Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Leaf Extract
2.2. Preparation of ZnO Nanoparticles by the Green Chemistry Method
2.3. Preparation of ZnO Nanoparticles by the Wet Chemistry Method
2.4. Characterization of ZnO
2.5. Nanocomposite Coating on Cotton Fabrics
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mehta, M.D. Nanotechnology and the Developing World Lab-on-Chip Technology for Health and Environmental Applications. Bull. Sci. Technol. Soc. 2008. [Google Scholar] [CrossRef]
- Thirumala Rao, G.; Babu, B.; Joyce Stella, R.; Pushpa Manjari, V.; Venkata Reddy, C.; Shim, J.; Ravikumar, R.V.S.S.N. Synthesis and characterization of VO2+ doped ZnO-CdS composite nanopowder. J. Mol. Struct. 2015, 1081, 254–259. [Google Scholar] [CrossRef]
- Simončič, B.; Klemenčič, D. Preparation and performance of silver as an antimicrobial agent for textiles: A review. Text. Res. J. 2016, 86, 210–223. [Google Scholar] [CrossRef]
- User, G.; Durán, N.; Marcato, P.D.; De Souza, G.I.H.; Alves, O.L.; Esposito, E. Delivered by Ingenta to: Antibacterial Effect of Silver Nanoparticles Produced by Fungal Process on Textile Fabrics and Their Effluent Treatment. J. Biomed. Nanotechnol. 2007, 3, 203–208. [Google Scholar] [CrossRef] [Green Version]
- Vigneshwaran, N.; Kumar, S.; Kathe, A.A.; Varadarajan, P.V.; Prasad, V. Functional finishing of cotton fabrics using zinc oxide-soluble starch nanocomposites. Nanotechnology 2006, 17, 5087–5095. [Google Scholar] [CrossRef]
- Fei, B.; Deng, Z.; Xin, J.H.; Zhang, Y.; Pang, G. Room temperature synthesis of rutile nanorods and their applications on cloth. Nanotechnology 2006, 17, 1927–1931. [Google Scholar] [CrossRef]
- Hassabo, A.G.; El-Naggar, M.E.; Mohamed, A.L.; Hebeish, A.A. Development of multifunctional modified cotton fabric with tri-component nanoparticles of silver, copper and zinc oxide. Carbohydr. Polym. 2019, 210, 144–156. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, G.; Sun, G.; Xu, F.; Li, H.; Li, S.; Fu, S. Facile synthesis of SiO2 @TiO2 hybrid NPs with improved photocatalytic performance. Micro Nano Lett. 2018, 13, 666–668. [Google Scholar] [CrossRef]
- Baglioni, P.; Dei, L.; Fratoni, L.; Lo Nostro, P.; Moroni, M. Process for the Preparation of Nano- and Micro-Particles of Group II and Transition Metals Oxides and Hydroxides, the Nano- and Micro-Particles Thus Obtained and Their Use in the Ceramic, Textile and Paper Industries. 2003. Available online: https://patents.google.com/patent/CA2480303A1/en11 (accessed on 8 October 2020).
- Subash, A.A.; Chandramouli, K.V.; Ramachandran, T.; Rajendran, R.; Muthusamy, M. Preparation, characterization, and functional analysis of zinc oxide nanoparticle-coated cotton fabric for antibacterial efficacy. J. Text. Inst. 2012, 103, 298–303. [Google Scholar] [CrossRef]
- Wong, Y.W.H.; Yuen, C.W.M.; Leung, M.Y.S.; Ku, S.K.A.; Lam, H.L.I. Selected applications of nanotechnology in textiles. AUTEX Res. J. 2006, 6, 1–8. [Google Scholar]
- Adraider, Y.; Pang, Y.X.; Nabhani, F.; Hodgson, S.N.; Sharp, M.C.; Al-Waidh, A. Photocatalytic activity of titania coatings synthesised by a combined laser/sol-gel technique. Mater. Res. Bull. 2014, 54, 54–60. [Google Scholar] [CrossRef]
- Pan, Z.W.; Dai, Z.R.; Wang, Z.L. Nanobelts of semiconducting oxides. Science 2001, 291, 1947–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arnold, M.S.; Avouris, P.; Pan, Z.W.; Wang, Z.L. Field-effect transistors based on single semiconducting oxide nanobelts. J. Phys. Chem. B 2003, 107, 659–663. [Google Scholar] [CrossRef]
- Akiyama, H.; Yamasaki, O.; Kanzaki, H.; Tada, J.; Arata, J. Effects of zinc oxide on the attachment of Staphylococcus aureus strains. J. Dermatol. Sci. 1998, 17, 67–74. [Google Scholar] [CrossRef]
- Fu, S.; Sun, Z.; Huang, P.; Li, Y.; Hu, N. Some basic aspects of polymer nanocomposites: A critical review. Nano Mater. Sci. 2019, 1, 2–30. [Google Scholar] [CrossRef]
