, S.; Antunes, D.; Bankova, V.; Miguel, G. Antioxidant and α-Glucosidase Inhibitory Properties and Chemical Profiles of Moroccan Propolis. Nat. Prod. Commun. 2015, 10, 1961–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miguel, M.G. Chemical and biological properties of propolis from the western countries of the Mediterranean basin and Portugal. Int. J. Pharm. Pharm. Sci. 2013, 5, 403–409. [Google Scholar]
- Inui, S.; Hosoya, T.; Shimamura, Y.; Masuda, S.; Ogawa, T.; Kobayashi, H.; Shirafuji, K.; Moli, R.T.; Kozone, I.; Shin-Ya, K.; et al. Solophenols B–D and Solomonin: New Prenylated Polyphenols Isolated from Propolis Collected from The Solomon Islands and Their Antibacterial Activity. J. Agric. Food Chem. 2012, 60, 11765–11770. [Google Scholar] [CrossRef] [PubMed]
- Popova, M.; Silici, S.; Kaftanoglu, O.; Bankova, V. Antibacterial activity of Turkish propolis and its qualitative and quantitative chemical composition. Phytomedicine 2005, 12, 221–228. [Google Scholar] [CrossRef]
- Doganli, G.A. Phenolic Content and Antibiofilm Activity of Propolis Against Clinical MSSA Strains. Rec. Nat. Prod. 2016, 5, 617–627. [Google Scholar]
- Ghisalberti, E.L. Propolis: A Review. BEE World 1979, 60, 59–84. [Google Scholar] [CrossRef]
- Sung, S.-H.; Choi, G.-H.; Lee, N.-W.; Shin, B.-C. External Use of Propolis for Oral, Skin, and Genital Diseases: A Systematic Review and Meta-Analysis. Evid. Based Complement. Altern. Med. 2017, 2017, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Wu, Z.; Huang, Z.Y.; Miao, X. Preservation of orange juice using propolis. J. Food Sci. Technol. 2017, 54, 3375–3383. [Google Scholar] [CrossRef]
- Pileggi, R.; Antony, K.; Johnson, K.; Zuo, J.; Holliday, L.S. Propolis inhibits osteoclast maturation. Dent. Traumatol. 2009, 25, 584–588. [Google Scholar] [CrossRef]
- Fokt, H.; Pereira, A.; Ferreira, A.M.; Cunha, A.; Aguiar, C. How do bees prevent hive infections? The antimicrobial properties of propolis. Appl Microbiol. 2010, 1, 481–493. [Google Scholar]
- Helfenberg, K.D. The analysis of beeswax and propolis. Chem Zeitungm. 1908, 31, 987–998. [Google Scholar]
- Anjum, S.I.; Ullah, A.; Khan, K.A.; Attaullah, M.; Khan, H.; Ali, H.; Bashir, M.A.; Tahir, M.; Ansari, M.J.; Ghramh, H.A.; et al. Composition and functional properties of propolis (bee glue): A review. Saudi J. Biol. Sci. 2019, 26, 1695–1703. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolski, J.W.; Vohora, S.B.; Sharma, K.; Shah, S.A.; Naqvi, S.A.H.; Dandiya, P.C. Antibacterial, antifungal, antiamoebic, anti-inflammatory and antipyretic studies on propolis bee products. J. Ethnopharmacol. 1991, 35, 77–82. [Google Scholar] [CrossRef]
- Ahmed, R.; Tanvir, E.M.; Hossen, S.; Afroz, R.; Ahmmed, I.; Rumpa, N.-E.-N.; Paul, S.; Gan, S.H.; Sulaiman, S.A.; Khalil, I. Antioxidant Properties and Cardioprotective Mechanism of Malaysian Propolis in Rats. Evid.-Based Complement. Altern. Med. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Hegazi, A.G.; El Hady, F.K.A.; Allah, F.A.A. Chemical composition and antimicrobial activity of European propolis. Z. Nat. C 2000, 55, 70–75. [Google Scholar] [CrossRef]
- Kim, J.D.; Liu, L.; Guo, W.; Meydani, M. Chemical structure of flavonols in relation to modulation of angiogenesis and im-mune-endothelial cell adhesion. J. Nutr. Biochem. 2006, 17, 165–176. [Google Scholar] [CrossRef]
- Benjamin, E.J.; Blaha, M.J.; Chiuve, S.E.; Cushman, M.; Das, S.R.; Deo, R.; De Ferranti, S.D.; Floyd, J.; Fornage, M.; Gillespie, C.; et al. Heart Disease and Stroke Statistics—2017 Update: A Report From the American Heart Association. Circulation 2017, 135, e146–e603. [Google Scholar] [CrossRef]
- Dalia, G.; King, R. Burden of cardiovascular disease (CVD) on economic cost. Comparison of outcomes in US and Europe. Circ. Cardiovasc. Qual. Outcomes 2017, 10, A207. [Google Scholar]
- Shad, B.; Ashouri, A.; Hasandokht, T.; Rajati, F.; Salari, A.; Naghshbandi, M.; Mirbolouk, F. Effect of multimorbidity on quality of life in adult with cardiovascular disease: A cross-sectional study. Health Qual. Life Outcomes 2017, 15, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Hald, K.; Larsen, F.B.; Nielsen, K.M.; Meillier, L.K.; Johansen, M.B.; Larsen, M.L.; Christensen, B.; Nielsen, C.V. Medication adherence, biological and lifestyle risk factors in patients with myocardial infarction: A ten-year follow-up on socially differentiated cardiac rehabilitation. Scand. J. Prim. Health Care 2019, 37, 182–190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergheanu, S.C.; Bodde, M.C.; Jukema, J.W. Pathophysiology and treatment of atherosclerosis: Current view and future perspective on lipoprotein modification treatment. Neth. Heart J. 2017, 25, 231–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, H.; Li, Z.; Wang, J.; Wang, K.; Fu, C.; Yuan, J.; Hu, F. Propolis Reduces Phosphatidylcholine-Specific Phospholipase C Activity and Increases Annexin a7 Level in Oxidized-LDL-Stimulated Human Umbilical Vein Endothelial Cells. Evid. Based Complement. Altern. Med. 2014, 2014, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Tian, H.; Sun, H.