Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System
Abstract
:1. Introduction
2. The Architecture of the RA-FOPA Hybrid Amplifier Simulation Scheme
3. Results
4. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Cisco. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2017–2022; Cisco: San Jose, CA, USA, 2019. [Google Scholar]
- Ericsson. Mobility Report November 2018; Ericsson: Stockholm, Sweden, 2018; p. 32. [Google Scholar]
- Essiambre, R.-J.; Kramer, G.; Winzer, P.J.; Foschini, G.J.; Goebel, B. Capacity Limits of Optical Fiber Networks. J. Lightwave Technol. 2010, 28, 662–701. [Google Scholar] [CrossRef]
- Saxena, A.; Dastoor, Y.; Prajapati, P.R. Flat Gain on C-Band Using Raman-EDFA Hybrid Optical Amplifier for DWDM System. J. Switch. Hub. 2018, 3, 2. [Google Scholar]
- Kaur, G.; Kaur, G.; Sharma, S. Multisection optical parametric–Raman hybrid amplifier for terabit+ WDM systems. J. Mod. Opt. 2015, 63, 819–825. [Google Scholar] [CrossRef]
- Obaid, H.M.; Shahid, H. Performance evaluation of hybrid optical amplifiers for a 100 × 10 Gbps DWDM system with ultrasmall channel spacing. Optik 2020, 200. [Google Scholar] [CrossRef]
- Bobrovs, V.; Olonkins, S.; Spolitis, S.; Porins, J.; Ivanovs, G.; Ivanovs, J.P.A.G. Evaluation of Parametric and Hybrid Amplifier Applications in WDM Transmission Systems. In Optical Fiber and Wireless Communications; IntechOpen: London, UK, 2017. [Google Scholar]
- Kaur, G.; Sharma, S. New dispersion-compensated Raman-amplifier cascade with a single-pump parametric amplifier for dense wavelength-division multiplexing. Ukr. J. Phys. Opt. 2020, 21, 35–46. [Google Scholar] [CrossRef]
- Fukuchi, K. Wideband and ultra-dense WDM transmission technologies toward over 10-Tb/s capacity. Opt. Fiber Commun. Conf. Exhib. 2003, 5. [Google Scholar] [CrossRef]
- Agrawal, G.P. Fiber-Optic Communication Systems; Wiley Series in Microwave and Optical Engineering, 4th ed.; Wiley: New York, NY, USA, 2010; ISBN 978-0-470-50511-3. [Google Scholar]
- Olonkins, S.; Spolitis, S.; Lyashuk, I.; Bobrovs, V. Cost effective WDM-AON with multicarrier source based on dual-pump FOPA. In Proceedings of the 2014 6th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), St. Petersburg, Russia, 6–8 October 2014; pp. 23–28. [Google Scholar]
- Zyskind, J.; Bolshtyansky, M. EDFAs, Raman Amplifiers and Hybrid Raman/EDFAs. In Optically Amplified WDM Networks; Elsevier BV: Berlin, Germany, 2011; pp. 83–116. [Google Scholar]
- Emami, S.D.; Hajireza, P.; Abd-Rahman, F.; Abdul-Rashid, H.A.; Ahmad, H.; Harun, S.W. Wide-band hybrid amplifier operating in s-band region. Prog. Electromagn. Res. 2010, 102, 301–313. [Google Scholar] [CrossRef] [Green Version]
- Yam, S.-H.; Kim, J. Ground state absorption in thulium-doped fiber amplifier: Experiment and modeling. IEEE J. Sel. Top. Quantum Electron. 2006, 12, 797–803. [Google Scholar] [CrossRef]
- Peterka, P.; Faure, B.; Blanc, W.; Karásek, M.; Dussardier, B. Theoretical modelling of S-band thulium-doped silica fibre amplifiers. Opt. Quantum Electron. 2004, 36, 201–212. [Google Scholar] [CrossRef] [Green Version]
- Kozak, M.; Caspary, R.; Kowalsky, W. Thulium-doped fiber amplifier for the S-band. Proc. 2004 6th Int. Conf. Trans. Opt. Network. 2004, 2, 51–54. [Google Scholar]
- Andrianov, A.; Anashkina, E.A. Single-mode silica microsphere Raman laser tunable in the U-band and beyond. Results Phys. 2020, 17. [Google Scholar] [CrossRef]
- Raman Amplifiers for Telecommunications; Islam, M.N. Springer Series in Optical Sciences; Springer: New York, NY, USA, 2004; ISBN 978-0-387-00751-9. [Google Scholar]
