Tensile, Flexural, and Morphological Properties of Jute/Oil Palm Pressed Fruit Fibers Reinforced High Density Polyethylene Hybrid Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Compositional Analysis of the Fibers
3.2. Energy Dispersive X-ray (EDX) Spectroscopic Analysis of Jute and OPPF Fibers
3.3. Surface Morphology of the Jute and OPPF Fibers
3.4. Microstructural Examination of the Developed Composites
3.5. Tensile Properties of HDPE/Jute Fiber/OPPF Fiber Composite
3.5.1. Ultimate Tensile Strength (UTS)
3.5.2. Tensile Modulus
3.6. Flexural Properties of the Composite and the Control Sample
3.6.1. Flexural Strength at Peak
3.6.2. Flexural Modulus
4. Conclusions
- Alkaline treatment of the fibers was instrumental in the removal of hemicellulose and lignin contents present in the fiber which was demonstrated by the improved properties observed in treated fibers reinforced HDPE as compared to the untreated ones.
- Treated 20 wt.% jute fiber reinforced HDPE came out with the best tensile and flexural properties, signifying the reinforcing efficiency of jute fiber while the hybrid composites showed intermediate property particularly 8 wt.% JF and 12 wt.% OPPFF.
- The research showed that as the weight fraction of OPPF fiber increases in the mix, microstructural features such as a cavity, fiber fracture, and fiber touching were more prominent. This led to a reduction in flexural and tensile properties while the increase in jute fiber resulted in improved adhesion and reduced cavities and fiber fracture.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gibson, F.R. Principle of Composite Material Mechanics; CRC Press: Boca Raton, FL, USA, 2011; Volume 3, pp. 7–14. [Google Scholar]
- Bisht, S.; Lamba, N. Use of Simulation Driven Design for New Product Development. Int. J. Emerg. Technol. 2014, 5, 201–205. [Google Scholar]
- Akbarov, S.D.; Guz, A.N. Mechanics of Curved Composites; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2000; p. 446. [Google Scholar]
- Mochane, M.J.; Mokhena, T.C.; Mokhothu, T.H.; Mtibe, A.; Sadiku, E.R.; Ray, S.S.; Ibrahim, I.D.; Daramola, O.O. Recent progress on natural fiber hybrid composites for advanced applications: A review. Express Polym. Lett. 2019, 13, 159–198. [Google Scholar] [CrossRef]
- Oladele, I.O.; Ayanleye, O.T.; Adediran, A.A.; Makinde-Isola, B.A.; Taiwo, A.S.; Akinlabi, E.T. Characterization of Wear and Physical Properties of Pawpaw–Glass Fiber Hybrid Reinforced Epoxy Composites for Structural Application. Fibers 2020, 8, 44. [Google Scholar] [CrossRef]
- Ahmad, F.; Choi, H.S.; Park, M.K. A review: Natural fiber composites selection in view of mechanical, light weight, and economic properties. Macromol. Mater. Eng. 2015, 300, 10–24. [Google Scholar] [CrossRef]
- Alamri, H.; Low, I.M. Effect of water absorption on the mechanical properties of n-SiC filled recycled cellulose fibre reinforced epoxy eco-nanocomposites. Polym. Test. 2012, 31, 810–818. [Google Scholar] [CrossRef]
- Jawaid, M.; Khalil, H.P.S.A.; Bakar, A.A. Mechanical Performance of Oil Palm Empty Fruit Bunches/Jute Fibers Reinforced Epoxy Hybrid Composites. Mater. Sci. Eng. A 2010, 527, 7944–7949. [Google Scholar] [CrossRef]
- Oladele, I.O.; Oladejo, M.O.; Adediran, A.A.; Makinde-Isola, B.A.; Owa, A.F.; Akinlabi, E.T. Influence of designated properties on the characteristics of dombeya buettneri fiber/graphite hybrid reinforced polypropylene composites. Sci. Rep. 2020, 10, 1–13. [Google Scholar] [CrossRef]
- Dalbehera, S.; Acharya, S.K. Study on Mechanical Properties of Natural Fiber Reinforced Woven Jute-Glass Hybrid Epoxy Composites. Adv. Polym. Sci. Technol. 2014, 4, 1–6. [Google Scholar]
- Debiprasad, G.; Kousik, D.; Palash, P.; Subhankar, M. Jute Composites as Wood Substitute. Int. J. Text. Sci. 2012, 1, 84–93. [Google Scholar]
- Shahbandeh, M. Palm Oil: Global Production Volume 2012/13–2020/21. Available online: https://www.statista.com/statistics/613471/palm-oil-production-volume-worldwide (accessed on 27 May 2021).