- Hassan, S.S.M.; Azab, W.I.M.E.; Ali, H.R.; Mansour, M.S.M. Green synthesis and characterization of ZnO nanoparticles for photocatalytic degradation of anthracene. Adv. Nat. Sci. Nanosci. Nanotechnol. 2015, 6, 45012. [Google Scholar] [CrossRef]
- Cierech, M.; Kolenda, A.; Grudniak, A.M.; Wojnarowicz, J.; Woźniak, B.; Gołaś, M.; Swoboda-Kopeć, E.; Łojkowski, W.; Mierzwińska-Nastalska, E. Significance of polymethylmethacrylate (PMMA) modification by zinc oxide nanoparticles for fungal biofilm formation. Int. J. Pharm. 2016, 510, 323–335. [Google Scholar] [CrossRef]
- Tang, E.; Cheng, G.; Ma, X.; Pang, X.; Zhao, Q. Surface modification of zinc oxide nanoparticle by PMAA and its dispersion in aqueous system. Appl. Surf. Sci. 2006, 252, 5227–5232. [Google Scholar] [CrossRef]
- Ramzan Parra, M.; Haque, F.Z. Structural and optical properties of poly-vinylpyrrolidone modified ZnO nanorods synthesized through simple hydrothermal process. Optik (Stuttgart) 2014, 125, 4629–4632. [Google Scholar] [CrossRef]
- Azam, A.; Ahmed, F.; Arshi, N.; Chaman, M.; Naqvi, A.H. Formation and characterization of ZnO nanopowder synthesized by sol-gel method. J. Alloys Compd. 2010, 496, 399–402. [Google Scholar] [CrossRef]
- Wang, R.; Xin, J.H.; Tao, X.M.; Daoud, W.A. ZnO nanorods grown on cotton fabrics at low temperature. Chem. Phys. Lett. 2004, 398, 250–255. [Google Scholar] [CrossRef]
- Riva, A. Que es el UPF en un tejido. Rev. Química Text. 1999, 144, 72–80. [Google Scholar]
- Gonzáles-Púmariega, M.; Vernhes Tamayo, M.S.-L.A. La radiación ultravioleta, su efecto dañino y consecuencias para la salud humana. Rev. Fac. Nac. Salud. Pública 2002, 20, 1–17. [Google Scholar]
- Cabrera Morales, C.M.; López-Nevot, M.A. Efectos de la radiación ultravioleta (UV) en la inducción de mutaciones de p53 en tumores de piel. Oncology 2006, 29, 25–32. [Google Scholar] [CrossRef] [Green Version]
- Gilabertea, Y.; Coscojuelaa, C.; Ma Carmen Sáenz de Santamaríab, S.G. Fotoprotección. Actas Dermosifiliogr. 2003, 94, 271–293. [Google Scholar] [CrossRef]
- Aquino, P.; Osorio, A.M.; Ninán, E.; Torres, F. Caracterización de nanopartículas de ZnO sintetizadas por el método de precipitación y su evaluación en la incorporación en pinturas esmalte. Rev. Soc. Química Perú 2018, 84, 5–17. [Google Scholar] [CrossRef]
- Karthik, S.; Siva, P.; Balu, K.S.; Suriyaprabha, R.; Rajendran, V.; Maaza, M. Acalypha indica–mediated green synthesis of ZnO nanostructures under differential thermal treatment: Effect on textile coating, hydrophobicity, UV resistance, and antibacterial activity. Adv. Powder Technol. 2017, 28, 3184–3194. [Google Scholar] [CrossRef]
- Çakir, B.A.; Budama, L.; Topel, Ö.; Hoda, N. Synthesis of ZnO nanoparticles using PS-b-PAA reverse micelle cores for UV protective, self-cleaning and antibacterial textile applications. Colloids Surf. A Physicochem. Eng. Asp. 2012, 414, 132–139. [Google Scholar] [CrossRef]
- Subbiah, D.K.; Mani, G.K.; Babu, K.J.; Das, A.; Balaguru Rayappan, J.B. Nanostructured ZnO on cotton fabrics—A novel flexible gas sensor & UV filter. J. Clean. Prod. 2018, 194, 372–382. [Google Scholar] [CrossRef]
- Román, L.E.; Huachani, J.; Uribe, C.; Solís, J.; Gómez, M.; Costa, S.; Costa, S. Blocking erythemally weighted UV radiation using cotton fabrics functionalized with ZnO nanoparticles in situ. Appl. Surf. Sci. 2019, 469, 204–212. [Google Scholar] [CrossRef]
- Tran Thi, V.H.; Lee, B.K. Development of multifunctional self-cleaning and UV blocking cotton fabric with modification of photoactive ZnO coating via microwave method. J. Photochem. Photobiol. A Chem. 2017, 338, 13–22. [Google Scholar] [CrossRef]
- Association of Textile, Apparel and Material Professionals, Transmittance or Blocking of Erythemally Weighted Ultraviolet through Fabric AATCC Test Method. Available online: https://members.aatcc.org/store/tm183/579/ (accessed on 6 December 2020).
