The Effect of Alcohol Precipitants on Structural and Morphological Features and Thermal Properties of Lyocell Fibers
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Methods
2.2.1. Rheological Measurements
2.2.2. Fibers Spinning
2.2.3. Thermal Characterization
2.2.4. Fibers’ Carbonization
2.2.5. Structural and Morphological Characterization
2.2.6. Mechanical Testing
3. Results and Discussion
3.1. Polarization Microscopy and Rheology
3.2. Structure and Morphology of the Solvent and Precursors
3.3. Mechanical Properties
3.4. Thermal Behavior
3.5. Structure of the Carbon Fibers
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Holmes, M. Global carbon fibre market remains on upward trend. Reinf. Plast. 2014, 58, 38–45. [Google Scholar] [CrossRef]
- Safiuddin, M.; Abdel-Sayed, G.; Hearn, N. Effects of Pitch-Based Short Carbon Fibers on the Workability, Unit Weight, and Air Content of Mortar Composite. Fibers 2018, 6, 63. [Google Scholar] [CrossRef] [Green Version]
- Martins, M.; Gomes, R.; Pina, L.; Pereira, C.; Reichmann, O.; Teti, D.; Correia, N.; Rocha, N. Highly Conductive Carbon Fiber-Reinforced Polymer Composite Electronic Box: Out-Of-Autoclave Manufacturing for Space Applications. Fibers 2018, 6, 92. [Google Scholar] [CrossRef] [Green Version]
- Soulis, S.; Konstantopoulos, G.; Koumoulos, E.P.; Charitidis, C.A. Impact of Alternative Stabilization Strategies for the Production of PAN-Based Carbon Fibers with High Performance. Fibers 2020, 8, 33. [Google Scholar] [CrossRef]
- Kwon, I.H.; Choi, S.M.; Wang, Y.S.; Kim, S.R.; Choi, J.S.; Lee, T.J.; Han, S.J. Lyocell Multifilament. U.S. Patent 6902804, 25 July 2003. [Google Scholar]
- Kruger, R. Cellulosic filament yarn from the NMMO process. Lenzinger Ber. 1994, 4, 49–52. [Google Scholar]
- Kim, G.W.; Kwon, S.Y.; Jeon, O.H.; OH, Y.S.; Jeong, J.C.; Kim, W.C.; Chung, I.; Lee, J.W. Lyocell Filament Fiber and Cellulose Based Tire Cord. Patent WO 2009031868, 8 September 2008. [Google Scholar]
- Golova, L.K.; Kulichikhin, V.G.; Papkov, S.P. Mechanism of dissolution of cellulose in non-aqueous dissolving systems. Rev. Polym. Sci. U.S.S.R. 1986, 28, 1995–2011. [Google Scholar] [CrossRef]
- Golova, L.K. Processing of cellulose via highly concentrated “solid solutions”. Fibre Chem. 1996, 28, 5–16. [Google Scholar] [CrossRef]
- Golova, L.K.; Romanov, V.V.; Lunina, O.B.; Platonov, V.A.; Papkov, S.P.; Khorozova, O.D.; Yakshin, V.V.; Belasheva, T.P.; Sokira, A.N. The Method of Obtaining the Solution for Forming Fibers. Patent RF 1645308, 30 April 1991. [Google Scholar]
- Golova, L.K. New Cellulose Fiber Lyocell. Rus. J. Gen. Chem. 2002, XLVI, 49–57. [Google Scholar]
- Serkov, A.T. Theory of Man-made Fibre Spinning; Khimiya: Moscow, Russia, 1975. [Google Scholar]
- Kulichikhin, V.G.; Skvortsov, I.Y.; Mironova, M.I.; Ozerin, A.N.; Kurkin, T.S.; Berkovich, A.K.; Frenkin, E.I.; Malkin, A.Y. From Polyacrylonitrile, its Solutions, and Filaments to Carbon Fibers II. Spinning PAN-Precursors and their Thermal Treatment. Adv. Polym. Technol. 2018, 37, 1099–1113. [Google Scholar] [CrossRef]
- Skvortsov, I.Y.; Kalugina, A.D.; Litvinova, E.G.; Malkin, A.Y.; Khotimskiy, V.S.; Kulichikhin, V.G. Fibers spinning from poly(trimethylsilylpropyne) solutions. J. Appl. Polym. Sci. 2020, 137, 48511. [Google Scholar] [CrossRef]
