Highly Stable Hybrid Pigments Prepared from Organic Chromophores and Fluorinated Hydrotalcites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Formulation of the Pigmented Cream
3. Results
3.1. Pigments
3.1.1. Effect of Fluorination in Colored LDH
3.1.2. Loading Chromophores during Sol–gel Synthesis versus Memory Effect
3.1.3. Aging of Pigments
3.2. Pigmented Cream
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, Y.; Wu, Y.; Yang, J.; Zhu, X.; Sun, F.; Li, L.; Shen, Z.; Pang, Y.; Wu, Q.; Chen, H. Gentle fabrication of colorful superhydrophobic bamboo based on metal-organic framework. J. Colloid Interface Sci. 2021, 593, 41–50. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Shao, L.-M.; He, P.-J. Preparation of a metal-phosphate/chromium oxide nanocomposite from Cr(III) containing electroplating sludge and its optical properties as a nanopigment. Process Saf. Environ. Prot. 2015, 98, 261–267. [Google Scholar] [CrossRef]
- Kong, M.; Meng, F.; Zhang, S.; Tang, B. Self-supporting structural color films with excellent stability and flexibility through hot-press assisted assembly. Dye. Pigment. 2021, 195, 109742. [Google Scholar] [CrossRef]
- Lan, Y.-F.; Lin, J.-J. Clay-assisted dispersion of organic pigments in water. Dye. Pigment. 2011, 90, 21–27. [Google Scholar] [CrossRef]
- Lambourne, R. Paint and Surface Coatings: Theory and Practice; Ellis Horwood: Chichester, UK, 1987; pp. 58–61. [Google Scholar]
- Lee, P.T.C.; Chiu, C.-W.; Chang, L.-Y.; Chou, P.-Y.; Lee, T.-M.; Chang, T.-Y.; Wu, M.-T.; Cheng, W.-Y.; Kuo, S.-W.; Lin, J.-J. Tailoring Pigment Dispersants with Polyisobutylene Twin-Tail Structures for Electrowetting Display Application. ACS Appl. Mater. Interfaces 2014, 6, 14345–14352. [Google Scholar] [CrossRef]
- Sivamani, R.K.; Jagdeo, J.R.; Elsner, P.; Maibach, H.I. Cosmeceuticals and Active Cosmetics, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2015; p. 472. ISBN 9781482214161. [Google Scholar]
- Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1185–1189. [Google Scholar] [CrossRef]
- Jeon, N.J.; Noh, J.H.; Kim, Y.C.; Yang, W.S.; Ryu, S.; Seok, S.I. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903. [Google Scholar] [CrossRef] [PubMed]
- Sanchez, C.; Julián, B.; Belleville, P.; Popall, M. Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 2005, 15, 3559–3592. [Google Scholar] [CrossRef]
- Koczorowski, T.; Cerbin-Koczorowska, M.; Rębiś, T. Azaporphyrins embedded on carbon-based nanomaterials for potential use in electrochemical sensing—A review. Nanomaterials 2021, 11, 2861. [Google Scholar] [CrossRef]
- Pérez, E.; Ibarra, I.A.; Guzmán, A.; Lima, E. Hybrid pigments resulting from several guest dyes onto γ-alumina host: A spectroscopic analysis. Spectrochim. Acta—Part A Mol. Biomol. Spectr. 2017, 172, 174–181. [Google Scholar] [CrossRef]
- Cavalcanti, G.R.S.; Rodrigues, F.; Zhuang, G.; Balme, S.; Janot, J.-M.; Fonseca, M.G.; Jaber, M. Inorganic-organic hybrid pigments based on carminic acid and clay minerals. Dye. Pigment. 2021, 190, 109306. [Google Scholar] [CrossRef]
