Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion
Abstract
1. Introduction
2. Materials and Method
2.1. Synthesis of the ZnO-st
2.2. Characterization of ZnO-st
2.3. Adsorption Experiments
2.4. Co-Adsorption Test
2.5. Hybrid Pigments Preparation
2.5.1. Solvent Interaction Tests
2.5.2. Light Exposure Test
2.5.3. Colorimetric Analysis
3. Results and Discussion
3.1. Zinc Oxide Characterization
3.2. Adsorption Study
3.2.1. Statistical Analysis
3.2.2. Co-Adsorption
3.3. Study of the Hybrid Pigments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aigbe, U.O.; Ukhurebor, K.E.; Onyancha, R.B.; Okundaye, B.; Pal, K.; Osibote, O.A.; Esiekpe, E.L.; Kusuma, H.S.; Darmokoesoemo, H. A Facile Review on the Sorption of Heavy Metals and Dyes Using Bionanocomposites. Adsorp. Sci. Technol. 2022, 8030175. [Google Scholar] [CrossRef]
- Tkaczyk, A.; Mitrowska, K.; Posyniak, A. Synthetic Organic Dyes as Contaminants of the Aquatic Environment and Their Implications for Ecosystems: A Review. Sci. Total Environ. 2020, 717, 137222. [Google Scholar] [CrossRef] [PubMed]
- Hosny, N.M.; Gomaa, I.; Elmahgary, M.G. Adsorption of Polluted Dyes from Water by Transition Metal Oxides: A Review. Appl. Surf. Sci. Adv. 2023, 15, 100395. [Google Scholar] [CrossRef]
- Vilaseca, M.; López-Grimau, V.; Gutiérrez-Bouzán, C. Valorization of waste obtained from oil extraction in Moringa oleifera seeds: Coagulation of reactive dyes in textile effluents. Materials 2014, 7, 6569–6584. [Google Scholar] [CrossRef]
- Koul, B.; Yadav, D.; Singh, S.; Kumar, M.; Song, M. Insights into the Domestic Wastewater Treatment (DWWT) Regimes: A Review. Water 2022, 14, 3542. [Google Scholar] [CrossRef]
- Progress on the Proportion of Domestic and Industrial Wastewater Flows Safely Treated: Mid-Term Status of SDG Indicator 6.3.1 and Acceleration Needs, with a Special Focus on Climate Change, Wastewater Reuse and Health. Available online: https://www.unwater.org/sites/default/files/2024-08/SDG6_Indicator_Report_631_Progress-on-Wastewater-Treatment_2024_EN_0.pdf (accessed on 24 April 2025).
- Widyarani; Wulan, D.R.; Hamidah, U.; Komarulzaman, A.; Rosmalina, R.T.; Sintawardani, N. Domestic Wastewater in Indonesia: Generation, Characteristics and Treatment. Environ. Sci. Pollut. Res. 2022, 29, 32397–32414. [Google Scholar] [CrossRef]
- Uddin, F. Environmental Hazard in Textile Dyeing Wastewater from Local Textile Industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, Z.; Xu, Y.; Liu, J.; An, L.; Zhu, B.; Tang, W.; Yang, Q.; Yu, X.; Wang, H.B. Potential Environmental Contaminants: Exploring Hydrolyzed Dyes in Household Washing Sources and Electrochemical Degradation. Bull. Environ. Contam. Toxicol. 2023, 111, 58. [Google Scholar] [CrossRef]
- Dutta, S.; Gupta, B.; Srivastava, S.K.; Gupta, A.K. Recent Advances on the Removal of Dyes from Wastewater Using Various Adsorbents: A Critical Review. Mater. Adv. 2021, 2, 4497–4531. [Google Scholar] [CrossRef]