- Romanov, V.V.; Baksheev, I.P.; Finger, G.G.; Sokolovskii, B.M.; Kop’ev, M.A. State and prospects of development in the manufacture of hydrocellulose fibres based on new technologies. Fibre Chem. 1991, 23, 80–85. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Kuznetsova, L.K.; Antonov, S.V.; Kotsyuk, A.V.; Ignatenko, V.Y.; Kulichikhin, V.G. Influence of Precipitation and Conditioning Baths on the Structure, Morphology, and Properties of Cellulose Films. Fibre Chem. 2016, 48, 298–305. [Google Scholar] [CrossRef]
- Romanov, V.V.; Kruchinin, N.P.; Lunina, O.B.; Milkova, L.P.; Trifonova, N.P.; Kulichikhin, V.G. Effect of precipitation conditions on the properties of yarns obtained from solutions of cellulose in methylmorpholine oxide. Fibre Chem. 1986, 17, 417–419. [Google Scholar] [CrossRef]
- Romanov, V.V.; Sokira, A.N.; Lunina, O.B.; Iovleva, M.M. Morphological features of the structure of fibres prepared from solutions of cellulose in methylmorpholine oxide. Fibre Chem. 1988, 20, 38–39. [Google Scholar] [CrossRef]
- Banduryan, S.I.; Iovleva, M.M.; Belousov, Y.Y.; Ivanova, N.A. Structure formation in solutions of cellulose in n-methylmorpholine n-oxide and during its precipitation. Fibre Chem. 1985, 16, 323–325. [Google Scholar] [CrossRef]
- Fink, H.P.; Weigel, P.; Purz, H.J.; Ganster, J. Structure formation of regenerated cellulose materials from NMMO-solutions. Prog. Polym. Sci. 2001, 26, 1473. [Google Scholar] [CrossRef]
- Makarov, I.S.; Golova, L.K.; Vinogradov, M.I.; Mironova, M.V.; Levin, I.S.; Bondarenko, G.N.; Shandryuk, G.A.; Arkharova, N.A.; Kulichikhin, V.G. The Role of Isobutanol as a Precipitant of Cellulose Films Formed from N-Methylmorpholine N-Oxide Solutions: Phase State and Structural and Morphological Features. Polym. Sci. Ser. A 2019, 61, 598–609. [Google Scholar] [CrossRef]
- Fink, H.P.; Weigel, P.; Purz, H.J. Formation of lyocell-type fibres with skin-core structure. Lenzinger Ber. 1998, 78, 41. [Google Scholar]
- Chernenko, D.N. Development and Research of the Technological Process for Producing Carbon Fabrics from Hydrated Cellulose Fibers. Ph.D. Thesis, NIIgrafit, Moscow, Russia, 2015. [Google Scholar]
- Byrne, N.; Setty, M.; Blight, S.; Tadros, R.; Ma, Y.; Sixta, H.; Hummel, M. Cellulose-Derived Carbon Fibers Produced via a Continuous Carbonization Process: Investigating Precursor Choice and Carbonization Conditions. Macromol. Chem. Phys. 2016, 217, 2517–2524. [Google Scholar] [CrossRef]
- Dumanlı, A.G.; Windle, A.H. Carbon fibres from cellulosic precursors: A review. J. Mater. Sci. 2012, 47, 4236–4250. [Google Scholar] [CrossRef]
- Olri, P.; Plezantene, E.; Louison, S.; Paye, R. Carbonization of Cellulosic Fibrous Materials in the Presence of an Organosilicon Compound. Patent RF 2256013, 10 July 2005. [Google Scholar]
- Kazakov, M.E.; Trushnikov, A.M.; Yunitskaya, M.L. The Method of Obtaining Carbon Fiber Material. Patent RF 2045472, 9 April 1992. [Google Scholar]
- Trushnikov, A.M.; Kazakov, M.E.; Gridina, Y.F.; Vazheva, L.D.; Borisova, L.K. The Method of Obtaining Carbon Fiber Material. Patent RF 2047674, 10 November 1995. [Google Scholar]
- Konkin, A.A. Carbon and Other Heat-Resistant Fibrous Materials; Khimiya: Moscow, Russia, 1974. [Google Scholar]
- Karasev, J.V.; Lazarev, M.N.; Motorin, S.V.; Ozolin, A.A. Method for Continuous Production of Carbon Fiber from Hydrated Cellulose in the form of a Unidirectional Tow. Patent RF 2429316, 20 September 2011. [Google Scholar]
