Formation of Polysulfone Hollow Fiber Membranes Using the Systems with Lower Critical Solution Temperature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Polymer Solutions
2.3. Cloud Point Measurements
2.4. PSF Solution Viscosity
2.5. Hollow Fiber Membrane Formation
2.6. Measurement of Pure Water Flux of Hollow Fiber Membranes
2.7. Study of Hollow Fiber Membrane Structure
2.8. Contact Angle Measurements
2.9. Determination of Hollow Fiber Burst Pressure
3. Results
3.1. Investigation of the Phase State of PSF-PEG-400-PVP-DMA Solutions
3.2. Hollow Fiber Membrane Formation
3.3. Hollow Fiber Membrane Structure Studies
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Werber, J.R.; Osuji, C.O.; Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 2016, 1, 1–15. [Google Scholar] [CrossRef]
- Peng, N.; Widjojo, N.; Sukitpaneenit, P.; Teoh, M.M.; Lipscomb, G.G.; Chung, T.S.; Lai, J.Y. Evolution of polymeric hollow fibers as sustainable technologies: Past, present, and future. Prog. Polym. Sci. 2016, 37, 1401–1424. [Google Scholar] [CrossRef]
- Bazhenov, S.D.; Bildyukevich, A.V.; Volkov, A.V. Gas-Liquid Hollow Fiber Membrane Contactors for Different Applications. Fibers 2018, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, V.A.; Bazhenov, S.D. Numerical simulation of solute removal from a cross-flow past a row of parallel hollow-fiber membranes. Sep. Purif. Technol. 2020, 242, 116834. [Google Scholar] [CrossRef]
- Kirsch, V.A.; Bazhenov, S.D. Towards simulation of gas separation modules based on hollow fiber membranes. J. Phys. Conf. Ser. 2020, 1696, 012041. [Google Scholar] [CrossRef]
- Ren, J.; Wang, R. Chapter 2: Preparation of Polymeric Membranes. In Membrane and Desalination Technologies Handbook of Environmental Engineering; Wang, L.K., Chen, J.P., Hung, Y.T., Shammas, N.K., Eds.; Humana Press: Totowa, NJ, USA, 2011; Volume 13. [Google Scholar] [CrossRef]
- Ulbricht, M. Advanced functional polymer membranes. Polymer 2006, 47, 2217–2262. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.-B.; Liu, M.; Xu, Z.-L.; Wei, Y.-M.; Xu, M.-X. PSF hollow fiber membrane fabricated from PSF–HBPE–PEG400–DMAc dope solutions via reverse thermally induced phase separation (RTIPS) process. Chem. Eng. Sci. 2015, 137, 131–139. [Google Scholar] [CrossRef]
- Liu, M.; Xu, Z.L.; Chen, D.G.; Wei, Y.M. Preparation and characterization of microporous PVDF membrane by thermally induced phase separation from a ternary polymer/solvent/non-solvent system. Desalin. Water Treat. 2010, 17, 183–192. [Google Scholar] [CrossRef] [Green Version]
- Xiang, S.; Guo, Z.; Wang, Y.; Liu, H.; Zhang, J.; Cui, Z.; Wang, H.; Li, J. The microstructure regulation, strengthening, toughening and hydrophilicity of polyamide6 in fabricating poly (vinylidene fluoride)-based flat membrane via the thermally induced phase separation technique. Eur. Polym. J. 2020, 126, 109568–109580. [Google Scholar] [CrossRef]
- Zuo, J.H.; Li, Z.K.; Wei, C.; Yan, X.; Chen, Y.; Lang, W.Z. Fine tuning the pore size and permeation performances of thermally induced phase separation (TIPS) -prepared PVDF membranes with saline water as quenching bath. J. Membr. Sci. 2019, 577, 79–90. [Google Scholar] [CrossRef]
