Photonics of Halogenated Zinc(II) and Cadmium(II) Dipyrromethene Complexes
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Spectral–Luminescent Characteristics at Room Temperature
3.2. Phosphorescence Properties in Frozen Solutions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhuang, Y.; Ren, X.; Che, X.; Liu, S.; Huang, W.; Zhao, Q. Organic photoresponsive materials for information storage: A review. Adv. Photonics 2021, 3, 014001. [Google Scholar] [CrossRef]
- Ha, J.M.; Hur, S.H.; Pathak, A.; Jeong, J.; Woo, H.Y. Recent advances in organic luminescent materials with narrowband emission. NPG Asia Mater. 2021, 53, 1–36. [Google Scholar] [CrossRef]
- Radunz, S.; Kraus, W.; Bischoff, F.A.; Emmerling, F.; Tschiche, H.R.; Resch-Genger, U. Temperature-and structural-dependent optical properties and photophysics of BODIPY dyes. J. Chem. A 2020, 124, 1787–1797. [Google Scholar] [CrossRef]
- Li, W.; Gong, Q.; Guo, X.; Wu, Q.; Chang, F.; Wang, H.; Zhang, F.; Hao, E.; Jiao, L. Synthesis, reactivity, and properties of a class of π-extended BODIPY derivatives. J. Org. Chem. 2021, 86, 17110–17118. [Google Scholar] [CrossRef] [PubMed]
- Ziessel, R.; Ulrich, G.; Harriman, A. The chemistry of Bodipy: A new El Dorado for fluorescence tools. New J. Chem. 2007, 31, 496–501. [Google Scholar] [CrossRef]
- Bañuelos, J. BODIPY dye, the most versatile fluorophore ever? Chem. Record. 2016, 16, 335–348. [Google Scholar] [CrossRef]
- Pérez-Ojeda, M.E.; Thivierge, C.; Martín, V.; Costela, A.; Burgess, K.; García-Moreno, I. Highly efficient and photostable photonic materials from diiodinated BODIPY laser dyes. Opt. Mater. Express 2011, 1, 243–251. [Google Scholar] [CrossRef]
- Duran-Sampedro, G.; Agarrabeitia, A.R.; Garcia-Moreno, I.; Costela, A.; Bañuelos, J.; Arbeloa, T.; López Arbeloa, I.; Chiara, J.L.; Ortiz, M.J. Chlorinated BODIPYs: Surprisingly efficient and highly photostable laser dyes. Eur. J. Org. Chem. 2012, 32, 6335–6350. [Google Scholar] [CrossRef]
- Esnal, I.; Valois-Escamilla, I.; Gomez-Duran, C.F.A.; Urias-Benavides, A.; Betancourt-Mendiola, M.L.; Lopez-Arbeloa, I.; Banuelos, J.; Garcia-Moreno, I.; Costela, A.; Pena-Cabrera, E. Blue-to-orange color-tunable laser emission from tailored borondipyrromethene dyes. ChemPhysChem 2013, 14, 4134–4142. [Google Scholar] [CrossRef]
- Sevinç, G.; Özgür, M.; Küçüköz, B.; Karatay, A.; Aslan, H.; Yılmaz, H. Synthesis and spectroscopic properties of a novel “turn off” fluorescent probe: Thienyl-pyridine substituted BODIPY. J. Lumin. 2019, 211, 334–340. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, J.; Sun, Y.; Liu, M.; Guo, W. Carbon-dipyrromethenes: Bright cationic fluorescent dyes and potential application in revealing cellular trafficking of mitochondrial glutathione conjugates. J. Am. Chem. Soc. 2020, 142, 17069–17078. [Google Scholar] [CrossRef] [PubMed]