- Dhiman, V.; Kondal, N. ZnO Nanoadsorbents: A Potent Material for Removal of Heavy Metal Ions from Wastewater. Colloid Interfac. Sci. 2021, 41, 100380. [Google Scholar] [CrossRef]
- Al-Arjan, W.S. Zinc Oxide Nanoparticles and Their Application in Adsorption of Toxic Dye from Aqueous Solution. Polymers 2022, 14, 3086. [Google Scholar] [CrossRef]
- Noreen, S.; Zafar, S.; Bibi, I.; Amami, M.; Raza, M.A.S.; Alshammari, F.H.; Elqahtani, Z.M.; Basha, B.I.; Alwadai, N.; Nazir, A.; et al. Nanocomposite and Their Comparative Photocatalytic and Adsorptive Removal for Turquoise Blue Dye. Ceram. Int. 2022, 48, 12170–12183. [Google Scholar] [CrossRef]
- Raza, A.; Shoeb, M.; Mashkoor, F.; Rahaman, S.; Mobin, M.; Jeong, C.; Yusuf Ansari, M.; Ahmad, A. Phoenix Dactylifera Mediated Green Synthesis of Mn Doped ZnO Nanoparticles and Its Adsorption Performance for Methyl Orange Dye Removal: A Comparative Study. Mater. Chem. Phys. 2022, 286, 126173. [Google Scholar] [CrossRef]
- Raval, N.P.; Priyadarshi, G.V.; Mukherjee, S.; Zala, H.; Fatma, D.; Bonilla-Petriciolet, A.; Abdelmottaleb, B.L.; Duclaux, L.; Trivedi, M.H. Statistical Physics Modeling and Evaluation of Adsorption Properties of Chitosan-Zinc Oxide Nanocomposites for the Removal of an Anionic Dye. J. Environ. Chem. Eng. 2022, 10, 108873. [Google Scholar] [CrossRef]
- Khezami, L.; Aissa, M.A.B.; Modwi, A.; Guesmi, A.; Algethami, F.K.; Bououdina, M. Efficient Removal of Organic Dyes by Cr-Doped ZnO Nanoparticles. Biomass Conv. Bioref. 2024, 14, 4177–4190. [Google Scholar] [CrossRef]
- Sayed, N.S.M.; Ahmed, A.S.A.; Abdallah, M.H.; Gouda, G.A. ZnO@ Activated Carbon Derived from Wood Sawdust as Adsorbent for Removal of Methyl Red and Methyl Orange from Aqueous Solutions. Sci. Rep. 2024, 14, 5384. [Google Scholar] [CrossRef]
- Primo, J.D.O.; Fleck, R.W.; Horsth, D.F.L.; Santos, A.D.; Dlugoviet, T.L.; Anaissi, F.J. Pink Hybrid Pigments Resulting from the Adsorption of Congo Red Dye by Zinc Oxide. Colorants 2024, 3, 298–310. [Google Scholar] [CrossRef]
- Silva, G.T.M.; Silva, K.M.; Silva, C.P.; Gonçalves, J.M.; Quina, F.H. Hybrid Pigments from Anthocyanin Analogues and Synthetic Clay Minerals. ACS Omega 2020, 5, 26592–26600. [Google Scholar] [CrossRef]
- Szadkowski, B.; Marzec, A.; Rogowski, J.; Maniukiewicz, W.; Zaborski, M. Insight into the Formation Mechanism of Azo Dye-Based Hybrid Colorant: Physico-Chemical Properties and Potential Applications. Dye. Pigm. 2019, 167, 236–244. [Google Scholar] [CrossRef]
- Primo, J.D.O. Síntese de Pigmentos de Óxidos de Zinco por Combustão de Polissacarídeos (Amido e Aloe vera) e Suas Propriedades Antipatogênicas. Ph.D. Thesis, UNICENTRO/UEL/UEPG, Guarapuava, Brazil, 2023. [Google Scholar]
- Primo, J.D.O.; Bittencourt, C.; Acosta, S.; Sierra-Castillo, A.; Colomer, J.-F.; Jaerger, S.; Teixeira, V.C.; Anaissi, F.J. Synthesis of Zinc Oxide Nanoparticles by Ecofriendly Routes: Adsorbent for Copper Removal From Wastewater. Front. Chem. 2020, 8, 571790. [Google Scholar] [CrossRef]
- Pernyeszi, T.; Farkas, R.; Kovács, J. Methylene Blue Adsorption Study on Microcline Particles in the Function of Particle Size Range and Temperature. Minerals 2019, 9, 555. [Google Scholar] [CrossRef]