- Qu, M.; He, J.; Zhang, J. Superhydrophobicity, Learn from the Lotus Leaf. In Biomimetics Learning from Nature; InTech: London, UK, 2010. [Google Scholar]
- International, A. ASTM D6603-12 Especificación Estándar para el Etiquetado de Textiles con Protección UV. Available online: https://www.astm.org/DATABASE.CART/HISTORICAL/D6603-12.htm (accessed on 6 December 2020).
- Wang, L.; Zhang, X.; Li, B.; Sun, P.; Yang, J.; Xu, H.; Liu, Y. Superhydrophobic and ultraviolet-blocking cotton textiles. ACS Appl. Mater. Interfaces 2011, 3, 1277–1281. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, A.; Das, A.; Hatua, P. Effects of fabric thickness and inter-yarn pore size on ultraviolet radiation protection by polyester woven fabrics. Fibers Polym. 2015, 16, 1163–1168. [Google Scholar] [CrossRef]
- Almutawa, F.; Buabbas, H. Photoprotection: Clothing and glass. Dermatol. Clin. 2014, 32, 439–448. [Google Scholar] [CrossRef] [PubMed]
- Pandimurugan, R.; Thambidurai, S. UV protection and antibacterial properties of seaweed capped ZnO nanoparticles coated cotton fabrics. Int. J. Biol. Macromol. 2017, 105, 788–795. [Google Scholar] [CrossRef]
- Radoičić, M.B.; Milošević, M.V.; Miličević, D.S.; Suljovrujić, E.H.; Ćirić-Marjanović, G.N.; Radetić, M.M.; Šaponjić, Z.V. Influence of TiO2 nanoparticles on formation mechanism of PANI/TiO2 nanocomposite coating on PET fabric and its structural and electrical properties. Surf. Coat. Technol. 2015, 278, 38–47. [Google Scholar] [CrossRef]
- Yetisen, A.K.; Qu, H.; Manbachi, A.; Butt, H.; Dokmeci, M.R.; Hinestroza, J.P.; Skorobogatiy, M.; Khademhosseini, A.; Yun, S.H. Nanotechnology in Textiles. ACS Nano 2016, 10, 3042–3068. [Google Scholar] [CrossRef]
- Li, D.; Guo, Z. Versatile superamphiphobic cotton fabrics fabricated by coating with SiO2/FOTS. Appl. Surf. Sci. 2017, 426, 271–278. [Google Scholar] [CrossRef]
- Ouadil, B.; Cherkaoui, O.; Safi, M.; Zahouily, M. Surface modification of knit polyester fabric for mechanical, electrical and UV protection properties by coating with graphene oxide, graphene and graphene/silver nanocomposites. Appl. Surf. Sci. 2017, 414, 292–302. [Google Scholar] [CrossRef]
- Shateri-Khalilabad, M.; Yazdanshenas, M.E. Bifunctionalization of cotton textiles by ZnO nanostructures: Antimicrobial activity and ultraviolet protection. Text. Res. J. 2013, 83, 993–1004. [Google Scholar] [CrossRef]
- Belay, A.; Mekuria, M.; Adam, G. Incorporation of zinc oxide nanoparticles in cotton textiles for ultraviolet light protection and antibacterial activities. Nanomater. Nanotechnol. 2020, 10, 184798042097005. [Google Scholar] [CrossRef]
- Zhang, D.; Chen, L.; Fang, D.; Toh, G.W.; Yue, X.; Chen, Y.; Lin, H. In situ generation and deposition of nano-ZnO on cotton fabric by hyperbranched polymer for its functional finishing. Text. Res. J. 2013, 83, 1625–1633. [Google Scholar] [CrossRef]
- Kar, T.R.; Samanta, A.K.; Sajid, M.; Kaware, R. UV protection and antimicrobial finish on cotton khadi fabric using a mixture of nanoparticles of zinc oxide and poly-hydroxy-amino methyl silicone. Text. Res. J. 2019, 89, 2260–2278. [Google Scholar] [CrossRef]