- Antina, E.V.; Berezin, M.B.; V’yugin, A.I.; Guseva, G.B.; Bumagina, N.A.; Antina, L.A.; Ksenofontov, A.A.; Nuraneeva, E.N.; Kalyagin, A.A.; Bocharov, P.S.; et al. Chemistry and Practical Application of Dipyrromethene Ligands, Salts, and Coordination Compounds as Optical Sensors for Analytes of Various Nature (A Review). Russ. J. Inorg. Chem. 2022, 67, 321–337. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Wu, J.; Qin, Y.; Jiang, D. Rational design of piperidine functionalized boron–dipyrromethene as fluorescent chromoionophore for ion-selective optodes. Sens. Actuators B: Chem. 2016, 232, 37–42. [Google Scholar] [CrossRef]
- Xia, H.C.; Xu, X.H.; Song, Q.H. BODIPY-based fluorescent sensor for the recognization of phosgene in solutions and in gas phase. Anal. Chem. 2017, 89, 4192–4197. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.J.; Liu, J.Y.; Lo, P.C.; Ng, D.K.P. Selective detection of Hg 2+ ions with boron dipyrromethene-based fluorescent probes appended with a bis(1,2,3-triazole)amino receptor. Chem. Asian J. 2019, 14, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Cheng, W.; Ji, C.; Zhang, J.; Yin, M. Detection of metal ions in biological systems: A review. Rev. Anal. Chem. 2020, 39, 231–246. [Google Scholar] [CrossRef]
- Tang, F.K.; Zhu, J.; Kong, F.K.W.; Ng, M.; Bian, Q.; Yam, V.W.W.; Tse, A.K.W.; Tse, Y.C.; Leung, K.C.F. A BODIPY-based fluorescent sensor for the detection of Pt2+ and Pt drugs. Chem. Commun. 2020, 56, 2695–2698. [Google Scholar] [CrossRef]
- Wang, H. Fluoride ion-induced gas sensor based on the dipyrromethene boron difluoride derivative: A theoretical investigation. J. Phys. Org. Chem. 2021, 34, e4265. [Google Scholar] [CrossRef]
- Kuznetsova, R.T.; Aksenova, Y.V.; Bashkirtsev, D.E.; Prokopenko, A.A.; Tel’minov, E.N.; Mayer, G.V.; Dudina, N.A.; Antina, E.V.; Nikonova, A.Y.; Berezin, M.B.; et al. Photonics of zinc(II) and boron(III) chelates with methyl- and phenyl-substituted dipyrromethenes and azadipyrromethenes. High Energy Chem. 2015, 49, 16–23. [Google Scholar] [CrossRef]
- Kuznetsova, R.T.; Aksenova, I.V.; Bashkirtsev, D.E.; Prokopenko, A.A.; Pomogaev, V.A.; Antina, E.V.; Berezin, M.B.; Bumagina, N.A. Photonics of coordination complexes of dipyrrins with p- and d-block elements for application in optical devices. J. Photochem. Photobiol. A: Chem. 2018, 354, 147–154. [Google Scholar] [CrossRef]
- Kuznetsova, R.T.; Aksenova, I.V.; Prokopenko, A.A.; Pomogaev, V.A.; Antina, E.V.; Berezin, M.B.; Antina, L.A.; Bumagina, N.A. Photonics of boron(III) and zinc(II) dipyrromethenates as active media for modern optical devices. J. Mol. Liq. 2019, 278, 5–11. [Google Scholar] [CrossRef]
- Nuraneeva, E.N.; Guseva, G.B.; Antina, E.V.; Berezin, M.B.; V’yugin, A.I. Synthesis and luminescent properties of zinc(II) complexes with iodo- and bromosubstituted 2,2′ -dipyrrines. J. Lumin. 2016, 170, 248–254. [Google Scholar] [CrossRef]