- Lima, E.; Guzmán, A.; Vera, M.; Rivera, J.L.; Fraissard, J. Aged natural and synthetic Maya Blue-like pigments: What difference does it make? J. Phys. Chem. C 2012, 116, 4556–4563. [Google Scholar] [CrossRef]
- Laguna, H.; Loera, S.; Ibarra, I.A.; Lima, E.; Vera, M.A.; Lara, V. Azoic dyes hosted on hydrotalcite-like compounds: Non-toxic hybrid pigments. Micr. Mes. Mater. 2007, 98, 234–2415. [Google Scholar] [CrossRef]
- Tang, P.; Xu, X.; Lin, Y.; Li, D. Enhancement of the thermo- and photostability of an anionic dye by intercalation in a zinc-aluminum layered double hydroxide host. Ind. Eng. Chem. Res. 2008, 47, 2478–2483. [Google Scholar] [CrossRef]
- Marangoni, R.; Ramos, L.P.; Wypych, F. New multifunctional materials obtained by the intercalation of anionic dyes into layered zinc hydroxide nitrate followed by dispersion into poly(vinyl alcohol) (PVA). J. Col. Interface Sc. 2009, 330, 303–309. [Google Scholar] [CrossRef]
- Mandal, S.; Tichit, D.; Lerner, D.A.; Marcotte, N. Azoic dye hosted in layered double hydroxide: Physicochemical characterization of the intercalated materials. Langmuir 2009, 25, 10980–10986. [Google Scholar] [CrossRef]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Rybiński, P.; Prochoń, M. New organic/inorganic pigments based on azo dye and aluminum-magnesium hydroxycarbonates with various Mg/Al ratios. Materials 2019, 12, 1349. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Wei, C.; Jiang, P.; Huang, W.; Zhuang, D. Azo chromophore monomerically bonded mesostructured silica films with large third-order nonlinearity but negligible nonlinear absorption. J. Phys. Chem. C 2008, 112, 13754–13762. [Google Scholar] [CrossRef]
- Lima, E.; Martínez-Ortiz, M.J.; Gutiérrez Reyes, R.I.; Vera, M. Fluorinated Hydrotalcites: The Addition of Highly Electronegative Species in Layered Double Hydroxides To Tune Basicity. Inorg. Chem. 2012, 51, 7774–7781. [Google Scholar] [CrossRef] [PubMed]
- Park, C.I.; Cho, W.-G.; Lee, S.J. Emulsion stability of cosmetic creams based on water-in-oil high internal phase emulsions. Korea-Australia Rheol. J. 2003, 15, 125–130. [Google Scholar]
- Liu, Y.; Lee, W.J.; Tan, C.P.; Lai, O.M.; Wang, Y.; Qiu, C. W/O high internal phase emulsion featuring by interfacial crystallization of diacylglycerol and different internal compositions. Food Chem. 2022, 372, 131305. [Google Scholar] [CrossRef]
- Alexandersson, E.; Nestor, G. Complete 1H and 13C NMR spectral assignment of d-glucofuranose. Carbohydr. Res. 2022, 511, 108477. [Google Scholar] [CrossRef] [PubMed]
- Coster, D.; Fripiat, J.J. Memory Effects in Gel-Solid Transformations: Coordinately Unsaturated Al Sites in Nanosized Aluminas. Chem. Mater. 1993, 5, 1204–1210. [Google Scholar] [CrossRef]
- Scholz, G.; Stosiek, C.; Noack, J.; Kemnitz, E. Local fluorine environments in nanoscopic magnesium hydr(oxide) fluorides studied by 19F MAS NMR. J. Fluor. Chem. 2011, 132, 1079–1085. [Google Scholar] [CrossRef]
- Lima, E.; Pfeiffer, H.; Flores, J. Some consequences of the fluorination of brucite-like layers in layered double hydroxides: Adsorption. Appl. Clay Sc. 2014, 88–89, 26–32. [Google Scholar] [CrossRef]