-W.; Zhang, J.-J.; Zhang, X.-W.; Zhao, L.; Guo, S.; Li, Y.-Y.; Jiao, P.; Wang, H.; Shucun, Q.; et al. Ethanol extract of propolis protects macrophages from oxidized low density lipoprotein-induced apoptosis by inhibiting CD36 expression and endoplasmic reticulum stress-C/EBP homologous protein pathway. BMC Complement. Altern. Med. 2015, 15, 230. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saavedra, N.; Cuevas, A.; Cavalcante, M.F.; Dörr, F.A.; Saavedra, K.; Zambrano, T.; Abdalla, D.S.P.; Salazar, L.A. Polyphenols from Chilean Propolis and Pinocembrin Reduce MMP-9 Gene Expression and Activity in Activated Macrophages. BioMed Res. Int. 2016, 2016, 1–8. [Google Scholar] [CrossRef]
- Li, Y.; Chen, M.; Xuan, H.; Hu, F. Effects of Encapsulated Propolis on Blood Glycemic Control, Lipid Metabolism, and Insulin Resistance in Type 2 Diabetes Mellitus Rats. Evid. Based Complement. Altern. Med. 2011, 2012, 1–8. [Google Scholar] [CrossRef]
- Daleprane, J.B.; da Silva Freitas, V.; Pacheco, A.; Rudnicki, M.; Faine, L.A.; Dörr, F.A.; Ikegaki, M.; Salazar, L.A.; Ong, T.P.; Abdalla, D. Anti-atherogenic and anti-angiogenic activities of polyphenols from propolis. J. Nutr. Biochem. 2012, 23, 557–566. [Google Scholar] [CrossRef]
- El-Sayed 9, A.; Ammar Algridi, M.; Mohammed Lashkham, N. Hypolipidemic and Antiatherogenic Effects of Aqueous Extract of Libyan Propolis in Lead Acetate Intoxicated Male Albino Mice. Int. J. Sci. Res. 2013, 14, 2319–7064. [Google Scholar]
- Fang, Y.; Li, J.; Ding, M.; Xu, X.; Zhang, J.; Jiao, P.; Han, P.; Wang, J.; Yao, S. Ethanol extract of propolis protects endothelial cells from oxidized low density lipoprotein-induced injury by inhibiting lectin-like oxidized low density lipoprotein receptor-1-mediated oxidative stress. Exp. Biol. Med. 2014, 239, 1678–1687. [Google Scholar] [CrossRef]
- Oršolić, N.; Jurčević, I.L.; Đikić, D.; Rogić, D.; Odeh, D.; Balta, V.; Junaković, E.P.; Terzić, S.; Jutrić, D. Effect of Propolis on Diet-induced hyperlipidemia and atherogenic indices in mice. Antioxidants 2019, 8, 156. [Google Scholar] [CrossRef] [Green Version]
- Tolba, M.F.; Azab, S.S.; Khalifa, A.E.; Abdel-Rahman, S.Z.; Abdel-Naim, A.B. Caffeic acid phenethyl ester, a promising component of propolis with a plethora of biological activities: A review on its anti-inflammatory, neuroprotective, hepatoprotective, and cardioprotective effects. IUBMB Life 2013, 65, 699–709. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Si, Y.; Song, G.; Luo, T.; Wang, J.; Qin, S. Ethanolic extract of propolis promotes reverse cholesterol transport and the ex-pression of ATP-binding cassette transporter A1 and G1 in mice. Lipids 2011, 46, 805–811. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, S.; Aoyama, H.; Kamiya, M.; Higuchi, J.; Kato, A.; Soga, M.; Kawai, T.; Yoshimura, K.; Kumazawa, S.; Tsuda, T. Artepillin C, a typical brazilian propolis-derived component, induces brown-like adipocyte formation in C3H10T1/2 cells, primary inguinal white adipose tissue-derived adipocytes, and mice. PLoS ONE 2016, 11, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Dong, Y.; Du, H.; Shi, H.; Peng, Y.; Li, X. Antioxidant Compounds from Propolis Collected in Anhui, China. Molecules 2011, 16, 3444–3455. [Google Scholar] [CrossRef]
- Gough, P.J.; Gomez, I.G.; Wille, P.T.; Raines, E.W. Macrophage expression of active MMP-9 induces acute plaque disruption in ap-oE-deficient mice. J. Clin. Investig. 2005, 116, 59–69. [Google Scholar] [CrossRef] [Green Version]
- Loftus, I.M.; Naylor, A.R.; Goodall, S.; Crowther, M.; Jones, L.; Bell, P.R.F.; Thompson, M.M. Increased Matrix Metalloproteinase-9 Activity in Unstable Carotid Plaques. Stroke 2000, 31, 40–47. [Google Scholar] [CrossRef] [Green Version]
- Versteeg, H.H.; Heemskerk, J.W.M.; Levi, M.; Reitsma, P.H. New Fundamentals in Hemostasis. Physiol. Rev. 2013, 93, 327–358. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.R.; Zhang, D.; Oswald, B.E.; Carrim, N.; Wang, X.; Hou, Y.; Zhang, Q.; LaValle, C.; McKeown, T.; Marshall, A.H.; et al. Platelets are versatile cells: New discoveries in hemostasis, thrombosis, immune responses, tumor metastasis and beyond. Crit. Rev. Clin. Lab. Sci. 2016, 53, 409–430. [Google Scholar] [CrossRef]
- Ohkura, N.; Takata, Y.; Ando, K.; Kanai, S.; Watanabe, E.; Nohira, T.; Atsumi, G.-I. Propolis and its constituent chrysin inhibit plasminogen activator inhibitor 1 production induced by tumour necrosis factor-α and lipopolysaccharide. J. Apic. Res. 2012, 51, 179–184. [Google Scholar] [CrossRef]
- Ohkura, N.; Oishi, K.; Kihara-Negishi, F.; Atsumi, G.I.; Tatefuji, T. Effects of a diet containing Brazilian propolis on lipopolysac-charideinduced increases in plasma plasminogen activator inhibitor-1 levels in mice. J. Intercult. Ethnopharmacol. 2016, 5, 439–443. [Google Scholar] [CrossRef]