- Fang, C.; Liu, W.; Zhang, P.; Rajabzadeh, S.; Kato, N.; Sasaki, Y.; Shon, H.K.; Matsuyama, H. Hollow fiber membranes with hierarchical spherulite surface structure developed by thermally induced phase separation using triple-orifice spinneret for membrane distillation. J. Membr. Sci. 2021, 618, 118586–118598. [Google Scholar] [CrossRef]
- Liu, M.; Wei, Y.-M.; Xu, Z.-L.; Guo, R.-Q.; Zhao, L.-B. Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system. J. Membr. Sci. 2013, 437, 169–178. [Google Scholar] [CrossRef]
- Liu, S.H.; Liu, M.; Xu, Z.L.; Wei, Y.M.; Guo, X. A novel PES-TiO2 hollow fiber hybrid membrane prepared via sol-gel process assisted reverse thermally induced phase separation (RTIPS) method. J. Membr. Sci. 2017, 528, 303–315. [Google Scholar] [CrossRef]
- Tang, Y.; He, Y.; Wang, X. Investigation on the membrane formation process of polymer–diluent system via thermally induced phase separation accompanied with mass transfer across the interface: Dissipative particle dynamics simulation and its experimental verification. J. Membr. Sci. 2015, 474, 196–206. [Google Scholar] [CrossRef]
- Liu, S.H.; Xu, Z.L.; Liu, M.; Wei, Y.M.; Guo, F. Preparation and Characterization of PES/CA Microporous Membranes via Reverse Thermally Induced Phase Separation Process. Polym. Eng. Sci. 2017, 1–12. [Google Scholar] [CrossRef]
- Liu, M.; Liu, S.H.; Skov, A.L.; Xu, Z.L. Estimation of phase separation temperatures for polyethersulfone/solvent/non-solvent systems in RTIPS and membrane properties. J. Membr. Sci. 2018, 556, 329–341. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Skov, A.L.; Liu, S.H.; Yu, L.Y.; Xu, Z.L. A Facile Way to Prepare Hydrophilic Homogeneous PES Hollow Fiber Membrane via Non-Solvent Assisted Reverse Thermally Induced Phase Separation (RTIPS) Method. Polymers 2019, 11, 269. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.H.; Liu, M.; Xu, Z.L.; Wei, Y.M. A polyethersulfone–bisphenol sulfuric acid hollow fiber ultrafiltration membrane fabricated by a reverse thermally induced phase separation process. RSC Adv. 2018, 8, 7800–7809. [Google Scholar] [CrossRef] [Green Version]
- Jung, J.T.; Kim, J.F.; Wang, H.H.; di Nicolo, E.; Drioli, E.; Lee, Y.M. Understanding the non-solvent induced phase separation (NIPS) effect during the fabrication of microporous PVDF membranes via thermally induced phase separation (TIPS). J. Membr. Sci. 2016, 514, 250–263. [Google Scholar] [CrossRef]
- Jung, J.T.; Wang, H.H.; Kim, J.F.; Lee, J.; Kim, J.S.; Drioli, E.; Lee, Y.M. Tailoring nonsolvent-thermally induced phase separation (N-TIPS) effect using triple spinneret to fabricate high performance PVDF hollow fiber membranes. J. Membr. Sci. 2018, 559, 117–126. [Google Scholar] [CrossRef]
- Xiao, T.; Wang, P.; Yang, X.; Cai, X.; Lu, J. Fabrication and characterization of novel asymmetric polyvinylidene fluoride (PVDF) membranes by the nonsolvent thermally induced phase separation (NTIPS) method for membrane distillation applications. J. Membr. Sci. 2015, 489, 160–174. [Google Scholar] [CrossRef]
- Gao, J.; Chung, T.S. Membranes made from nonsolvent-thermally induced phase separation (N-TIPS) for decellularization of blood in dry plasma spot (DPS) applications. Chem. Eng. Sci. 2021, 229, 116010–116024. [Google Scholar] [CrossRef]