- Pradere, C.; Sauder, C. Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300–2500 K). Carbon 2008, 46, 1874–1884. [Google Scholar] [CrossRef]
- Abroskin, A.A.; Eremyanov, O.G.; Chernenko, D.N.; Chernenko, N.M. The Method of Obtaining Lyocell Hydrate Cellulose Precursor Carbon Fiber Material. Patent RF 2669273, 17 March 2016. [Google Scholar]
- Chernenko, D.N.; Beilina, N.Y.; Chernenko, N.M.; Elizarov, P.G. The Method for Carbonizing Viscose Fibrous Materials in the Process of Producing Carbon Fibers. Patent RF 2520982, 10 October 2012. [Google Scholar]
- Peng, S.; Shao, H.; Hu, X. Lyocell fibers as the precursor of carbon fibers. J. Appl. Polym. Sci. 2003, 90, 1941–1947. [Google Scholar] [CrossRef]
- Wu, Q.; Pan, D. A New Cellulose Based Carbon Fiber from a Lyocell Precursor. Text. Res. J. 2002, 72, 405–410. [Google Scholar]
- Golova, L.K.; Borodina, O.E.; Kuznetsova, L.K.; Lyubova, T.A.; Krylova, T.B. The solid-phase MMO process. Fibre Chem. 2000, 32, 243–251. [Google Scholar] [CrossRef]
- Platonov, V.A.; Smolikov, V.V. Physicochemical Foundations of Production of Hydrated Cellulose Fibers by Nontraditional Methods; Papkov, S.P., Baksheeva, I.P., Eds.; VNIIVproekt: Mytishchi, Russia, 1989; p. 166. [Google Scholar]
- Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels 2010, 3, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Orekhov, A.S.; Klechkovskaya, V.V.; Kononova, S.V. Low-voltage scanning electron microscopy of multilayer polymer systems. Crystallogr. Rep. 2017, 62, 710–715. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B Condens. Matter. 2001, 64, 075414. [Google Scholar] [CrossRef] [Green Version]
- Makarov, I.S.; Golova, L.K.; Kuznetsova, L.K.; Mironova, M.V.; Vinogradov, M.I.; Bermeshev, M.V.; Levin, I.S.; Kulichikhin, V.G. Composite Fibers from Cellulose Solutions with Additives of Bis (Trimethylsilyl) Acetylene and Alkoxysilanes: Rheology, Structure and Properties. Fibre Chem. 2019, 51, 26–31. [Google Scholar] [CrossRef]
- Golova, L.; Makarov, I.; Kuznetsova, L.; Plotnikova, E.; Kulichikhin, V. Structure—Properties Interrelationships in Multicomponent Solutions Based on Cellulose and Fibers Spun Therefrom. In Book Cellulose: Fundamental Aspects. Book 1; Van De Ven, T.G.M., Ed.; InTech Publishing: New York, NY, USA, 2013; p. 377. [Google Scholar]
- Makarov, I.S. Structure and Properties of Multicomponent Solutions based on Cellulose and Formed from Them Fibers and Films. Ph.D. Thesis, TIPS RAS, Moscow, Russia, 2011. [Google Scholar]
- Romanov, V.V.; Lunina, O.B.; Milkova, L.P.; Kulichikhin, V.G. Deformation properties of yarns spun from solutions of cellulose in N-methylmorpholine-N-oxide and selection of spinning conditions. Fibre Chem. 1989, 21, 43–45. [Google Scholar] [CrossRef]
- Kaplan, D.L. Biopolymers from Renewable Resources; Springer: Berlin/Heidelberg, Germany, 2013; p. 420. [Google Scholar]
- Zhong, T.; Liang, Y.; Jiang, S.; Yang, L.; Shi, Y.; Guo, S.; Zhang, C. Physical, antioxidant and antimicrobial properties of modified peanut protein isolate based films incorporating thymol. RSC Adv. 2017, 7, 41610. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Chen, C.; Duan, C.; Hu, H.; Li, H.; Li, J.; Liu, Y.; Ma, X.; Stavik, J.; Ni, Y. Regenerated cellulose by the lyocell process, a brief review of the process and properties. Bioresources 2018, 13, 1–16. [Google Scholar]