- Bojić, M.; Antolić, A.; Tomičić, M.; Debeljak, Ž.; Maleš, Ž. Propolis ethanolic extracts reduce adenosine diphosphate induced platelet aggregation determined on whole blood. Nutr. J. 2018, 17, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Martina, S.J.; Luthfi, M.; Govindan, P.; Wahyuni, A.S. Effectivity comparison between aspirin, propolis, and bee pollen as an antiplatelet based on bleeding time taken on mice. MATEC Web. Conf. 2018, 197, 1–7. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, T.-T.; Xia, L.; Zhang, W.-F.; Wang, J.-F.; Wu, Y.-P. Inhibitory Effect of Propolis on Platelet Aggregation In Vitro. J. Healthc. Eng. 2017, 2017, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Xie, W.; He, A.; Da, X.; Liang, M.; Yao, G.; Xiang, J.; Gao, C.; Ming, Z. Antiplatelet activity of chrysin via inhibiting platelet αIIbβ3-mediated signaling pathway. Mol. Nutr. Food Res. 2016, 60, 1984–1993. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, G.; Lee, J.J.; Lin, K.H.; Shen, C.H.; Fong, T.H.; Chou, D.S.; Sheu, J.R. Characterization of a novel and potent collagen antagonist, caffeic acid phenethyl ester, in human platelets: In vitro and in vivo studies. Cardiovasc. Res. 2007, 75, 782–792. [Google Scholar] [CrossRef] [PubMed]
- Akbay, E.; Özenirler, Ç.; Çelemli, Ö.G.; Durukan, A.B.; Onur, M.A.; Sorkun, K. Effects of propolis on warfarin efficacy. Kardiochir. Torakochir. Pol. 2017, 14, 43–46. [Google Scholar] [CrossRef] [Green Version]
- Schmieder, R.E. Hypertoniebedingte endorganschäden. Dtsch. Arztebl. 2010, 107, 866–873. [Google Scholar]
- Silveira, M.A.D.; Teles, F.; Berretta, A.A.; Sanches, T.R.; Rodrigues, C.E.; Seguro, A.C.; Andrade, L. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: A randomized, double-blind, placebo-controlled trial. BMC Nephrol. 2019, 20, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Kubota, Y.; Umegaki, K.; Kobayashi, K.; Tanaka, N.; Kagota, S.; Nakamura, K.; Kunitomo, M.; Shinozuka, K. Anti-hypertensive effects of brazilian propolis in spontaneously hypertensive rats. Clin. Exp. Pharmacol. Physiol. 2004, 31, S29–S30. [Google Scholar] [CrossRef]
- Gogebakan, A.; Talas, Z.S.; Özdemir, I.; Sahna, E. Role of Propolis on Tyrosine Hydroxylase Activity and Blood Pressure in Nitric Oxide Synthase-Inhibited Hypertensive Rats. Clin. Exp. Hypertens. 2012, 34, 424–428. [Google Scholar] [CrossRef]
- Aoi, W.; Hosogi, S.; Niisato, N.; Yokoyama, N.; Hayata, H.; Miyazaki, H.; Kusuzaki, K.; Fukuda, T.; Fukui, M.; Nakamura, N.; et al. Improvement of insulin resistance, blood pressure and interstitial pH in early developmental stage of insulin resistance in OLETF rats by intake of propolis extracts. Biochem. Biophys. Res. Commun. 2013, 432, 650–653. [Google Scholar] [CrossRef]
- Teles, F.; Da Silva, T.M.; Da Cruz, F.P.; Honorato, V.H.; De Oliveira Costa, H.; Barbosa, A.P.F.; de Oliveira, S.G.; Porfírio, Z.; Libório, A.B.; Borges, R.L.; et al. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model. PLoS ONE 2015, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujica, V.; Orrego, R.; Pérez, J.; Romero, P.; Ovalle, P.; Zúñiga-Hernández, J.; Arredondo, M.; Leiva, E. The Role of Propolis in Oxidative Stress and Lipid Metabolism: A Randomized Controlled Trial. Evid. Based Complement. Altern. Med. 2017, 2017, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Selamoglu Talas, Z. Propolis reduces oxidative stress in l-NAME-induced hypertension rats. Cell Biochem. Funct. 2014, 32, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.; Genta, G.; Möller, M.N.; Masner, M.; Thomson, L.; Romero, N.; Radi, R.; Fernandes, D.C.; Laurindo, F.R.M.; Heinzen, H.; et al. Antioxidant Activity of Uruguayan Propolis. In Vitro and Cellular Assays. J. Agric. Food Chem. 2011, 59, 6430–6437. [Google Scholar] [CrossRef] [PubMed]
- Salmas, R.E.; Gulhan, M.F.; Durdagi, S.; Sahna, E.; Abdullah, H.I.; Selamoglu, Z. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach. Cell Biochem. Funct. 2017, 35, 304–314. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, H.; Shi, N.; Wu, F. Potential Protective Effects of the Water-Soluble Chinese Propolis on Hypertension Induced by High-Salt Intake. Clin. Transl. Sci. 2020, 2020, 907–915. [Google Scholar] [CrossRef] [Green Version]
- Mishima, S.; Yoshida, C.; Akino, S.; Sakamoto, T. Antihypertensive Effects of Brazilian Propolis: Identification of Caffeoylquinic Acids as Constituents Involved in the Hypotension in Spontaneously Hypertensive Rats. Biol. Pharm. Bull. 2005, 28, 1909–1914. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Han, M.; Shen, Z.; Huang, H.; Miao, X. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats. Saudi J. Biol. Sci. 2018, 25, 213–219. [Google Scholar] [CrossRef]
- Khalaf, D.A.; Thanoon, I.A.-J. Effects of Bee Propolis on Blood Pressure Record and Certain Biochemical Parameter in Healthy Volunteers. Ann. Coll. Med. Mosul 2018, 40, 20–26. [Google Scholar]