- Rápó, E.; Tonk, S. Factors Affecting Synthetic Dye Adsorption; Desorption Studies: A Review of Results from the Last Five Years (2017–2021). Molecules 2021, 26, 5419. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.M.; Hong, G.B.; Wang, Y.K. Performance Evaluation and Optimization of Dyes Removal Using Rice Bran-Based Magnetic Composite Adsorbent. Materials 2020, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Hummadi, K.K.; Zhu, L.; He, S. Bio-Adsorption of Heavy Metals from Aqueous Solution Using the ZnO-Modified Date Pits. Sci. Rep. 2023, 13, 22779. [Google Scholar] [CrossRef]
- Gu, M.; Hao, L.; Wang, Y.; Li, X.; Chen, Y.; Li, W.; Jiang, L. The Selective Heavy Metal Ions Adsorption of Zinc Oxide Nanoparticles from Dental Wastewater. Chem. Phys. 2020, 534, 110750. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Szynkowska, M.I.; Zaborski, M. Characteristics of Hybrid Pigments Made from Alizarin Dye on a Mixed Oxide Host. Materials 2019, 12, 360. [Google Scholar] [CrossRef]
- Primo, J.O.; Trentini, J.D.; Peron, D.C.; Jaerger, S.; Anaissi, F.J. Porous Zincite Prepared by the Calcination of Colloidal Starch Applied in the Removal of Dyes and Its Use as a Hybrid Pigment. Part. Sci. Technol. 2022, 40, 131–140. [Google Scholar] [CrossRef]
- Zhuang, G.; Jaber, M.; Rodrigues, F.; Rigaud, B.; Walter, P.; Zhang, Z. A New Durable Pigment with Hydrophobic Surface Based on Natural Nanotubes and Indigo: Interactions and Stability. J. Colloid Interface Sci. 2019, 552, 204–217. [Google Scholar] [CrossRef]
- ColorMine.org. Available online: https://colormine.org/ (accessed on 16 January 2025).
- González-Fernández, J.V.; Pinzon-Moreno, D.D.; Neciosup, A.A.; Carranza-Oropeza, M.V. Green Method, Optical and Structural Characterization of ZnO Nanoparticles Synthesized Using Leaves Extract of M. oleifera. J. Renew. Mater. 2022, 10, 833–847. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.; Olivier, J.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Benjelloun, M.; Miyah, Y.; Akdemir Evrendilek, G.; Zerrouq, F.; Lairini, S. Recent Advances in Adsorption Kinetic Models: Their Application to Dye Types. Arab. J. Chem. 2021, 14, 103031. [Google Scholar] [CrossRef]
- Wong, S.; Ghafar, N.A.; Ngadi, N.; Razmi, F.A.; Inuwa, I.M.; Mat, R.; Amin, N.A.S. Effective Removal of Anionic Textile Dyes Using Adsorbent Synthesized from Coffee Waste. Sci. Rep. 2020, 10, 2928. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.; Yao, S.; Wang, Z.; Qi, F.; Liu, X. Preparation of Nitrogen-Doped Hierarchical Porous Carbon Aerogels from Agricultural Wastes for Efficient Pollution Adsorption. Sep. Purif. Technol. 2023, 311, 123250. [Google Scholar] [CrossRef]
- Jaerger, S.; Dos Santos, A.; Fernandes, A.N.; Almeida, C.A.P. Removal of P-Nitrophenol from Aqueous Solution Using Brazilian Peat: Kinetic and Thermodynamic Studies. Water Air Soil Pollut. 2015, 226, 236. [Google Scholar] [CrossRef]