- Cho, Y.H.; Kim, S.D.; Kim, J.F.; Choi, H.; Kim, Y.; Nam, S.E.; Park, Y.I.; Park, H. Tailoring the porous structure of hollow fiber membranes for osmotic power generation applications via thermally assisted nonsolvent induced phase separation. J. Membr. Sci. 2019, 579, 329–341. [Google Scholar] [CrossRef]
- Plisko, T.V.; Bildyukevich, A.V.; Karslyan, Y.A.; Ovcharova, A.A.; Volkov, V.V. Development of high flux ultrafiltration polyphenylsulfone membranes applying the systems with upper and lower critical solution temperatures: Effect of polyethylene glycol molecular weight and coagulation bath temperature. J. Membr. Sci. 2018, 565, 266–280. [Google Scholar] [CrossRef]
- Bildyukevich, A.V.; Plisko, T.V.; Isaichykova, Y.A.; Ovcharova, A.A. Preparation of High-Flux Ultrafiltration Polyphenylsulfone Membranes. Pet. Chem. 2018, 58, 747–759. [Google Scholar] [CrossRef]
- Mamah, S.C.; Goh, P.S.; Ismail, A.F.; Suzaimi, N.D.; Yogarathinam, L.T.; Raji, Y.O.; El-badawy, T.H. Recent development in modification of polysulfone membrane for water treatment application. J. Water Process. Eng. 2021. [Google Scholar] [CrossRef]
- Bildyukevich, A.V.; Plisko, T.V.; Usosky, V.V. The Formation of Polysulfone Hollow Fiber Membranes by the Free Fall Spinning Method. Pet. Chem. 2016, 56, 379–400. [Google Scholar] [CrossRef]
- Yunos, M.Z.; Harun, Z.; Basri, H.; Ismail, A.F. Studies on fouling by natural organic matter (NOM) on polysulfone membranes: Effect of polyethylene glycol (PEG). Desalination 2014, 333, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Fen‘ko, L.A.; Bil‘dyukevich, A.V. Phase State of the Polysulfone–Poly(ethylene glycol)– Dimethylacetamide System. Polym. Sci. Ser. A. Polym. Phys. 2013, 55, 75–81. [Google Scholar] [CrossRef]
- Plisko, T.V.; Bildyukevich, A.V.; Usosky, V.V.; Volkov, V.V. Influence of the concentration and molecular weight of polyethylene glycol on the structure and permeability of polysulfone hollow fiber membranes. Pet. Chem. 2016, 56, 321–329. [Google Scholar] [CrossRef]
- Wu, Q.Y.; Liu, B.T.; Li, M.; Wan, L.S.; Xu, Z.K. Polyacrylonitrile membranes via thermally induced phase separation: Effects of polyethylene glycol with different molecular weights. J. Membr. Sci. 2013, 437, 227–236. [Google Scholar] [CrossRef]
- Idris, A.; Zain, N.M.; Noordin, M.Y. Synthesis, characterization and performance of asymmetric polyethersulfone (PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination 2007, 207, 324–339. [Google Scholar] [CrossRef]
- Kim, I.C.; Lee, K.H. Effect of poly(ethylene glycol) 200 on the formation of a polyetherimide asymmetric membrane and its performance in aqueous solvent mixture permeation. J. Membr. Sci. 2004, 230, 183–188. [Google Scholar] [CrossRef]
- Ohya, H.; Shiki, S.; Kawakami, H. Fabrication study of polysulfone hollow-fiber microfiltration membranes: Optimal dope viscosity for nucleation and growth. J. Membr. Sci. 2009, 326, 293–302. [Google Scholar] [CrossRef]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Effect of molecular weight of PEG on membrane morphology and transport properties. J. Membr. Sci. 2008, 309, 209–221. [Google Scholar] [CrossRef]
- Chakrabarty, A.K.; Ghoshal, A.K.; Purkait, M.K. SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive. J. Colloid Interface Sci. 2008, 320, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarty, B.; Ghoshal, A.K.; Purkait, M.K. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. J. Membr. Sci. 2008, 315, 36–47. [Google Scholar] [CrossRef]