- Goldhalm, G. TENCEL® Carbon Precursor. Lenzinger Ber. 2012, 90, 58–63. [Google Scholar]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Mayes, H.B.; Nolte, M.W.; Beckham, G.T.; Shanks, B.H.; Broadbelt, L.J. The Alpha–Bet(a) of Glucose Pyrolysis: Computational and Experimental Investigations of 5-Hydroxymethylfurfural and Levoglucosan Formation Reveal Implications for Cellulose Pyrolysis. ACS Sustain. Chem. Eng. 2014, 2, 1461–1473. [Google Scholar] [CrossRef]
- Kalt, W.; Manner, J.; Firgo, H. Moulding Materials and Spinning Materials Containing Cellulose. U.S. Patent 5679146A, 14 September 1993. [Google Scholar]
- Nakamura, K.; Hatakeyama, T.; Hatakeyama, H. Studies on Bound Water of Cellulose by Differential Scanning Calorimetry. Text. Res. J. 1981, 51, 607–613. [Google Scholar] [CrossRef]
- Arseneau, D.F. Competitive Reactions in the Thermal Decomposition of Cellulose. Can. J. Chem. 1971, 49, 632–638. [Google Scholar] [CrossRef] [Green Version]
- Cho, S.Y.; Yun, Y.S.; Jin, H.J. Carbon nanofibers prepared by the carbonization of self-assembled cellulose nanocrystals. Macromol. Res. 2014, 22, 753–756. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B Condens. Matter. 2000, 61, 14095–14107. [Google Scholar] [CrossRef] [Green Version]
- Dychalska, A.; Popielarski, P.; Franków, W.; Fabisiak, K.; Paprocki, K.; Szybowicz, M. Study of CVD diamond layers with amorphous carbon admixture by Raman scattering spectroscopy. Mater. Sci. 2015, 33, 799–805. [Google Scholar] [CrossRef] [Green Version]
Coagulant | CI, % |
---|---|
Water (25 °C) | 48 |
IBA (25 °C) | 44 |
IBA (70 °C) | 39 |
Coagulant | D 1, mkm | δ 2, MPa | E 3, GPa | ε 4, % |
---|---|---|---|---|
Water (25 °C) | 18 ± 2 | 670 ± 60 | 17 ± 3 | 10 ± 1 |
IBA (25 °C) | 21 ± 3 | 250 ± 40 | 5 ± 1 | 16 ± 5 |
IBA (25 °C) –> water 25 °C | 16 ± 2 | 380 ± 50 | 8 ± 2 | 11 ± 3 |
IBA (70 °C) –> water 25 °C | 18 ± 1 | 215 ± 25 | 5.5 ± 1.5 | 11.5 ± 2.5 |
Coagulant | Mass Loss at 1000 °C, % |
---|---|
Water (25 °C) | >90 |
IBA (25 °C) | 92 |
IBA (70 °C) | 86.6 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarov, I.S.; Golova, L.K.; Vinogradov, M.I.; Levin, I.S.; Shandryuk, G.A.; Arkharova, N.A.; Golubev, Y.V.; Berkovich, A.K.; Eremin, T.V.; Obraztsova, E.D. The Effect of Alcohol Precipitants on Structural and Morphological Features and Thermal Properties of Lyocell Fibers. Fibers 2020, 8, 43. https://doi.org/10.3390/fib8060043
Makarov IS, Golova LK, Vinogradov MI, Levin IS, Shandryuk GA, Arkharova NA, Golubev YV, Berkovich AK, Eremin TV, Obraztsova ED. The Effect of Alcohol Precipitants on Structural and Morphological Features and Thermal Properties of Lyocell Fibers. Fibers. 2020; 8(6):43. https://doi.org/10.3390/fib8060043
Chicago/Turabian StyleMakarov, Igor S., Lyudmila K. Golova, Markel I. Vinogradov, Ivan S. Levin, Georgiy A. Shandryuk, Natalia A. Arkharova, Yaroslav V. Golubev, Anna K. Berkovich, Timofei V. Eremin, and Elena D. Obraztsova. 2020. "The Effect of Alcohol Precipitants on Structural and Morphological Features and Thermal Properties of Lyocell Fibers" Fibers 8, no. 6: 43. https://doi.org/10.3390/fib8060043
APA StyleMakarov, I. S., Golova, L. K., Vinogradov, M. I., Levin, I. S., Shandryuk, G. A., Arkharova, N. A., Golubev, Y. V., Berkovich, A. K., Eremin, T. V., & Obraztsova, E. D. (2020). The Effect of Alcohol Precipitants on Structural and Morphological Features and Thermal Properties of Lyocell Fibers. Fibers, 8(6), 43. https://doi.org/10.3390/fib8060043