- Montazer, M.; Maali Amiri, M. ZnO nano reactor on textiles and polymers: Ex situ and in situ synthesis, application, and characterization. J. Phys. Chem. B 2014, 118, 1453–1470. [Google Scholar] [CrossRef] [PubMed]
Protection Category | UPF Rating | %UV Radiation Blocked |
---|---|---|
Good | 15–24 | 93.3–95.9 |
Very good | 25–39 | 96.0–97.4 |
Excellent | 40–50, 50+ | 97.5 to 98+ |
Transmittance (%T) | |||
---|---|---|---|
Type of Textile | Sample Control | Textile with NP ZnO Chemical Treatment | Textile with NP ZnO Green Treatment |
30/70% | 1.43 | 1.16 | 0.872 |
70/30% | 0.828 | 0.95 | 0.75 |
Anti-fluid | 0.823 | 0.614 | 0.601 |
Anti-microbial | 0.619 | 0.709 | 0.567 |
Rayón | 9.175 | 2.017 | 2.017 |
Influence with UV Lamp | |||
---|---|---|---|
Type of Textile | UV Intensity of Textile Control (mW/cm2) | UV Intensity Textile with NP ZnO Chemical Treatment (mW/cm2) | % Decrease Compared to the Control |
30/70 | 0.006 | 0.005 | 16.66 |
70/30 | 0.008 | 0.005 | 37.5 |
Anti-fluid | 0.001 | 0.001 | 0 |
Anti-microbial | 0.001 | 0.001 | 0 |
Rayón | 0.052 | 0.028 | 46.15 |
Influence with UV Lamp | |||
---|---|---|---|
Type of Textile | UV Intensity of Textile Control (mW/cm2) | UV Intensity Textile with NP ZnO Green Treatment (mW/cm2) | % Decrease Compared to the Control |
30/70 | 0.006 | 0.005 | 17.22 |
70/30 | 0.008 | 0.006 | 25 |
Anti-fluid | 0.001 | 0.001 | 0 |
Anti-microbial | 0.001 | 0.001 | 0 |
Rayón | 0.052 | 0.025 | 51.92 |
Influence with UV Solar Radiation | |||
---|---|---|---|
Type of Textile | UV Intensity of Textile Control (mW/cm2) | UV Intensity Textile with NP ZnO Chemical Treatment (mW/cm2) | % Decrease Compared to the Control |
30/70 | 0.049 | 0.0425 | 13.26 |
70/30 | 0.052 | 0.049 | 5.77 |
Antifluid | 0.016 | 0.008 | 50 |
Antimicrobial | 0.012 | 0.0155 | −29.16 |
Rayón | 0.226 | 0.091 | 59.73 |
Influence with UV Solar Radiation | |||
---|---|---|---|
Type of Textile | UV intensity of Textile Control (mW/cm2) | UV Intensity Textile with NP ZnO Green Treatment (mW/cm2) | % Decrease Compared to the Control |
30/70 | 0.049 | 0.0385 | 21.42 |
70/30 | 0.052 | 0.052 | 0 |
Anti-fluid | 0.016 | 0.0105 | 34.37 |
Anti-microbial | 0.012 | 0.013 | −8.33 |
Rayón | 0.226 | 0.099 | 56.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Asmat-Campos, D.; Delfín-Narciso, D.; Juárez-Cortijo, L. Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers 2021, 9, 10. https://doi.org/10.3390/fib9020010
Asmat-Campos D, Delfín-Narciso D, Juárez-Cortijo L. Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers. 2021; 9(2):10. https://doi.org/10.3390/fib9020010
Chicago/Turabian StyleAsmat-Campos, David, Daniel Delfín-Narciso, and Luisa Juárez-Cortijo. 2021. "Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation" Fibers 9, no. 2: 10. https://doi.org/10.3390/fib9020010
APA StyleAsmat-Campos, D., Delfín-Narciso, D., & Juárez-Cortijo, L. (2021). Textiles Functionalized with ZnO Nanoparticles Obtained by Chemical and Green Synthesis Protocols: Evaluation of the Type of Textile and Resistance to UV Radiation. Fibers, 9(2), 10. https://doi.org/10.3390/fib9020010