- Basri, H.; Ismail, A.F.; Aziz, M. Polyethersulfone (PES)–silver composite UF membrane: Effect of silver loading and PVP molecular weight on membrane morphology and antibacterial activity. Desalination 2011, 273, 72–80. [Google Scholar] [CrossRef]
- Zhao, C.; Xue, J.; Ran, F.; Sun, S. Modification of polyethersulfone membranes—A review of methods. Prog. Mater. Sci. 2013, 58, 76–150. [Google Scholar] [CrossRef]
- Urkiaga, A.; Iturbe, D.; Etxebarria, J. Effect of different additives on the fabrication of hydrophilic polysulfone ultrafiltration membranes. Desalin. Water Treat. 2015, 56, 1–12. [Google Scholar] [CrossRef]
- Plisko, T.V.; Penkova, A.V.; Burts, K.S.; Bildyukevich, A.V.; Dmitrenko, M.E.; Melnikova, G.B.; Atta, R.R.; Mazur, A.S.; Zolotarev, A.A.; Missyul, A.B. Effect of Pluronic F127 on porous and dense membrane structure formation via non-solvent induced and evaporation induced phase separation. J. Membr. Sci. 2019, 580, 336–349. [Google Scholar] [CrossRef]
- Burts, K.S.; Plisko, T.V.; Bildyukevich, A.V.; Penkova, A.V.; Pratsenko, A.A. Modification of polysulfone ultrafiltration membranes using block copolymer Pluronic F127. Polym. Bull. 2020. [Google Scholar] [CrossRef]
- Zheng, Q.Z.; Wang, P.; Yang, Y.N.; Cui, D.J. The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane. J. Memb. Sci. 2006, 286, 7–11. [Google Scholar] [CrossRef]
Spinneret dimensions (mm) | Inner diameter (ID) = 1.0 Outer diameter (OD) = 1.8 |
Dope solution flow rate (g min−1) | 6.0–7.0 |
Bore fluid | Distilled water |
Bore fluid temperature, (°C) | 30–80 |
Bore fluid flow rate (ml min−1) | 10–30 |
External coagulant | Tap water |
External coagulant temperature, (°C) | 20 |
Dope temperature, (°C) | 20 and 45 |
Air gap length, (m) | 0.9–1.0 |
Ambient temperature, (°C) | 20 |
Humidity, (%) | 70 |
Abbreviation | Dope Solution Composition, wt.% | LSCT, °C | Tdope, °C | η (25 °C), Pa∙s | Tbore fluid, °C | PWF, L∙m−2∙h−1 | ||
---|---|---|---|---|---|---|---|---|
PSF | PEG-400 | PVP K-30 | ||||||
A | 20 | 38 | 0.75 | 60 | 20 | 21.0 | 30 | 350 |
59 | 370 | |||||||
83 | 520 | |||||||
B | 22 | 38 | 1.0 | 55 | 20 | 54.5 | 30 | 390 |
50 | 410 | |||||||
70 | 480 | |||||||
80 | 540 | |||||||
C | 24 | 38 | 1.0 | 50 | 45 | 110.0 | 50 | 180 |
70 | 250 | |||||||
80 | 1200 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plisko, T.V.; Bildyukevich, A.V.; Zhao, L.; Huang, W.; Volkov, V.V.; Huang, Z. Formation of Polysulfone Hollow Fiber Membranes Using the Systems with Lower Critical Solution Temperature. Fibers 2021, 9, 28. https://doi.org/10.3390/fib9050028
Plisko TV, Bildyukevich AV, Zhao L, Huang W, Volkov VV, Huang Z. Formation of Polysulfone Hollow Fiber Membranes Using the Systems with Lower Critical Solution Temperature. Fibers. 2021; 9(5):28. https://doi.org/10.3390/fib9050028
Chicago/Turabian StylePlisko, Tatiana V., Alexandr V. Bildyukevich, Liang Zhao, Weiqing Huang, Vladimir V. Volkov, and Zuohua Huang. 2021. "Formation of Polysulfone Hollow Fiber Membranes Using the Systems with Lower Critical Solution Temperature" Fibers 9, no. 5: 28. https://doi.org/10.3390/fib9050028