- Nuraneeva, E.N.; Guseva, G.B.; Antina, E.V.; Berezin, M.B.; Ksenofontov, A.A. Cadmium(II) complexes with monoiodo- and dibromodipyrromethenes: Synthesis, molecular structure, spectral-luminescent properties, and stability in solutions. Russ. Chem. Bull. 2018, 67, 1231–1240. [Google Scholar] [CrossRef]
- Chrysochoos, J.; Beyene, K. Oxidative fluorescence quenching of zinc tetraphenylporphyrin (ZnTPP) by trivalent lanthanide ions in several solvents: Role of lanthanide-induced singlet–triplet crossing. J. Lumin. 1999, 81, 209–218. [Google Scholar] [CrossRef]
- Nikonova, A.Y.; Kuznetsova, R.T.; Aksenova, I.V.; Tel’minov, E.N.; Mayer, G.V.; Dudina, N.A.; Nuraneeva, E.N.; Antina, E.V. Optical properties of zinc(II) and boron(III) dipyrrinates with different structures. Opt. Spectrosc. 2016, 120, 395–402. [Google Scholar] [CrossRef]
- Chen, K.; Dong, Y.; Zhao, X.; Imran, M.; Tang, G.; Zhao, J.; Liu, Q. Bodipy derivatives as triplet photosensitizers and the related intersystem crossing mechanisms. Front. Chem. 2019, 7, 821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filatov, M.A. Heavy-atom-free BODIPY photosensitizers with intersystem crossing mediated by intramolecular photoinduced electron transfer. Org. Biomol. Chem. 2020, 18, 10–27. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Huang, L.; Yan, Y.; El-Zohry, A.M.; Toffoletti, A.; Zhao, J.; Barbon, A.; Dick, B.; Mohammed, O.F.; Han, G. Elucidation of the intersystem crossing mechanism in a helical bodipy for low-dose photodynamic therapy. Angew. Chem. Int. Ed. 2020, 59, 16114–16121. [Google Scholar] [CrossRef]
Compound | Solvent | λabs, nm | ε* × 10−4 (S0-S1), M−1cm−1 | λfl, nm (λex, nm) | γfl ± 10% |
---|---|---|---|---|---|
Br2(CH3)2(C5H11)2BODIPY | ethanol | 381, 537 | 4.92 | 551 (475) | 0.40 |
propanol-2 | 378, 539 | 4.58 | 545 (475) | 0.33 | |
chloroform | 377, 546 | 4.54 | 553 (475) | 0.43 | |
cyclohexane | 376, 544 | 5.60 | 551 (475) | 0.44 | |
Br2(CH3)4BODIPY | ethanol | 376, 528 | 5.10 | 545 (470) | 0.40 |
propanol-2 | 376, 531 | 4.84 | 547 (470) | 0.27 | |
chloroform | 378, 539 | 4.63 | 548 (470) | 0.42 | |
cyclohexane | 380, 538 | 5.76 | 547 (470) | 0.44 | |
I(CH3)4(C2H5)BODIPY | ethanol | 380, 528 | 5.95 | 547 (470) | 0.20 |
propanol-2 | 373, 531 | 4.71 | 546 (470) | 0.15 | |
chloroform | 374, 534 | 4.62 | 547 (470) | 0.22 | |
cyclohexane | 375, 535 | 5.73 | 545 (470) | 0.28 | |
Zn[Br2(CH3)2(C5H11)2dpm]2 | ethanol | 373, 511 | 6.45 | 519 (480) | 0.005 |
propanol-2 | 372, 511 | 4.95 | 520 (480) | 0.002 | |
chloroform | 371, 510 | 5.05 | 522 (480) | 0.003 | |
cyclohexane | 373, 514 | 4.97 | 527 (480) | 0.014 | |
Zn[Br2(CH3)4dpm]2 | ethanol | 368, 504 | 6.81 | 514 (470) | 0.007 |
propanol-2 | 373, 505 | 5.04 | 515 (470) | 0.004 | |
chloroform | 372, 506 | 5.08 | 518 (470) | 0.007 | |
