Mid-Infrared Ultra-Short Pulse Generation in a Gas-Filled Hollow-Core Photonic Crystal Fiber Pumped by Two-Color Pulses
Abstract
:1. Introduction
2. Anti-Resonant Fibers and Numerical Methods
2.1. Properties of the Hollow-Core Photonic Crystal Fiber
2.2. Numerical Method for the Nonlinear Pulse Propagation
3. Continuum Generation
3.1. Generated Continuum from a Dual-Pump Scheme
3.2. Frequency Generation Mechanism and Dynamics
3.3. Pulse Properties of the Filtered Mid-Infrared Continuum
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Woodward, R.I.; Majewski, M.R.; Hudson, D.D.; Jackson, S.D. Swept-wavelength mid-infrared fiber laser for real-time ammonia gas sensing. APL Photonics 2019, 4, 020801. [Google Scholar] [CrossRef] [Green Version]
- Baldauf, N.A.; Rodriguez-Romo, L.A.; Yousef, A.E.; Rodriguez-Saona, L.E. Serovars by Fourier transform mid-infrared spectrocopy. Appl. Spec. 2006, 60, 592–598. [Google Scholar] [CrossRef]
- Müller-Werkmeister, H.M.; Li, Y.-L.; Lerch, E.-B.W.; Bigourd, D.; Bredenbeck, J. Ultrafast hopping from band to band: Assigning infrared spectra based on vibrational energy transfer. Angew. IE Chem. 2013, 52, 6214–6217. [Google Scholar] [CrossRef]
- Koulouklidis, D.A.; Gollner, C.; Shumakova, V.; Fedorov, V.Y.; Pugžlys, A.; Baltuška, A.; Tzortzakis, S. Observation of extremely efficient terahertz generation from mid-infrared two-color laser filaments. Nat. Commun. 2020, 11, 292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zlatanovic, S.; Park, J.S.; Moro, S.; Chavez Boggio, J.M.; Divliansky, I.B.; Alic, N.; Mookherjea, S.; Radic, S. Mid-infrared wavelength conversion in silicon waveguides using ultra-compact telecom-band-derived pump source. Nat. Photon. 2010, 4, 561–564. [Google Scholar] [CrossRef]
- Kowligy, S.A.; Lind, A.; Hickstein, D.D.; Carlson, D.R.; Timmers, H.; Nader, N.; Cruz, F.C.; Ycas, G.; Papp, S.B.; Diddams, S.A. Mid-infrared frequency comb generation via cascaded quadratic nonlinearities in quasi-phase-matched waveguides. Opt. Lett. 2018, 43, 1678–1681. [Google Scholar] [CrossRef] [Green Version]
- McCarthy, J.E.; Bookey, H.T.; Psaila, N.D.; Thomson, R.R.; Kar, A.K. Mid-infrared spectral broadening in an ultrafast laser inscribed gallium lanthanum sulphide waveguide. Opt. Express 2012, 20, 1545–1551. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kubat, I.; Petersen, C.R.; Møller, U.V.; Seddon, A.; Benson, T.; Brilland, L.; Méchin, D.; Moselund, P.M.; Bang, O. Thulium pumped mid-infrared 0.9–9 μm supercontinuum generation in concatenated fluoride and chalcogenide glass fibers. Opt. Express 2014, 22, 3959–3967. [Google Scholar] [CrossRef] [Green Version]
- Debord, B.; Alharbi, M.; Vincetti, L.; Husakou, A.; Fourcade-Dutin, C.; Hoenninger, C.; Mottay, E.; Gérôme, F.; Benabid, F. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. Opt. Express 2014, 22, 10735–10746. [Google Scholar] [CrossRef]
- Maurel, B.; Delahaye, F.; Amrani, F.; Debord, B.; Gérôme, F.; Benabid, F. 2–3 µm wavelength-range low-loss inhibited-coupling hollow-core fiber. In Proceedings of the CLEO: Sciences and Innovations, San Jose, CA, USA, 13–18 May 2018. [Google Scholar]
- Yu, F.; Wadsworth, W.J.; Knight, J.C. Low loss silica hollow core fibers for 3–4 μm spectral region. Opt. Express 2012, 20, 11153–11158. [Google Scholar] [CrossRef] [Green Version]
- Yu, F.; Knight, J.C. Negative curvature hollow-core optical fiber. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Adamu, A.I.; Habib, M.S.; Petersen, C.R.; Lopez, J.E.A.; Zhou, B.; Schülzgen, A.; Bache, M.; Amezcua-Correa, R.; Bang, O.; Markos, C. Deep-UV to mid-IR supercontinuum generation driven by mid-IR ultrashort pulses in a gas-filled hollow-core fiber. Sci. Rep. 2019, 9, 1–9. [Google Scholar]
- Klimczak, M.; Dobrakowski, D.; Ghosh, A.; Stępniewski, G.; Pysz, D.; Huss, G.; Sylvestre, T.; Buczyński, R. Nested capillary anti-resonant silica fiber with mid-infrared transmission and low bending sensitivity at 4000 nm. Opt. Lett. 2019, 44, 4395–4398. [Google Scholar] [CrossRef]
- Cassataro, M.; Novoa, D.; Günendi, M.C.; Edavalath, M.N.; Frosz, M.H.; Travers, J.C.; Russell, P.S. Generation of broadband mid-IR and UV light in gas-filled single-ring hollow-core PCF. Opt. Express 2017, 25, 7637–7644. [Google Scholar] [CrossRef] [Green Version]