- Salmi, M.A.; Alshammari, A. Theoretical Study on Copper Adsorption on ZnO Surfaces. RSC 2024, 8. [Google Scholar] [CrossRef]
- Luo, M.R. CIELAB. In Encyclopedia of Color Science and Technology; Shamey, R., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 251–257. [Google Scholar] [CrossRef]
- Phuangsaijai, N.; Jakmunee, J.; Kittiwachana, S. Investigation into the Predictive Performance of Colorimetric Sensor Strips Using RGB, CMYK, HSV, and CIELAB Coupled with Various Data Preprocessing Methods: A Case Study on an Analysis of Water Quality Parameters. J. Anal. Sci. Technol. 2021, 12, 19. [Google Scholar] [CrossRef]
- Carballo-Reyes, L.; Corro-Vázquez, M.A.; Hernández-Martínez, I.; López-Hernández, V.; Melchor-Hernández, V. Análisis colorimétricos de galletas utilizando el Sistema Internacional CIELAB. REMCID 2023, 31, 27–31. [Google Scholar]
- Shange, S.F.; Mdluli, P.S.; Deenadayalu, N. A Review of the Application of CIELAB Colour Systems for the Development of Gold and Silver Nano-Enabled Colorimetric Assays for the Detection of Chromium. Results Chem. 2025, 13, 102048. [Google Scholar] [CrossRef]
- Diebold, M.P. Optimizing the Benefits of TiO2 in Paints. J. Coat. Technol. Res. 2020, 17, 1–17. [Google Scholar] [CrossRef]
- Souza, M.; Corio, P. Investigação do solvatocromismo e ionocromismo do corante azul do nilo através das espectroscopias Raman, Infravermelho e UV-Vis. Quím. Nova 2019, 42, 1091–1097. [Google Scholar] [CrossRef]
- Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Beyou, E.; Marzec, A. New Natural Organic–Inorganic pH Indicators: Synthesis and Characterization of pro-Ecological Hybrid Pigments Based on Anthraquinone Dyes and Mineral Supports. JIEC 2022, 105, 446–462. [Google Scholar] [CrossRef]
- Szadkowski, B.; Maniukiewicz, W.; Rybiński, P.; Beyou, E.; Marzec, A. Bio-Friendly Stable Organic-Inorganic Hybrid Pigments Based on Carminic Acid and Porous Minerals: Acid/Base Allochroic Behavior and UV-Stabilizing Effects on Ethylene-Norbornene Copolymer Matrix. J. Environ. Chem. Eng. 2022, 10, 108268. [Google Scholar] [CrossRef]
- Lima, L.C.B.; Silva, F.C.; Silva-Filho, E.C.; Fonseca, M.G.; Zhuang, G.; Jaber, M. Saponite-Anthocyanin Derivatives: The Role of Organoclays in Pigment Photostability. Appl. Clay Sci. 2020, 191, 105604. [Google Scholar] [CrossRef]
Pseudo-First Order | Pseudo-Second Order | ||||||
---|---|---|---|---|---|---|---|
Sample | qexp (mg g−1) | k1 (h−1) | qcal (mg g−1) | R2 | k2 (g.mg−1 h−1) | qcal (mg g−1) | R2 |
Orange dye | 91.23 | 42.13 | 1.66 | 0.8394 | 1.78 × 10−5 | 91.32 | 0.9999 |
Green dye | 78.12 | 2.63 | 11.12 | 0.9622 | 0.23 | 84.74 | 0.9997 |
Sample | Medium | L* | a* | b* | C* | ΔE | Photo |
---|---|---|---|---|---|---|---|
Orange-100 | Hy-Pi | 81.98 | 12.10 | 13.98 | 18.49 | 14.80 | |
Hy-Pi in white paint | 91.65 | 4.09 | 6.14 | 7.38 | |||
Orange-200 | Hy-Pi | 84.83 | 14.68 | 16.73 | 22.26 | 14.10 | |
Hy-Pi in white paint | 90.75 | 5.42 | 7.83 | 9.52 | |||
Orange-400 | Hy-Pi | 74.32 | 21.29 | 27.89 | 35.09 | 23.50 | |
Hy-Pi in white paint | 86.25 | 9.63 | 11.34 | 14.88 | |||