- Singh, K.; Kaur, P.; Devra, S.; Kaur, G. Evaluation of gain spectrum of dual/triple pumped fiber Raman amplifier (FRA) by optimizing its pumping parameters in the scenario of dense wavelength division multiplexed (DWDM) systems. Optik 2019, 176, 246–253. [Google Scholar] [CrossRef]
- Nicholson, J. Dispersion compensating Raman amplifiers with pump reflectors for increased efficiency. J. Light. Technol. 2003, 21, 1758–1762. [Google Scholar] [CrossRef]
- Anashkina, E.A.; Andrianov, A.V.; Dorofeev, V.; Kim, A.; Koltashev, V.; Leuchs, G.; Motorin, S.; Muravyev, S.; Plekhovich, A. Development of infrared fiber lasers at 1555 nm and at 2800 nm based on Er-doped zinc-tellurite glass fiber. J. Non-Cryst. Solids 2019, 525. [Google Scholar] [CrossRef]
- Marhic, M.E. (Ed.) Fiber Optical Parametric Amplifiers, Oscillators and Related Devices; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Hk, E.K.; Fm, M.; Tm, B. Optimizing of Raman Gain and Bandwidth for Dual Pump Fiber Optical Parametric Amplifiers Based on Four-Wave Mixing. J. Telecommun. Syst. Manag. 2018, 7, 1–4. [Google Scholar] [CrossRef]
- Othman, N.; Tay, K.G.; Shah, N.S.M.; Talib, R.; Pakarzadeh, H.; Cholan, N.A. Saturation behavior of a one-pump fiber optical parametric amplifier in the presence of the fourth-order dispersion coefficient and dispersion fluctuation. Chin. Opt. Lett. 2019, 17. [Google Scholar] [CrossRef]
- Othman, N.; Tay, K.G.; Talib, R.; Cholan, N.A.; Shah, N.S.M.; Pakarzadeh, H. Saturation Behavior of Fiber Optical Parametric Amplifier in Presence of Dispersion Fluctuations. In Proceedings of the 2018 IEEE 7th International Conference on Photonics (ICP), Kuah, Malaysia, 9–11 April 2018; pp. 1–3. [Google Scholar]
- Boyd, R.W. Nonlinear Optics; Elsevier Science: Saint Louis, MO, USA, 2014; ISBN 978-1-4832-8823-9. [Google Scholar]
- Inoue, K.; Mukai, T. Signal wavelength dependence of gain saturation in a fiber optical parametric amplifier. Opt. Lett. 2001, 26, 10–12. [Google Scholar] [CrossRef]
- Torounidis, T.; Sunnerud, H.; Hedekvist, P.; Andrekson, P. Amplification of WDM signals in fiber-based optical parametric amplifiers. IEEE Photon. Technol. Lett. 2003, 15, 1061–1063. [Google Scholar] [CrossRef]
- Deng, Y.; Yu, C.; Yuan, J.; Sang, X.; Li, W. Raman-induced limitation of gain flatness in broadband fiber-optical parametric amplifier. Opt. Eng. 2012, 51, 045003. [Google Scholar] [CrossRef]
- Torounidis, T.; Andrekson, P.; Olsson, B.-E. Fiber-optical parametric amplifier with 70-dB gain. IEEE Photon. Technol. Lett. 2006, 18, 1194–1196. [Google Scholar] [CrossRef]
- Ho, M.-C.; Uesaka, K.; Marhic, M.; Akasaka, Y.; Kazovsky, L. 200-nm-bandwidth fiber optical amplifier combining parametric and Raman gain. J. Light. Technol. 2001, 19, 977–981. [Google Scholar] [CrossRef]
- Szabö, À.D.; Ribeiro, V.; Gordienko, V.; Ferreira, F.; Gaur, C.; Doran, N. Verification of Signal-to-Crosstalk Measurements for WDM Fiber Optical Parametric Amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 10–15 May 2020; p. JTu2E.1. [Google Scholar]
- Gordienko, V.; Ferreira, F.M.; Ribeiro, V.; Doran, N. Suppression of Nonlinear Crosstalk in a Polarization Insensitive FOPA by Mid-stage Idler Removal. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 3–7 March 2019; p. M4C.4. [Google Scholar]
- Krastev, K.; Rothman, J.K.K.J.R. Crosstalk in fiber parametric amplifier. In Proceedings of the Proceedings 27th European Conference on Optical Communication (Cat. No.01TH8551), Amsterdam, The Netherlands, 30 September–4 October 2001; Volume 3, pp. 378–379. [Google Scholar]
- Stephens, M.F.C.; Tan, M.; Gordienko, V.; Harper, P.; Doran, N.J. In-line and cascaded DWDM transmission using a 15dB net-gain polarization-insensitive fiber optical parametric amplifier. Opt. Express 2017, 25, 24312–24325. [Google Scholar] [CrossRef] [Green Version]