- Singh, E.; Deepak, D.; Aggarwal, L.; Gupta, V.K. Fabrication and Characterization of Jute Fiber-Reinforced-Recycled Polyethylene Composites. In Proceedings of the International Conference on Research and Innovations in Mechanical Engineering; Lecture Notes in Mechanical Engineering; Khangura, S., Singh, P., Singh, H., Brar, G., Eds.; Springer: New Delhi, India, 2014. [Google Scholar] [CrossRef]
- Chestee, S.S.; Poddar, P.; Sheel, T.K.; Rashid, M.M.; Khan, R.A.; Chowdhury, A.M.S. Short Jute Fiber Reinforced Polypropylene Composites: Effect of Nonhalogenated Fire Retardants. Adv. Chem. 2017, 2017, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ovalı, S.; Sancak, E. Investigation of Mechanical Properties of Jute Fiber Reinforced Low Density Polyethylene Composites. J. Nat. Fibers 2020, 1–18. [Google Scholar] [CrossRef]
- AbuBakar, A.; Hassan, A.; Mohd Yusof, A.F. Mechanical and Thermal Properties of Oil Palm Empty Fruit Bunch-Filled Unplasticized Poly (Vinyl Chloride) Composites. Polym. Polym. Compos. 2005, 13, 607–617. [Google Scholar]
- Karina, M.; Onggo, H.; Abdullah, A.H.D.; Syampurwadi, A. Effect of oil palm empty fruit bunch fiber on the physical and mechanical properties of fiber glass reinforced polyester resin. J. Biol. Sci. 2008, 8, 101–106. [Google Scholar]
- Wong, K.J.; Nirmal, U.; Lim, B.K. Impact behavior of short and continuous fiber-reinforced polyester composites. J. Reinf. Plast. Compos. 2010, 29, 3463–3474. [Google Scholar] [CrossRef]
- Anuar, H.; Ahmad, S.H.; Rasid, R.; Daud, N.S.N. Tensile and impact properties of thermoplastic natural rubber reinforced short glass fiber and empty fruit bunch hybrid composites. Polym.-Plast. Technol. Eng. 2006, 45, 1059–1063. [Google Scholar] [CrossRef]
- Amin, M.; Anuar, K.; Badri, H.K. Palm-based bio-composites hybridized with kaolinite. J. Appl. Polym. Sci. 2007, 105, 2488–2496. [Google Scholar] [CrossRef]
- Jacob, M.; Varughese, K.T.; Thomas, S. Water sorption studies of hybrid biofiber-reinforced natural rubber biocomposites. Biomacromolecules 2005, 6, 2969–2979. [Google Scholar] [CrossRef]
- Jacob, M.; Varughese, K.T.; Thomas, S. Dielectric characteristics of sisal-oil palm hybrid biofibre reinforced natural rubber biocomposites. J. Mater. Sci. 2006, 41, 5538–5547. [Google Scholar] [CrossRef]
- Jacob, M.; Thomas, S.; Varughese, K.T. Biodegradability and Aging Studies of Hybrid Biofiber Reinforced Natural Rubber Biocomposites. J. Biobased Mater. Bioenergy 2007, 1, 118–126. [Google Scholar] [CrossRef]
- Daramola, O.O.; Akinwekomi, A.D.; Adediran, A.A.; Akindote-White, O.; Sadiku, E.R. Mechanical Performance and Water Uptake Behaviour of Treated Bamboo Fibre-Reinforced High-Density Polyethylene Composites. Heliyon 2019, 5, e02028. [Google Scholar] [CrossRef] [Green Version]
- Van Soest, P.J.; Wine, R.H. Determination of lignin and cellulose in Acid-Detergent fiber with permanganate. J. Assoc. Off. Agric. Chem. 1968, 51, 780–785. [Google Scholar] [CrossRef]
- Georing, H.K.; Van Soest, P.J. Forage Fiber Analysis. USDA Agricultural Handbook; USDA ARS: Washington, DC, USA, 1970; Volume 397, pp. 1–12. [Google Scholar]
- ASTM D636. Standard Test Method for Tensile Properties of Plastics; ASTM International: West Conshohocken, PA, USA, 2014. [Google Scholar]