- Brainard, D.H.; Stockman, A. Colorimetry. In The OSA Handbook of Optics, 3rd ed.; McGraw-Hill: New York, NY, USA, 2010. [Google Scholar]
- Valente, J.S.; López-Salinas, E.; Bokhimi, X.; Flores, J.; Maubert, A.M.; Lima, E. Sulfated Nanocapsular Aluminas: Controlling their Brönsted and Lewis Acidity. J. Phys. Chem. C 2009, 113, 16476–16484. [Google Scholar] [CrossRef]
- Valente, J.S.; Falcón, S.; Lima, E.; Vera, M.A.; Bosch, P.; López-Salinas, E. Phosphating alumina: A way to tailor its surface properties. Micr. Mes. Mater. 2006, 94, 277–282. [Google Scholar] [CrossRef]
Code Sample | Chromophore | Add of Chromophore | Add of Mg(OH)2 |
---|---|---|---|
LDH-CA | Carminic acid | During sol–gel synthesis | Non |
LDH-HNB | Hydroxynaphthol blue | During sol–gel synthesis | Non |
FLDH-CA | Carminic acid | During sol–gel synthesis | Non |
FLDH-HNB | Hydroxynaphthol blue | During sol–gel synthesis | Non |
FLDH-CA + MgO | Carminic acid | During sol–gel synthesis | Yes |
FLDH-HNB + MgO | Hydroxynaphthol blue | During sol–gel synthesis | Yes |
ME-FLDH-CA | Carminic acid | Memory effect | Non |
ME-FLDH-HNB | Hydroxynaphthol blue | Memory effect | Non |
ME-FLDH-CA + MgO | Carminic acid | Memory effect | Yes |
ME-FLDH-HNB + MgO | Hydroxynaphthol blue | Memory effect | Yes |
Sample | L | a | b | ∆Eab* | |||
---|---|---|---|---|---|---|---|
Fresh | Aged | Fresh | Aged | Fresh | Aged | ||
LDH-CA | 20 | 24.3 | 47 | 61.3 | 8 | 15.1 | 16.53 |
FLDH-CA | 19.9 | 21.2 | 21 | 20 | 8.3 | 9.8 | 2.34 |
FLDH-CA + MgO | 21.5 | 23.6 | 40.8 | 51 | 7.1 | 13.2 | 12.06 |
LDH-HNB | 19.3 | 22.2 | 20.5 | 27.5 | 8.5 | 10 | 7.72 |
FLDH-HNB | 19.2 | 22 | 20.4 | 23.5 | 8.3 | 8.9 | 4.22 |
FLDH-HNB + MgO | 24.2 | 23.4 | 36.8 | 34 | 14.4 | 14 | 2.93 |
ME-FLDH-CA | 20.7 | 27.6 | 51.3 | 62.4 | 5.8 | 15.2 | 16.17 |
ME-FLDH-CA + MgO | 23.2 | 29.2 | 34 | 48 | 9.9 | 6.6 | 15.58 |
ME-FLDH-HNB | 22.3 | 25 | 28.3 | 35 | 6.7 | 11.1 | 8.45 |
ME-FLDH-HNB + MgO | 22.3 | 26 | 29.9 | 33.8 | 8.9 | 11.8 | 6.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández, M.; Felipe, C.; Guzmán-Vargas, A.; Rivera, J.L.; Lima, E. Highly Stable Hybrid Pigments Prepared from Organic Chromophores and Fluorinated Hydrotalcites. Colorants 2024, 3, 125-135. https://doi.org/10.3390/colorants3020009
Hernández M, Felipe C, Guzmán-Vargas A, Rivera JL, Lima E. Highly Stable Hybrid Pigments Prepared from Organic Chromophores and Fluorinated Hydrotalcites. Colorants. 2024; 3(2):125-135. https://doi.org/10.3390/colorants3020009
Chicago/Turabian StyleHernández, Magali, Carlos Felipe, Ariel Guzmán-Vargas, José Luis Rivera, and Enrique Lima. 2024. "Highly Stable Hybrid Pigments Prepared from Organic Chromophores and Fluorinated Hydrotalcites" Colorants 3, no. 2: 125-135. https://doi.org/10.3390/colorants3020009
APA StyleHernández, M., Felipe, C., Guzmán-Vargas, A., Rivera, J. L., & Lima, E. (2024). Highly Stable Hybrid Pigments Prepared from Organic Chromophores and Fluorinated Hydrotalcites. Colorants, 3(2), 125-135. https://doi.org/10.3390/colorants3020009