- Michieletto, M.; Lyngsø, J.K.; Jakobsen, C.; Lægsgaard, J.; Bang, O.; Alkeskjold, T.T. Hollow-core fibers for high power pulse delivery. Opt. Express 2016, 24, 7103–7119. [Google Scholar] [CrossRef] [Green Version]
- Uebel, P.; Günendi, M.C.; Frosz, M.H.; Ahmed, G.; Edavalath, N.N.; Ménard, J.M.; Russell, P.S.J. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett. 2016, 41, 1961–1964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balciunas, T.; Fourcade-Dutin, C.; Fan, G.; Witting, T.T.; Voronin, A.A.; Zheltikov, A.M.; Gerome, F.; Paulus, G.G.; Baltuska, A.; Benabid, F. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun. 2015, 6, 1. [Google Scholar] [CrossRef] [Green Version]
- Köttig, F.; Novoa, D.; Tani, F.; Günendi, M.C.; Cassataro, C.; Travers, J.C.; Russell, P.S.J. Mid-infrared dispersive wave generation in gas-filled photonic crystal fibre by transient ionization-driven changes in dispersion. Nat. Commun. 2017, 8, 813. [Google Scholar] [CrossRef] [PubMed]
- Hasan, M.I.; Akhmediev, N.; Mussot, A.; Chang, W. Midinfrared pulse generation by pumping in the normal dispersion regime of a gas filled hollow core fiber. Phys. Rev. Appl. 2019, 12, 014050. [Google Scholar] [CrossRef]
- Ding, X.; Habib, M.S.; Amezcua-Correa, R.; Moses, J. Near-octave intense mid-infrared by adiabatic down-conversion in hollow anti-resonant fiber. Opt. Lett. 2019, 44, 1084–1087. [Google Scholar] [CrossRef]
- Hasan, M.I.; Akhmediev, N.; Chang, W. Empirical Formulae for Dispersion and Effective Mode Area in Hollow-Core Antiresonant Fibers. J. Lightw. Technol. 2018, 36, 4060–4065. [Google Scholar] [CrossRef]
- Marcatelli, E.A.J.; Schmeltzer, R.A. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell Syst. Tech. J. 1964, 64, 1783–1809. [Google Scholar] [CrossRef]
- Dudley, J.M.; Genty, G.; Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 2006, 79, 1135–1184. [Google Scholar] [CrossRef]
- Matsubara, E.; Yamane, K.; Sekikawa, T.; Yamashita, M. Generation of 2.6 fs optical pulses using induced-phase modulation in a gas-filled hollow fiber. J. Opt. Soc. Am. B 2007, 24, 985–989. [Google Scholar] [CrossRef]
- Fourcade-Dutin, C.; Imperio, A.; Dauliat, R.; Jamier, R.; Muñoz-Marco, H.; Pérez-Millán, P.; Maillotte, H.; Roy, P.; Bigourd, D. Temporal Distribution Measurement of the Parametric Spectral Gain in a Photonic Crystal Fiber Pumped by a Chirped Pulse. Photonics 2019, 6, 20. [Google Scholar] [CrossRef] [Green Version]
- Vanvincq, O.; Fourcade-Dutin, C.; Mussot, A.; Hugonnot, E.; Bigourd, D. Ultrabroadband fiber optical parametric amplifiers pumped by chirped pulses. Part 1: Analytical model. J. Opt. Soc. Am. B 2015, 32, 1479–1487. [Google Scholar] [CrossRef]
- Webb, K.E.; Xu, Y.Q.; Erkintalo, M.; Murdoch, S.G. Generalized dispersive wave emission in nonlinear fiber optics. Opt. Lett. 2013, 38, 151–153. [Google Scholar] [CrossRef] [PubMed]
- Robert, P.; Fourcade-Dutin, C.; Dauliat, R.; Jamier, R.; Muñoz-Marco, H.; Pérez-Millán, P.; Dudley, J.M.; Roy, P.; Maillotte, H.; Bigourd, D. Spectral correlation of four-wave mixing generated in a photonic crystal fiber pumped by a chirped pulse. Opt. Lett. 2020, 45, 4148–4151. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fourcade-Dutin, C.; Zurita-Miranda, O.; Mounaix, P.; Bigourd, D. Mid-Infrared Ultra-Short Pulse Generation in a Gas-Filled Hollow-Core Photonic Crystal Fiber Pumped by Two-Color Pulses. Fibers 2021, 9, 21. https://doi.org/10.3390/fib9040021
Fourcade-Dutin C, Zurita-Miranda O, Mounaix P, Bigourd D. Mid-Infrared Ultra-Short Pulse Generation in a Gas-Filled Hollow-Core Photonic Crystal Fiber Pumped by Two-Color Pulses. Fibers. 2021; 9(4):21. https://doi.org/10.3390/fib9040021
Chicago/Turabian StyleFourcade-Dutin, Coralie, Olivia Zurita-Miranda, Patrick Mounaix, and Damien Bigourd. 2021. "Mid-Infrared Ultra-Short Pulse Generation in a Gas-Filled Hollow-Core Photonic Crystal Fiber Pumped by Two-Color Pulses" Fibers 9, no. 4: 21. https://doi.org/10.3390/fib9040021
APA StyleFourcade-Dutin, C., Zurita-Miranda, O., Mounaix, P., & Bigourd, D. (2021). Mid-Infrared Ultra-Short Pulse Generation in a Gas-Filled Hollow-Core Photonic Crystal Fiber Pumped by Two-Color Pulses. Fibers, 9(4), 21. https://doi.org/10.3390/fib9040021