- Maruyama, H.; Sumitou, Y.; Sakamoto, T.; Araki, Y.; Hara, H. Antihypertensive effects of flavonoids isolated from brazilian green propolis in spontaneously hypertensive rats. Biol. Pharm. Bull. 2009, 32, 1244–1250. [Google Scholar] [CrossRef] [Green Version]
- Silva, H.; Lopes, N.M.F. Cardiovascular Effects of Caffeic Acid and Its Derivatives: A Comprehensive Review. Front Physiol. 2020, 11, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Malarvili, T.; Veerappan, R. Effects of chrysin on free radicals and enzymatic antioxidants in Nω-nitro-l-arginine methyl ester: Induced hypertensive rats. Int. J. Nutr. Pharmacol. Neurol. Dis. 2014, 4, 112. [Google Scholar] [CrossRef]
- Veerappan, R.; Malarvili, T. Chrysin Pretreatment Improves Angiotensin System, cGMP Concentration in L-NAME Induced Hypertensive Rats. Indian J. Clin. Biochem. 2019, 34, 288–295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tahergorabi, Z.; Khazaei, M. A Review on Angiogenesis and Its Assays. Iran J. Basic Med. Sci. 2012, 15, 1110–1126. [Google Scholar]
- Potente, M.; Carmeliet, P. The Link between Angiogenesis and Endothelial Metabolism. Annu. Rev. Physiol. 2017, 79, 43–66. [Google Scholar] [CrossRef]
- Carmeliet, P. Angiogenesis in life, disease and medicine. Nature 2005, 438, 932–936. [Google Scholar] [CrossRef]
- Ucuzian, A.A.; Gassman, A.A.; East, A.T.; Greisler, P.J. Molecular mediators of angiogenesis. J. Burn Care Res. 2010, 31, 158–175. [Google Scholar] [CrossRef]
- Camaré, C.; Pucelle, M.; Nègre-Salvayre, A.; Salvayre, R. Angiogenesis in the atherosclerotic plaque. Redox Biol. 2017, 12, 18–34. [Google Scholar] [CrossRef]
- Izuta, H.; Shimazawa, M.; Tsuruma, K.; Araki, Y.; Mishima, S.; Hara, H. Bee products prevent VEGF-induced angiogenesis in human umbilical vein endothelial cells. BMC Complement. Altern. Med. 2009, 9, 45. [Google Scholar] [CrossRef] [Green Version]
- Chikaraishi, Y.; Izuta, H.; Shimazawa, M.; Mishima, S.; Hara, H. Angiostatic effects of Brazilian green propolis and its chemical constituents. Mol. Nutr. Food Res. 2010, 54, 566–575. [Google Scholar] [CrossRef]
- Kunimasa, K.; Ahn, M.R.; Kobayashi, T.; Eguchi, R.; Kumazawa, S.; Fujimori, Y.; Nakano, T.; Nakayama, T.; Kaji, K.; Ohta, T. Brazilian propolis suppresses angiogenesis by inducing apoptosis in tube-forming endothelial cells through inactivation of survival signal ERK1/2. Evid. Based Complement. Altern. Med. 2011, 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meneghelli, C.; Joaquim, L.S.D.; Félix, G.L.Q.; Somensi, A.; Tomazzoli, M.; Da Silva, D.A.; Berti, F.V.; Veleirinho, M.B.R.; Recouvreux, D.D.O.S.; Zeri, A.C.; et al. Southern Brazilian autumnal propolis shows anti-angiogenic activity: An in vitro and in vivo study. Microvasc. Res. 2013, 88, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, A.; Saavedra, N.; Cavalcante, M.F.; Salazar, L.A.; Abdalla, D. Identification of microRNAs involved in the modulation of pro-angiogenic factors in atherosclerosis by a polyphenol-rich extract from propolis. Arch. Biochem. Biophys. 2014, 557, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Cuevas, A.; Saavedra, N.; Rudnicki, M.; Abdalla, D.S.P.; Salazar, L.A. ERK1/2 and HIF1 Are Involved in Antiangiogenic Effect of Polyphenols-Enriched Fraction from Chilean Propolis. Evid. Based Complement. Altern. Med. 2015, 2015. [Google Scholar] [CrossRef] [Green Version]
- Daleprane, J.B.; Schmid, T.; Dehne, N.; Rudnicki, M.; Menrad, H.; Geis, T.; Ikegaki, M.; Ong, T.P.; Brüne, B.; Abdalla, D.S.P. Suppression of Hypoxia-Inducible Factor-1α Contributes to the Antiangiogenic Activity of Red Propolis Polyphenols in Human Endothelial Cells. J. Nutr. 2012, 142, 441–447. [Google Scholar] [CrossRef] [Green Version]
- Park, S.I.; Ohta, T.; Kumazawa, S.; Jun, M.; Ahn, M.R. Korean propolis suppresses angiogenesis through inhibition of tube for-mation and endothelial cell proliferation. Nat. Prod. Commun. 2014, 9, 555–560. [Google Scholar]
- Rajesh, K.G.; Surekha, R.H.; Mrudula, S.K.; Prasad, Y.; Sanjib, K.S.; Prathiba, N. Oxidative and nitrosative stress in association with DNA damage in coronary heart disease. Singap. Med. J. 2011, 52, 283–288. [Google Scholar]
- Sun, L.; Wang, K.; Xu, X.; Ge, M.; Hu, F.-L.; Hu, F.-L. Potential Protective Effects of Bioactive Constituents from Chinese Propolis against Acute Oxidative Stress Induced by Hydrogen Peroxide in Cardiac H9c2 Cells. Evid. Based Complement. Altern. Med. 2017, 2017, 1–10. [Google Scholar] [CrossRef]
- Ince, H.; Kandemir, E.; Bagci, C.; Gulec, M.; Akyol, O. The effect of caffeic acid phenethyl ester on short-term acute myocardial ischemia. Med. Sci. Monit. 2006, 12, BR187–BR193. [Google Scholar]
- Ozer, M.K.; Parlakpinar, H.; Acet, A. Reduction of ischemia–reperfusion induced myocardial infarct size in rats by caffeic acid phenethyl ester (CAPE). Clin. Biochem. 2004, 37, 702–705. [Google Scholar] [CrossRef]