- Gordienko, V.; Ferreira, F.; Laperle, C.; O’Sullivan, M.; Gaur, C.B.; Roberts, K.; Doran, N. Noise Figure Evaluation of Polarization-insensitive Single-pump Fiber Optical Parametric Amplifiers. In Proceedings of the Optical Fiber Communication Conference (OFC), San Diego, CA, USA, 8–12 March 2020; p. W4B.4. [Google Scholar]
- Stephens, M.F.C.; Gordienko, V.; Doran, N.J. Reduced Crosstalk, Polarization Insensitive Fiber Optical Parametric Amplifier (PI FOPA) for WDM Applications. In Proceedings of the Optical Fiber Communication Conference Postdeadline Papers, San Diego, CA, USA, 11–15 March 2018; p. W3D.4. [Google Scholar]
- Yeo, K.; Adikan, F.M.; Mokhtar, M.; Hitam, S.; Mahdi, M. Gain smoothening filter in two-segment fiber-optical parametric amplifier. Opt. Commun. 2013, 286, 353–356. [Google Scholar] [CrossRef] [Green Version]
- Yeo, K.S.; Adikan, F.R.M.; Mokhtar, M.; Hitam, S.; Mahdi, M.A. Fiber optical parametric amplifier with double-pass pump configuration. Opt. Express 2013, 21, 31623–31631. [Google Scholar] [CrossRef]
- Lei, G.K.P.; Marhic, M.E. Amplification of DWDM channels at 128 Tb/s in a bidirectional fiber optical parametric amplifier. Opt. Express 2014, 22. [Google Scholar] [CrossRef]
- Guo, X.; Fu, X.; Shu, C. Gain saturation in a Raman-assisted fiber optical parametric amplifier. Opt. Lett. 2013, 38, 4405–4408. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Fu, X.; Shu, C. Gain-saturated spectral characteristics in a Raman-assisted fiber optical parametric amplifier. Opt. Lett. 2014, 39, 3658–3661. [Google Scholar] [CrossRef]
- Kaur, G.; Sharma, S.; Kaur, G. Novel Raman Parametric Hybrid L-Band Amplifier with Four-Wave Mixing Suppressed Pump for Terabits Dense Wavelength Division Multiplexed Systems. Adv. Opt. Technol. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Wai, P.K.A. Gain Enhancement in Hybrid Fiber Raman/Parametric Amplifiers. In Proceedings of the Conference on Lasers and Electro-Optics, San Jose, CA, USA, 16–21 May 2010; p. 56. [Google Scholar]
- De Matos, C.J.S.; Chestnut, D.A.; Reeves-Hall, P.C.; Taylor, J.R. Continuous-wave-pumped Raman-assisted fiber optical parametric amplifier and wavelength converter in conventional dispersion-shifted fiber. Opt. Lett. 2001, 26, 1583–1585. [Google Scholar] [CrossRef]
- Chestnut, D.A.; De Matos, C.J.S.; Taylor, J.R. Raman-assisted fiber optical parametric amplifier and wavelength converter in highly nonlinear fiber. J. Opt. Soc. Am. B 2002, 19, 1901–1904. [Google Scholar] [CrossRef]
- Wang, S.H.; Xu, L.; Wai, P.K.A.; Tam, H.-Y. Optimization of Raman-Assisted Fiber Optical Parametric Amplifier Gain. J. Light. Technol. 2011, 29, 1172–1181. [Google Scholar] [CrossRef]
- Wang, S.H.; Xu, L.; Wai, P.K.A.; Tam, H.-Y. 6.4-dB Small signal gain enhancement in Raman-assisted fiber optical parametric amplifiers. In Proceedings of the 2008 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 4–9 May 2008; pp. 1–2. [Google Scholar]
- Stephens, M.F.C.; Philips, I.D.; Rosa, P.; Harper, P.; Doran, N. Improved WDM performance of a fibre optical parametric amplifier using Raman-assisted pumping. Opt. Express 2015, 23, 902–911. [Google Scholar] [CrossRef]
- Fludger, C.; Handerek, V.; Mears, R. Pump to signal RIN transfer in Raman fiber amplifiers. J. Light. Technol. 2001, 19, 1140–1148. [Google Scholar] [CrossRef]
- Salman, M.H.; Hassan, A.H.; Yasser, H.A. Theoretical Calibration of Raman-Assisted Fiber Optical Parametric Amplifiers in Wavelength-Division Multiplexing. IPASJ Int. J. Electron. Commun. 2014, 2, 9. [Google Scholar]
- OptSim—Photonic System Tools Synopsys Photonic Solutions. Available online: https://www.synopsys.com/photonic-solutions/rsoft-system-design-tools/system-network-optsim.html (accessed on 8 January 2021).