- ASTM D790. Standard Test Method for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials; ASTM International: West Conshohocken, PA, USA, 2017. [Google Scholar]
- Benmansour, N.; Agoudjil, B.; Gherabli, A.; Abdelhak, K.; Boudenne, A. Thermal and mechanical performance of natural mortal reinforced with date palm fibers for use as insulating materials in building. Energy Build. 2014, 81, 98–104. [Google Scholar] [CrossRef]
- Oladele, I.; Oghie, I.I.; Adediran, A.A.; Akinwekomi, A.; Adetula, Y.; Olayanju, T.M.A. Modified palm kernel shell fiber/particulate cassava peel hybrid reinforced epoxy composites. Results Mater. 2019, 5, 10053. [Google Scholar] [CrossRef]
- Wang, H.; Memon, H.; Hassan, E.A.; Maih, M.S.; Ali, M.A. Effect of Jute Fiber Modification on the Mechanical Properties of Jute Fiber Composites. Materials 2019, 12, 1226. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, L.; Ansari, M.N.M.; Pua, G.; Jawaid, M.; Saiful, I.M. A Review on Natural Fibre Reinforced Polymer Composite and Its Applications. Int. J. Polym. Sci. 2015, 2015, 243947. [Google Scholar] [CrossRef] [Green Version]
- Adediran, A.A.; Balogun, O.A.; Akinwande, A.A.; Adesina, O.S.; Olasoju, O.S. Influence of chemical treatment on the properties of cement-paper hybrid composites for ceiling board application. Heliyon 2020, 6, e04512. [Google Scholar] [CrossRef]
- Daramola, O.O.; Oladele, I.O.; Adewuyi, B.O.; Sadiku, R.; Agwuncha, S.C. Influence of Submicron Agro Waste Silica Particles and Vinyl Acetate on Mechanical Properties of High-Density Polyethylene Matrix Composites. West Indian J. Eng. 2015, 38, 96–107. [Google Scholar]
- Yan, L.; Chouw, N.; Yuan, X. Improving the mechanical properties of natural fiber fabric reinforced epoxy composites by alkali treatment. J. Reinf. Plast. Compos. 2012, 31, 425–437. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalila, H.P.S.; Bakar, A.A.; Noorunnisa Khanam, P. Chemical resistance, void content and tensile properties of oil palm/jute fibre reinforced polymer hybrid composites. Mater. Des. 2011, 32, 1014–1019. [Google Scholar] [CrossRef]
- Shanmugam, D.; Thiruchitrambalam, M. Influence of alkali treatment and layering pattern on the tensile and flexural properties of Palmyra palm leaf stalk fiber (PPLSF)/jute fiber polyester hybrid composites. Compos. Interfaces 2014, 21, 3–12. [Google Scholar] [CrossRef]
- Bernal, C.R. Deformation and Fracture Behavior of Natural Fiber Reinforced Polypropylene. In Polyolefin Composites; John Wiley & Sons: Hoboken, NJ, USA, 2008; Chapter 7; pp. 178–203. [Google Scholar]
- Jacob, M.; Thomas, S.; Varughese, K.T. Natural rubber composites reinforced with sisal/oil palm hybrid fibers: Tensile and cure characteristics. J. Appl. Polym. Sci. 2004, 93, 2305–2312. [Google Scholar] [CrossRef]
- Jacob, M.; Thomas, S.; Varughese, K.T. Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos. Sci. Technol. 2004, 64, 955–965. [Google Scholar] [CrossRef]
- Obasi, H.C.; Iheaturu, N.C.; Onuoha, F.N.; Chike-Onyegbula, C.O.; Akanbi, M.N.; Eze, V.O. Influence of alkali treatment and fiber content on the properties of oil palm press fiber reinforced epoxy biocomposites. Am. J. Eng. Res. 2014, 3, 117–123. [Google Scholar]