- Dianat, M.; Saadatfard, S.; Badavi, M.; Pour, A.A.; Sadeghi, N. Corrigendum: The effect of caffeic acid phenethyl ester on devel-opment of left ventricular dysfunction in cirrhotic rats. Int. Cardiovasc. Res. J. 2018, 12, 159. [Google Scholar]
- Ahn, M.-R.; Kunimasa, K.; Kumazawa, S.; Nakayama, T.; Kaji, K.; Uto, Y.; Hori, H.; Nagasawa, H.; Ohta, T. Correlation between antiangiogenic activity and antioxidant activity of various components from propolis. Mol. Nutr. Food Res. 2009, 53, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Khaddaj Mallat, R.; Mathew John, C.; Kendrick, D.J.; Braun, A.P. The vascular endothelium: A regulator of arterial tone and in-terface for the immune system. Crit. Rev. Clin. Lab. Sci. 2017, 54, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Deanfield, J.E.; Halcox, J.P.; Rabelink, T.J. Endothelial function and dysfunction: Testing and clinical relevance. Circulation 2007, 115, 1285–1295. [Google Scholar] [CrossRef] [PubMed]
- Mathews, M.T.; Berk, B.C. PARP-1 inhibition prevents oxidative and nitrosative stress-induced endothelial cell death via trans-activation of the VEGF receptor 2. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 711–717. [Google Scholar] [CrossRef] [Green Version]
- Liaudet, L.; Vassalli, G.; Pacher, P. Role of peroxynitrite in the redox regulation of cell signal transduction pathways. Front. Biosci. 2009, 14, 4809–4814. [Google Scholar] [CrossRef] [Green Version]
- Dharmashankar, K.; Widlansky, M.E. Vascular endothelial function and hypertension: Insights and directions. Curr. Hypertens Rep. 2010, 12, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Toda, N.; Nakanishi-Toda, M. How mental stress affects endothelial function. Pflügers Archiv-Eur. J. Physiol. 2011, 462, 779–794. [Google Scholar] [CrossRef]
- Herrera, M.D.; Mingorance, C.; Rodríguez-Rodríguez, R.; Alvarez de Sotomayor, M. Endothelial dysfunction and aging: An up-date. Aging Res. Rev. 2010, 9, 142–152. [Google Scholar] [CrossRef]
- Soultati, A.; Mountzios, G.; Avgerinou, C.; Papaxoinis, G.; Pectasides, D.; Dimopoulos, M.-A.; Papadimitriou, C. Endothelial vascular toxicity from chemotherapeutic agents: Preclinical evidence and clinical implications. Cancer Treat. Rev. 2012, 38, 473–483. [Google Scholar] [CrossRef]
- Widmer, R.J.; Lerman, A. Endothelial dysfunction and cardiovascular diseases. Glob. Cardiol. Sci. Pract. 2014, 3, 291–308. [Google Scholar] [CrossRef] [PubMed]
- Sawamura, T.; Kume, N.; Aoyama, T.; Moriwaki, H.; Hoshikawa, H.; Aiba, Y.; Tanaka, T.; Miwa, S.; Katsura, Y.; Kita, T.; et al. LOX-1 colning and antibody. Nature 1997, 386, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Yuan, W.; Wu, H.; Yin, X.; Xuan, H. Bioactive components and mechanisms of Chinese poplar propolis alleviates oxidized low-density lipoprotein-induced endothelial cells injury. BMC Complement. Altern. Med. 2018, 18, 142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xuan, H.; Yuan, W.; Chang, H.; Liu, M.; Hu, F. Anti-inflammatory effects of Chinese propolis in lipopolysaccharide-stimulated human umbilical vein endothelial cells by suppressing autophagy and MAPK/NF-κB signaling pathway. Inflammopharmacology 2019, 27, 561–571. [Google Scholar] [CrossRef]
- Díaz-flores, M.; Baiza-gutman, L.A. Biochemical Mechanisms of Vascular Complications in Diabetes. In The Diabetes Textbook; Springer: Cham, Switzerland, 2019; pp. 695–707. [Google Scholar]
- El-Awady, M.S.; El-Agamy, D.S.; Suddek, G.M.; Nader, M.A. Propolis protects against high glucose-induced vascular endothelial dysfunction in isolated rat aorta. J. Physiol. Biochem. 2014, 70, 247–254. [Google Scholar] [CrossRef]
- Gould, N.; Doulias, P.-T.; Tenopoulou, M.; Raju, K.; Ischiropoulos, H. Regulation of Protein Function and Signaling by Reversible CysteineS-Nitrosylation. J. Biol. Chem. 2013, 288, 26473–26479. [Google Scholar] [CrossRef] [Green Version]
- Pacher, P.; Schulz, R.; Liaudet, L.; Szabó, C. Nitrosative stress and pharmacological modulation of heart failure. Trends Pharmacol. Sci. 2005, 26, 302–310. [Google Scholar] [CrossRef] [Green Version]
- Schiattarella, G.G.; Altamirano, F.; Tong, D.; French, K.M.; Villalobos, E.; Kim, S.Y.; Luo, X.; Jiang, N.; May, H.I.; Wang, Z.V.; et al. Nitrosative stress drives heart failure with preserved ejection fraction. Nature 2019, 568, 351–356. [Google Scholar] [CrossRef]
- Huang, S.-S.; Liu, S.; Lin, S.-M.; Liao, P.-H.; Lin, R.-H.; Chen, Y.-C.; Chih, C.-L.; Tsai, S.-K. Antiarrhythmic effect of caffeic acid phenethyl ester (CAPE) on myocardial ischemia/reperfusion injury in rats. Clin. Biochem. 2005, 38, 943–947. [Google Scholar] [CrossRef]
- Lungkaphin, A.; Pongchaidecha, A.; Palee, S.; Arjinajarn, P.; Pompimon, W.; Chattipakorn, N. Pinocembrin reduces cardiac arrhythmia and infarct size in rats subjected to acute myocardial ischemia/reperfusion. Appl. Physiol. Nutr. Metab. 2015, 40, 1031–1037. [Google Scholar] [CrossRef] [PubMed]
- Russo, A.; Cardile, V.; Sanchez, F.; Troncoso, N.; Vanella, A.; Garbarino, J.A. Chilean propolis: Antioxidant activity and antiprolif-erative action in human tumor cell lines. Life Sci. 2004, 76, 545–558. [Google Scholar] [CrossRef] [PubMed]