Orange-500 | Hy-Pi | 73.45 | 23.89 | 29.75 | 38.15 | 24.55 | |
Hy-Pi in white paint | 85.89 | 11.13 | 12.86 | 17.01 |
Sample | Medium | L* | a* | b* | C* | ΔE | Photo |
---|---|---|---|---|---|---|---|
Green-100 | Hy-Pi | 83.11 | −0.50 | 5.29 | 5.31 | 10.31 | |
Hy-Pi in white paint | 93.17 | −064 | 3.01 | 3.08 | |||
Green-200 | Hy-Pi | 77.49 | −2.88 | 3.92 | 4.87 | 12.62 | |
Hy-Pi in white paint | 89.97 | −1.60 | 2.56 | 3.02 | |||
Green-400 | Hy-Pig | 75.12 | −4.66 | 1.47 | 4.89 | 14.07 | |
HyPi in white paint | 89.15 | −3.57 | 1.33 | 3.81 | |||
Green-500 | Hy-Pi | 65.78 | −7.90 | −3.57 | 8.67 | 20.94 | |
Hy-Pi in white paint | 86.0 | −4.64 | 0.79 | 4.70 |
Sample | Solvent | Medium | Abs. (nm) |
---|---|---|---|
Orange Dye | Water | Commercial Dye | 0.017 |
Hy-Pi | 0.002 | ||
Ethanol | Commercial Dye | 0.652 | |
Hy-Pi | 0.002 | ||
Acetone | Commercial Dye | 0.045 | |
Hy-Pi | 0.005 | ||
Green Dye | Water | Commercial Dye | 0.009 |
Hy-Pi | 0 | ||
Ethanol | Commercial Dye | 1.435 | |
Hy-Pi | 0 | ||
Acetone | Commercial Dye | 0.455 | |
Hy-Pi | 0.002 |
Sample | Quite | L* | a* | b* | C* | ΔE |
---|---|---|---|---|---|---|
Orange-100 | White paint | 91.65 | 4.09 | 6.14 | 7.38 | 11.82 |
Light exposition | 79.86 | 3.31 | 6.39 | 7.20 | ||
Orange-200 | White paint | 90.75 | 5.42 | 7.83 | 9.52 | 12.16 |
Light exposition | 78.66 | 4.71 | 8.88 | 10.5 | ||
Orange-400 | White paint | 86.25 | 9.63 | 11.34 | 14.88 | 10.69 |
Light exposition | 75.61 | 8.63 | 11.72 | 14.55 | ||
Orange-500 | White paint | 85.89 | 11.13 | 12.86 | 17.01 | 10.42 |
Light exposition | 75.56 | 9.80 | 12.90 | 16.20 |
Sample | Medium | L* | a* | b* | C* | ΔE |
---|---|---|---|---|---|---|
Green-100 | White paint | 93,17 | −0.64 | 3.01 | 3.08 | 12.88 |
Light exposition | 80.30 | −1.13 | 3.44 | 3.62 | ||
Green-200 | White paint | 89.97 | −1.60 | 2.56 | 3.02 | 10.94 |
Light exposition | 79.05 | −2.22 | 2.93 | 3.67 | ||
Green-400 | White paint | 89.15 | −3.57 | 1.33 | 3.81 | 12.91 |
Light exposition | 76.26 | −4.24 | 1.56. | 4.52 | ||
Green-500 | White paint | 86.0 | −4.64 | 0.79 | 4.70 | 10.74 |
Light exposition | 75.31 | −5.67 | 0.87 | 5.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dlugoviet, T.L.; dos Santos, A.; Primo, J.d.O.; Anaissi, F.J. Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion. Colorants 2025, 4, 23. https://doi.org/10.3390/colorants4030023
Dlugoviet TL, dos Santos A, Primo JdO, Anaissi FJ. Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion. Colorants. 2025; 4(3):23. https://doi.org/10.3390/colorants4030023
Chicago/Turabian StyleDlugoviet, Taiane L., Andressa dos Santos, Julia de Oliveira Primo, and Fauze Jacó Anaissi. 2025. "Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion" Colorants 4, no. 3: 23. https://doi.org/10.3390/colorants4030023
APA StyleDlugoviet, T. L., dos Santos, A., Primo, J. d. O., & Anaissi, F. J. (2025). Obtention of ZnO-Based Hybrid Pigments: Exploring Textile Dye Adsorption and Co-Adsorption with Copper Ion. Colorants, 4(3), 23. https://doi.org/10.3390/colorants4030023