cyclohexane | 375, 509 | 5.10 | 520 (470) | 0.13 | |
Zn[I(CH3)4(C2H5)dpm]2 | ethanol | 370, 501 | 6.34 | 513 (480) | 0.003 |
propanol-2 | 374, 502 | 5.16 | 516 (470) | 0.001 | |
chloroform | 373, 505 | 5.09 | 518 (470) | 0.001 | |
cyclohexane | 373, 506 | 5.22 | 519 (480) | 0.063 | |
Cd[Br2(CH3)2(C5H11)2dpm]2 | ethanol | 373, 506 | 8.45 | 516 (470) | 0.002 |
propanol-2 | 372, 507 | 5.10 | 520 (470) | 0.003 | |
chloroform | 373, 509 | 5.03 | 525 (470) | 0.003 | |
cyclohexane | 373, 509 | 5.12 | 527 (470) | 0.022 | |
Cd[Br2(CH3)4dpm]2 | ethanol | 366, 498 | 8.82 | 508 (470) | 0.002 |
propanol-2 | 372, 501 | 4.96 | 511 (470) | 0.002 | |
chloroform | 372, 502 | 5.03 | 520 (470) | 0.004 | |
cyclohexane | 372, 504 | 5.10 | 518 (470) | 0.027 | |
Cd[I(CH3)4(C2H5)dpm]2 | ethanol | 370, 495 | 6.34 | 508 (470) | 0.002 |
propanol-2 | 373, 497 | 5.03 | 511 (470) | 0.002 | |
chloroform | 373, 498 | 5.09 | 518 (470) | 0.001 | |
cyclohexane | 373, 501 | 5.06 | 517 (470) | 0.007 |
Compound | Solvent | λphos, nm (λex, nm) | τphos, ms (λex/λem, nm) | γphos ± 10% |
---|---|---|---|---|
Br2(CH3)2(C5H11)2BODIPY | ethanol | 802 (480) | 1.4 (475/802) | 0.18 |
Br2(CH3)4BODIPY | ethanol | 795 (470) | 3.7 (470/795) | 0.01 |
I(CH3)4(C2H5)BODIPY | ethanol | 787 (470) | 1.5 (475/790) | 0.52 |
Zn[Br2(CH3)2(C5H11)2dpm]2 | ethanol | 744 (470) | 2.2 (470/740) | 0.93 |
propanol-2 | 745 (470) | 2.7 (470/740) | 0.73 | |
Zn[Br2(CH3)4dpm]2 | ethanol | 740 (470) | 5.8 (470/740) | 0.68 |
propanol-2 | 743 (470) | 5.9 (470/740) | 0.31 | |
Zn[I(CH3)4(C2H5)dpm]2 | ethanol | 739 (470) | 2.4 (470/740) | 0.48 |
propanol-2 | 745 (470) | 2.9 (470/740) | 0.30 | |
Cd[Br2(CH3)2(C5H11)2dpm]2 | ethanol | 735 (470) | 2.3 (470/740) | 1.01 |
propanol-2 | 738 (470) | 2.3 (470/740) | 0.71 | |
Cd[Br2(CH3)4dpm]2 | ethanol | 735 (470) | 6.1 (470/740) | 0.30 |
propanol-2 | 735 (470) | 6.0 (470/740) | 0.35 | |
Cd[I(CH3)4(C2H5)dpm]2 | ethanol | 740 (470) | 2.0 (470/740) | 0.35 |
propanol-2 | 739 (470) | 2.4 (470/740) | 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aksenova, I.; Bocharnikova, E.; Ashmarina, M. Photonics of Halogenated Zinc(II) and Cadmium(II) Dipyrromethene Complexes. Colorants 2022, 1, 298-306. https://doi.org/10.3390/colorants1030018
Aksenova I, Bocharnikova E, Ashmarina M. Photonics of Halogenated Zinc(II) and Cadmium(II) Dipyrromethene Complexes. Colorants. 2022; 1(3):298-306. https://doi.org/10.3390/colorants1030018
Chicago/Turabian StyleAksenova, Iuliia, Elena Bocharnikova, and Maria Ashmarina. 2022. "Photonics of Halogenated Zinc(II) and Cadmium(II) Dipyrromethene Complexes" Colorants 1, no. 3: 298-306. https://doi.org/10.3390/colorants1030018
APA StyleAksenova, I., Bocharnikova, E., & Ashmarina, M. (2022). Photonics of Halogenated Zinc(II) and Cadmium(II) Dipyrromethene Complexes. Colorants, 1(3), 298-306. https://doi.org/10.3390/colorants1030018