- Korkina, L. Phenylpropanoids as naturally occurring antioxidants: From plant defense to human health. Cell. Mol. Biol. 2007, 53, 15–25. [Google Scholar] [PubMed]
- da Silva Frozza, C.O.; Garcia, C.S.C.; Gambato, G.; de Souza, M.D.O.; Salvador, M.; Moura, S.; Padilha, F.F.; Seixas, F.K.; Collares, T.; Borsuk, S.; et al. Chemical characterization, antioxidant and cytotoxic activities of Brazilian red propolis. Food Chem. Toxicol. 2013, 52, 137–142. [Google Scholar] [CrossRef] [PubMed]
- Jasprica, I.; Mornar, A.; Debeljak, Ž.; Smolčić-Bubalo, A.; Medić-Šarić, M.; Mayer, L.; Romić, Ž.; Bućan, K.; Balog, T.; Sobočanec, S.; et al. In vivo study of propolis supplementation effects on antioxidative status and red blood cells. J. Ethnopharmacol. 2007, 110, 548–554. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Pu, L.; Wei, J.; Li, J.; Wu, J.; Xin, Z.; Gao, W.; Guo, C. Brazilian Green Propolis Improves Antioxidant Function in Patients with Type 2 Diabetes Mellitus. Int. J. Environ. Res. Public Health 2016, 13, 498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mujica, V.; Orrego, R.; Fuentealba, R.; Leiva, E.; Zúñiga-Hernández, J. Propolis as an Adjuvant in the Healing of Human Diabetic Foot Wounds Receiving Care in the Diagnostic and Treatment Centre from the Regional Hospital of Talca. J. Diabetes Res. 2019, 2019, 2507578. [Google Scholar] [CrossRef] [Green Version]
- Isla, M.I.; Moreno, M.I.N.; Sampietro, A.R.; Vattuone, M.A. Antioxidant activity of Argentine propolis extracts. J. Ethnopharmacol. 2001, 76, 165–170. [Google Scholar] [CrossRef]
- Elnager, A.; Hassan, R.; Idris, Z.; Mustafa, Z.; Wan-Arfah, N.; Sulaiman, S.A.; Gan, S.H.; Abdullah, W.Z. Fibrinolytic Activity and Dose-Dependent Effect of Incubating Human Blood Clots in Caffeic Acid Phenethyl Ester: In Vitro Assays. BioMed Res. Int. 2015, 2015, 1–10. [Google Scholar] [CrossRef] [Green Version]
Authors | Geographical Origin | Major Constituents |
---|---|---|
Piccinelli et al. (2013) [9]; Soltani et al. (2017) [10] | Algeria | Diterpenes |
Salas et al. (2016) [11]; Fangio et al. (2019) [12] | Argentina | Sesquiterpenes, flavonoids, phenolic acids |
Huang et al. (2014) [13]; Silva-Carvalho et al. (2015) [4] | Australia | Stilbenes, phenylpropanoids, flavonoid esters |
Trusheva (2006) [14]; Alencar et al. (2007) [15]; Silva et al. (2008) [16]; Righi et al. (2011) [17] | Brazil (red) | Triterpenoids, isoflavonoids, prenylated benzophenones |
Paviani et al. (2013) [18]; Quintino et al. (2020) [19] | Brazil (green) | Triterpenoids, flavonoids, phenolic acids |
da Silveira et al. (2016) [20]; Machado et al. (2016) [21] | Brazil (yellow) | Triterpenoids |
Fernandes et al. (2015) [22]; Lima et al. (2019) [23] | Brazil (brown) | Sesquiterpene, flavonoids, phenolic acids |
Papachroni et al. (2015) [24] | Cameroon | Triterpenoids |
Congo | ||
Montenegro et al. (2001) [25]; Muñoz et al. (2001) [26]; | Chile | Benzophenones, flavonoids, diterpenes |
Silva-Carvalho et al. (2015) [4]; Miguel and Antunes (2011) [27] | China | Flavonoids |
Graikou et al. (2016) [28] | Croatia | Diterpenes |
Bankova (2005) [29] | Cuba | Polyisoprenylated benzophenones |
Graikou et al. (2016) [28] | Cyprus | Diterpenes |
Hegazi et al. (2002) [30] | Egypt | Di- and triterpenes |
Rushdi et al. (2014) [31] | Ethiopia | Triterpenoids |
Velikova et al. (2000) [32]; Bankova et al. (2002) [33]; Melliou and Chinou (2004) [34]; | Italy | Diterpenic and phenolic compounds |
Huang et al. (2014) [13]; Silva-Carvalho et al. (2015) [4] | Iran | Monoterpenes, diterpenes, sesquiterpenes, coumarins |
Banksota et al. (2001) [35]; Huang et al. (2014) [13] | Japan | Prenylated flavanones |
Petrova et al. (2010) [36]; Popova et al. (2011) [37] | Kenya | Triterpenoids |
Huang et al. (2014) [13]; Toreti et al. (2013) [38]; Silva-Carvalho et al. (2015) [4] | Korea | Lignans |
Siheri et al. (2016) [39]; Siheri et al. (2014) [40] | Lybia | Diterpenes |
Popova et al. (2011) [37] | Malta | |
Martinotti (2015) [41] | Mexico | Prenylated benzophenones |
Popova et al. (2015) [42]; El-Guendouz et al. (2016) [8]; Miguel (2013) [43] | Morocco | Diterpenes, flavonoids, phenolic acid esters |
Huang et al. (2014) [13] | Nepal | Sesquiterpenoids, flavonoids and neo-flavonoids |
Huang et al. (2014) [13]; Silva-Carvalho et al. (2015) [4] | Poland | Flavonoids, phenolic acids |
Huang et al. (2014) [13]; Silva-Carvalho et al., (2015) [4]; Miguel (2013) [43] | Portugal | |
Inui et al. (2012) [44] | Solomon | Prenylated flavonoids, stilbenes |
Bankova et al. (2002) [33] | Switzerland | Terpenoids |
Bankova (2005) [29]; Martinotti (2015) [41] | Taiwan | C-prenyl-flavanones |
Miguel (2013) [43] | Tunisia | Flavonoids, phenolic acids |
Popova et al. (2005) [45]; Doganli (2016) [46] | Turkey | Diterpenes, flavonoids, phenolic acids |
Bankova (2005) [29] | Venezuela | Polyisoprenylated benzophenones |