- Laming, R.; Gnauck, A.; Giles, C.; Zervas, M.N.; Payne, D. High-sensitivity two-stage erbium-doped fiber preamplifier at 10 Gb/s. IEEE Photon. Technol. Lett. 1992, 4, 1348–1350. [Google Scholar] [CrossRef] [Green Version]
- Liang, Y.; Li, J.; Chui, P.; Wong, K. High-Sensitivity Optical Preamplifier for WDM Systems Using an Optical Parametric Amplifier. IEEE Photon. Technol. Lett. 2009, 21, 1562–1564. [Google Scholar] [CrossRef] [Green Version]
- Hansryd, J.; Andrekson, P. Broad-band continuous-wave-pumped fiber optical parametric amplifier with 49-dB gain and wavelength-conversion efficiency. IEEE Photon. Technol. Lett. 2001, 13, 194–196. [Google Scholar] [CrossRef]
- Olonkins, S.; Supe, A.; Bobrovs, V.; Prigunovs, D. Comparison of Single-pump FOPA and Raman Assisted FOPA Performance in a 16 Channel DWDM Transmission System. In Proceedings of the 2019 Photonics & Electromagnetics Research Symposium-Fall (PIERS-Fall), Xiamen, China, 17–20 December 2019; pp. 723–727. [Google Scholar]
- Olonkins, S.; Bobrovs, V.; Ivanovs, G. Investigation of Fiber Optical Parametric Amplifier Performance in DWDM Transmission Systems. Elektron. Elektrotech. 2014, 20, 88–91. [Google Scholar] [CrossRef] [Green Version]
- Silva, N.A.; Muga, N.J.; Pinto, A.N. Effective Nonlinear Parameter Measurement Using FWM in Optical Fibers in a Low Power Regime. IEEE J. Quantum Electron. 2009, 46, 285–291. [Google Scholar] [CrossRef]
- Supe, A.; Fernandes, G.; Muga, N.; Pinto, A.; Ferreira, M. Experimental Characterization of a Highly Nonlinear Fiber. In 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications; Martins Costa, M.F.P.C., Ed.; International Society for Optics and Photonics: Porto, Portugal, 18 November 2013; p. 87854D. [Google Scholar]
- Liu, X.; Luan, H.; Dai, B.; Lan, B. Influence of fiber link impairments to Eb/No estimation in CO-OFDM systems with QPSK mapping. Optik 2013, 124, 1977–1981. [Google Scholar] [CrossRef]
Fiber Type | Standard SMF | NZ-DSF | HNLF | |
---|---|---|---|---|
Parameter | ||||
Attenuation coefficient (dB/km) | 0.20 | 0.19 | 0.96 | |
Dispersion coefficient (ps/nm/km) | 18 | 4 | 0 | |
Dispersion slope (ps/(nm2 km)) | 0.086 | 0.108 | 0.016 | |
Effective area (µm2) | 85 | 72 | 10 | |
Nonlinear index (m2/W) | 2.21 × 10−20 | 2.31 × 10−20 | 3.7 × 10−20 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Supe, A.; Zakis, K.; Gegere, L.; Redka, D.; Porins, J.; Spolitis, S.; Bobrovs, V. Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System. Fibers 2021, 9, 9. https://doi.org/10.3390/fib9020009
Supe A, Zakis K, Gegere L, Redka D, Porins J, Spolitis S, Bobrovs V. Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System. Fibers. 2021; 9(2):9. https://doi.org/10.3390/fib9020009
Chicago/Turabian StyleSupe, Andis, Kaspars Zakis, Lilita Gegere, Dmitrii Redka, Jurgis Porins, Sandis Spolitis, and Vjaceslavs Bobrovs. 2021. "Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System" Fibers 9, no. 2: 9. https://doi.org/10.3390/fib9020009
APA StyleSupe, A., Zakis, K., Gegere, L., Redka, D., Porins, J., Spolitis, S., & Bobrovs, V. (2021). Raman Assisted Fiber Optical Parametric Amplifier for S-Band Multichannel Transmission System. Fibers, 9(2), 9. https://doi.org/10.3390/fib9020009