- Hamma, A.; Kaci, M.; Ishak, Z.A.M.; Pegoretti, A. Starch-grafted-polypropylene/kenaf fibres composites. Part 1: Mechanical performances and viscoelastic behavior. Compos. Part A Appl. Sci. Manuf. 2014, 56, 328–335. [Google Scholar] [CrossRef]
- Elbadry, E.A.; Aly-Hassan, M.S.; Hamada, H. Mechanical Properties of Natural Jute Fabric/Jute Mat Fiber Reinforced Polymer Matrix Hybrid Composites. Adv. Mech. Eng. 2012, 4, 354547. [Google Scholar] [CrossRef]
- Mohd, N.N.; Khalina, A.; Sapuan, S.M.; Dayang, A.H.; Rahmah, M.; Hanafee, Z. A Review: Fibres, Polymer Matrices and Composites. Pertanika J. Sci. Technol. 2017, 25, 1085–1102. [Google Scholar]
- Yusoff, M.Z.M.; Sapuan, S.M.; Ismail, N.; Wirawan, R. Mechanical Properties of Short Random Oil Palm Fibre Reinforced Epoxy Composites. Sains Malays. 2010, 39, 87–92. [Google Scholar]
- Selver, E.; Ucar, N.; Gulmez, T. Effect of Stacking Sequence on Tensile, Flexural and Thermomechanical Properties of Hybrid Flax/Glass and Jute/Glass Thermoset Composites. J. Ind. Text. 2018, 48, 494–520. [Google Scholar] [CrossRef]
- Swain, P.T.R.; Biswas, S. Influence of Fiber Surface Treatments on Physico-Mechanical Behaviour of Jute/Epoxy Composites Impregnated with Aluminium Oxide Filler. J. Compos. Mater. 2017, 51, 3909–3922. [Google Scholar] [CrossRef]
- Jawaid, M.; Abdul Khalila, H.P.S.; Bakar, A.A. Tensile and flexural properties of oil palm-woven jute fibers based epoxy composites. Mater. Sci. Eng. A 2011, 528, 5190–5195. [Google Scholar] [CrossRef]
Sample Designation | HDPE (wt.%) | OPPF Fiber (wt.%) | JF (wt.%) |
---|---|---|---|
Control (A) | 100 | - | - |
B | 80 | 8 | 12 |
C | 80 | 12 | 8 |
D | 80 | - | 20 |
E | 80 | 20 | - |
Cellulose (%) | Hemicellulose (%) | Lignin (%) | Others (%) | |
---|---|---|---|---|
Untreated jute fiber | 58.47 | 21.47 | 13.3 | 6.76 |
Treated jute fiber | 66.28 | 18.34 | 10.9 | 4.48 |
Untreated OPPF fiber | 49.43 | 23.78 | 19.43 | 7.36 |
Treated OPPF fiber | 56.72 | 19.74 | 17.23 | 6.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Daramola, O.O.; Balogun, O.A.; Adediran, A.A.; Saka, S.O.; Oladele, I.O.; Akinlabi, E.T. Tensile, Flexural, and Morphological Properties of Jute/Oil Palm Pressed Fruit Fibers Reinforced High Density Polyethylene Hybrid Composites. Fibers 2021, 9, 71. https://doi.org/10.3390/fib9110071
Daramola OO, Balogun OA, Adediran AA, Saka SO, Oladele IO, Akinlabi ET. Tensile, Flexural, and Morphological Properties of Jute/Oil Palm Pressed Fruit Fibers Reinforced High Density Polyethylene Hybrid Composites. Fibers. 2021; 9(11):71. https://doi.org/10.3390/fib9110071
Chicago/Turabian StyleDaramola, Oluyemi Ojo, Oluwatosin Abiodun Balogun, Adeolu Adesoji Adediran, Sheriff Olalekan Saka, Isiaka Oluwole Oladele, and Esther Titilayo Akinlabi. 2021. "Tensile, Flexural, and Morphological Properties of Jute/Oil Palm Pressed Fruit Fibers Reinforced High Density Polyethylene Hybrid Composites" Fibers 9, no. 11: 71. https://doi.org/10.3390/fib9110071
APA StyleDaramola, O. O., Balogun, O. A., Adediran, A. A., Saka, S. O., Oladele, I. O., & Akinlabi, E. T. (2021). Tensile, Flexural, and Morphological Properties of Jute/Oil Palm Pressed Fruit Fibers Reinforced High Density Polyethylene Hybrid Composites. Fibers, 9(11), 71. https://doi.org/10.3390/fib9110071