Authors | Variety/Substance | Dose/Concentration and Duration of Treatment | Study Type | Experimental Model | Main Results |
---|---|---|---|---|---|
Xuan et al. (2014) [63] | Ethanolic extracts of Chinese or Brazilian green propolis | 12.5 μg/mL | In vitro | Human umbilical vein endothelial cell culture | Inhibition of phosphatidylcholine-specific phospholipase C reactive oxygen species scavengingSuppression of nuclear factor kappa B pathway |
Tian et al. (2015) [64] | Ethanolic extract of Chinese propolis | 7.5, 15 and 30 mg/L | In vitro | RAW264.7 macrophage culture | Suppression of CD36-mediated oxidized low-density lipoprotein uptake subsequent apoptosis of plaque macrophages |
Saavedra et al. (2016) [65] | Ethanolic extract of Chilean propolis | 1, 2.5, 5.0, 7.5, 10 μg/mL | In vitro | RAW264.7 macrophage culture | Concentration-dependent inhibition of matrix metalloproteinase-9 |
Li et al. (2012) [66] | Ethanolic extract of Chinese propolis | 50, 100 or 200 mg/kg/day for 10 weeks | In vitro | High-fat diet-induced type 2 diabetic mice | Decrease in the hepatic content of cholesterol and triglycerides. Decrease in rate of hepatic synthesis of triglycerides |
Daleprane et al. (2012) [67] | Ethanolic extract of Brazilian green, red and brown propolis | 250 mg/kg per day for 4 weeks | In vivo | Low-density lipoprotein receptor knockout mice receiving a cholesterol-enriched diet to induce atherosclerotic lesions | Reduction of atherosclerotic lesions through modulation of inflammatory and angiogenic factors (highest activity for red propolis) |
Azab et al. (2013) [68] | Aqueous extract of Lybian propolis | 200 mg/kg for 30 days | In vitro | Lead acetate intoxicated male albino mice | Prevention of the increase in serum cholesterol, triglycerides, low-density lipoprotein and very low-density lipoprotein, together with the increase in high-density lipoprotein |
Fang et al. (2013) [69] | Ethanolic extract of Chinese propolis | 160 mg/kg/day for 14 weeks | In vitro | Apoprotein E knockout mice fed a high-fat diet | Inhibition of atherosclerosis through cholesterol modulation, inflammation regulation and inhibition of endothelin and vascular endothelial growth factor secretion |
Oršolić et al. (2019) [70] | Ethanolic extract of Croatian propolis | 50 mg/kg for 30 days | In vitro | High-fat diet-fed mice | Prevention of the increase in serum cholesterol, triglycerides, low-density lipoprotein and very low-density lipoprotein, together with the increase in high-density lipoprotein |
Authors | Variety/Substance | Dose/Concentration and Duration of Treatment | Study Type | Experimental Model | Main Results |
---|---|---|---|---|---|
Ohkura et al. (2012) [79] | Ethanolic extract of Brazilian green propolis | 0.5% (w/w) | In vitro | Human umbilical vein endothelial cell (HUVEC) culture incubated with tumor necrosis factor alpha | Suppression of tumor necrosis factor alpha-mediated secretion of plasminogen activator inhibitor-1 |
Ohkura et al. (2016) [80] | Ethanolic extract of Brazilian green propolis | 0.5% (w/w) in medium fat diet for 2, 4 or 8 weeks | In vitro | Lipopolysaccharide-induced inflammation in Kwl:ICR mice | Attenuation of lipopolysaccharide-mediated secretion of plasminogen activator inhibitor-1 and of its plasma activity after 8 weeks treatment |
Bojic et al. (2018) [81] | Ethanolic extracts from Croatian, Macedonian and Bosnian propolis | Different concentrations until reaching the minimal antiaggregatory concentration | In vitro | Whole human blood | Reduction in adenosine diphosphate-induced aggregant effect, with minimal antiaggregatory concentrations ranging from 5 μM to 10.4 mM |
Ohkura et al. (2012) [79] | Ethanolic extract of Brazilian green propolis | 12.5 mg/kg administered intraperitoneally for 7 days | In vivo | Lipopolysaccharide-induced inflammation in Kwl:ICR mice | Attenuation of lipopolysaccharide-mediated secretion of plasminogen activator inhibitor-1 and of its plasma activity |
Martina et al. (2018) [82] | HDI Origins™ Bee Propolis (Indonesian propolis) | 65 mg/kg/day administered orally for 12 days | In vivo | Healthy Double Distsch Webster mice | Increase in bleeding time |
Authors | Variety/Substance | Dose/Concentration and Duration of Treatment | Study Type | Experimental Model | Results |
---|---|---|---|---|---|
Kubota et al. (2004) [89] | Ethanolic extract of Brazilian propolis | 0.5% (w/w) for 4 weeks | In vitro | Spontaneously hypertensive rats | Potentiation of acetylcholine-dependent aortic vasorelaxation |
Gogebakan et al. (2012) [90] | Ethanolic extract of Turkish propolis | 200 mg/kg orally administered in the last 5 days of the study | In vivo | Wistar rats with hypertension following Nω-nitro-L-arginine methyl ester -administration (15 days) | Tyrosine hydroxylase-mediated decrease in catecholamine synthesis |
Aoi et al. (2013) [91] | Ethanolic extract of Brazilian propolis | 0.1% and 0.5% (w/w) for 8 weeks | In vivo | Otsuka Long-Evans Tokushima Fatty rats | Blood pressure decrease |
Teles et al. (2015) [92] | Ethanolic extract of Brazilian red propolis | 150 mg/kg/day for 60 days | In vivo | 5/6 renal ablation model in Wistar rats | Attenuation of blood pressure increase |
Mujica et al. (2017) [93] | Propyleneglycolic extract of Chilean propolis | 3% (w/w) orally administrated (15 drops, twice daily) for 90 days | In vivo | Hypertensive patients | Blood pressure decrease |
Authors | Variety/Substance | Dose | Study Type | Experimental Model | Main Results |
---|---|---|---|---|---|
Izuta et al. (2009) [110] | Ethanolic extract of Chinese red propolis | 0.3–3.0 μg/mL | In vitro | HUVEC culture | Suppression of vascular endothelial growth factor-induced HUVEC proliferation and migration |
Chikaraishi et al. (2010) [111] | Aqueous extract of Brazilian green propolis | 100 mg/mL | In vitro | Suppression of vascular endothelial growth factor-induced HUVEC proliferation, migration, and tube formation, attributed to caffeoylquinic acids | |
Kunimasa et al. (2011) [112] | Ethanolic extract of Brazilian green propolis | 6.25, 12.5 and 25 μg/mL | In vitro | Concentration-dependent induction of apoptosis in tube-forming HUVECs | |
Meneghelli et al. (2013) [113] | Hydro-alcoholic extract of Brazilian propolis | 100, 130, 150 and 180 μg/mL | In vitro | Significant decrease in cell viability, proliferation, migration and in capillary tube formation | |
450 mg/kg | In vivo | Chick embryo chorioallantoic membrane assay | Inhibition of angiogenesis and vasculogenesis | ||
Cuevas et al. (2014) [114] | Ethanolic extract of Chilean propolis | 250 mg/kg | In vitro | Aortic rings from low-density lipoprotein receptor knockout male mice | Decreased expression of vascular endothelial growth factor A |
Cuevas et al. (2015) [115] | Ethanolic extract of Chilean propolis | 1–15 μg/mL | In vitro | HUVEC culture | Attenuation of migration and sprouting |
15 μg/mL | In vitro | Aortic rings from male Wistar rats | Inhibition of hypoxia-inducible factor 1 alpha accumulation in a concentration-dependent manner | ||
Daleprane et al. (2012) [116] | Polyphenolic extract from red propolis | 10 mg/L | In vitro | EA.hy926 cell culture | Angiogenesis attenuation; inhibition of hypoxia-induced expression of vascular endothelial growth factor; decrease in hypoxia-inducible factor 1 alpha accumulation |
In vitro | Aortic rings from male Wistar rats | Sprouting of endothelial cell tubular structures | |||
Park et al. (2014) [117] | Ethanolic extract of Korean propolis | 6.25, 12.5, or 25 μg/mL | In vitro | HUVEC culture | Inhibition of proliferation of HUVECs and tube formation |
Chikaraishi et al. (2010) [111] | Aqueous extract of Brazilian green propolis | 300 mg/kg/day administered subcutaneously for 5 days | In vivo | Oxygen-induced retinopathy in C57BL/6 mice | Suppression of retinal neovascularization, attributed to caffeoylquinic acids |
Daleprane et al. (2012) [116] | Polyphenolic extract from red propolis | 10 mg/L | In vivo | Chick embryo chorioallantoic membrane assay | Reduced angiogenesis |
Park et al. (2014) [117] | Ethanolic extract of Korean propolis | 6.25, 12.5 or 25 μg/egg | In vivo | Chick embryo chorioallantoic membrane assay | Reduced angiogenesis |
Origin | Endothelial and Myocardial Protective | Anti-Hypertensive | Anti-Atherosclerotic | Anti-Hemostatic | Anti-Angiogenic |
---|---|---|---|---|---|
Argentina | N.F. | N.F. | X [149] | N.F. | N.F. |
Brazil (green propolis) | X [147] | N.F. | N.F. | N.F. | X [111,112] |
Brazil (red propolis) | X [17,145] | X [88,92] | X [67] | N.F. | N.F. |
Chile | X [143] | X [93] | X [65] | N.F. | X [115] |
China | X [69,119] | X [99] | X [67,70,71] | N.F. | N.F. |
China (red propolis) | X [110] | N.F. | X [72] | NF | X [110] |
Indonesia | N.F. | N.F. | N.F. | X [82] | N.F. |
Korea | N.F. | N.F. | N.F. | N.F. | X [117] |
Malaysia | X [55] | N.F. | N.F. | X [150] | N.F. |
Turkey | N.F. | X [88,90] | N.F. | N.F. | N.F. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, H.; Francisco, R.; Saraiva, A.; Francisco, S.; Carrascosa, C.; Raposo, A. The Cardiovascular Therapeutic Potential of Propolis—A Comprehensive Review. Biology 2021, 10, 27. https://doi.org/10.3390/biology10010027
Silva H, Francisco R, Saraiva A, Francisco S, Carrascosa C, Raposo A. The Cardiovascular Therapeutic Potential of Propolis—A Comprehensive Review. Biology. 2021; 10(1):27. https://doi.org/10.3390/biology10010027
Chicago/Turabian StyleSilva, Henrique, Rafaela Francisco, Ariana Saraiva, Simone Francisco, Conrado Carrascosa, and António Raposo. 2021. "The Cardiovascular Therapeutic Potential of Propolis—A Comprehensive Review" Biology 10, no. 1: 27. https://doi.org/10.3390/biology10010027
APA StyleSilva, H., Francisco, R., Saraiva, A., Francisco, S., Carrascosa, C., & Raposo, A. (2021). The Cardiovascular Therapeutic Potential of Propolis—A Comprehensive Review. Biology, 10(1), 27. https://doi.org/10.3390/biology10010027