Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Weibull Distribution
5. Conclusions
- The differences between the compressive strength values for the six groups of specimens were in the range of 3.4 to 6.0%, meaning that the different effects of the different fiber combinations cannot be judged very well. On the other hand, the mixtures with high contents of 15 mm micro-steel fibers exhibited higher splitting tensile strength than others, showing 23 to 36% higher values. The highest splitting tensile strength value was obtained for the M5 mixture, containing 2.0% of 15 mm micro-steel fibers and 0.5% of polypropylene fibers;
- The highest impact strength value was recorded for mixture M2, containing 2.5% of 15 mm micro-steel fibers, while the second highest was recorded for mixture M5, containing 2.0% of 15 mm micro-steel fibers and 0.5% of polypropylene fibers. The impact values for mixtures M2 and M5 were higher than those for the other mixtures by up to 140%;
- Based on the results of the reliability analysis, by considering a level of reliability of 0.9, the computed impact strength values (number of blows) were 15, 43, 22, 26, 30, and 14 for specimens M1, M2, M3, M4, M5, and M6, respectively. Therefore, the two-parameter Weibull distribution eliminates the costly and time-consuming process required to conduct the experimental tests and enables structural design engineers to select the appropriate impact strength required for the design calculation from the developed reliability–impact strength table;
- Some types of fibers have a significant modulus of elasticity, which is a key parameter involved in improving the strength and docility. However, the bond and anchorage characteristics of fibers can also influence the crack number, crack width, and crack depth values, which dominate the fracture characteristics. Therefore, it is suggested that further works are required to evaluate the hybrid combinations of PP fibers with different steel fiber configurations and sizes. For instance, longer hooked-end steel fibers can be used with straight micro-steel and PP fibers.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pan, Y.; Wu, C.; Cheng, X.; Li, V.C.; He, L. Impact fatigue behaviour of GFRP mesh reinforced engineered cementitious composites for runway pavement. Constr. Build. Mater. 2020, 230, 116898. [Google Scholar] [CrossRef]
- Abid, S.R.; Abdul-Hussein, M.L.; Ali, S.H.; Kazem, A.F. Suggested modified testing techniques to the ACI 544-R repeated drop-weight impact test. Constr. Build. Mater. 2020, 244, 118321. [Google Scholar] [CrossRef]
- Nili, M.; Afroughsabet, V. Combined effect of silica fume and steel fibers on the impact resistance and mechanical properties of concrete. Int. J. Impact Eng. 2010, 37, 879–886. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Chen, S.; Zhang, N.; Zhou, Y. Low-velocity flexural impact response of steel fiber reinforced concrete subjected to freeze-thaw cycles in NaCl solution. Constr. Build. Mater. 2015, 101, 522–526. [Google Scholar] [CrossRef]
- Wang, W.; Chouw, N. The behavior of coconut fibre reinforced concrete (CFRC) under impact loading. Constr. Build. Mater. 2017, 134, 452–461. [Google Scholar] [CrossRef]
- Abid, S.R.; Shamkhi, M.S.; Mahdi, N.S.; Daek, Y.H. Hydro-abrasive resistance of engineered cementitious composites with PP and PVA fibers. Constr. Build. Mater. 2018, 187, 168–177. [Google Scholar] [CrossRef]
- Abid, S.R.; Hilo, A.; Ayoob, N.S.; Daek, Y.H. Underwater abrasion of steel fiber-reinforced self-compacting concrete. Case Stud. Constr. Mater. 2019, 11, e00299. [Google Scholar] [CrossRef]
- Murali, G.; Ramprasad, K. A feasibility of enhancing the impact strength of novel layered two stage fibrous concrete slabs. Eng. Struct. 2019, 175, 41–49. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, S.; Liu, Y. Effect of weight and drop height of hammer on the flexural impact performance of fiber-reinforced concrete. Constr. Build. Mater. 2017, 140, 31–35. [Google Scholar] [CrossRef]
- Abid, S.R.; Abdul-Hussein, M.L.; Ayoob, N.S.; Ali, S.H.; Kadhum, A.L. Repeated drop-weight impact tests on self-compacting concrete reinforced with micro-steel fiber. Heliyon 2020, 6, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoo, D.-Y.; Banthia, N. Impact resistance of fiber-reinforced concrete—A review. Cem. Conc. Compos. 2019, 104, 103389. [Google Scholar] [CrossRef]
- Abbass, A.; Abid, S.; Özakça, M. Experimental investigation on the effect of steel fibers on the flexural behavior and ductility of high-strength concrete hollow beams. Adv. Civil. Eng. 2019, 2019, 1–13. [Google Scholar] [CrossRef]
- Bošnjak, J.; Sharma, A.; Grauf, K. Mechanical Properties of Concrete with Steel and Polypropylene Fibres at Elevated Temperatures. Fibers 2019, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Ghoneim, M.; Yehia, A.; Yehia, S.; Abuzaid, W. Shear Strength of Fiber Reinforced Recycled Aggregate Concrete. Materials 2020, 13, 4183. [Google Scholar] [CrossRef]
- Abbass, A.A.; Abid, S.R.; Arna’ot, F.H.; Al-Ameri, R.A.; Özakça, M. Flexural response of hollow high strength concrete beams considering different size reductions. Structure 2019, 23, 69–86. [Google Scholar] [CrossRef]
- Nia, A.A.; Hedayatian, M.; Nili, M.; Afroughsabet, V. An experimental and numerical study on how steel and polypropylene fibers affect the impact resistance in fiber-reinforced concrete. Int. J. Impact Eng. 2012, 46, 62–73. [Google Scholar]
- Ismail, M.K.; Hassan, A.A.A.; Lachemi, M. Performance of self-consolidating engineered cementitious composite under drop-weight impact loading. ASCE J. Mater. Civil. Eng. 2019, 31, 1–11. [Google Scholar] [CrossRef]
- Mastali, M.; Dalvand, A. The impact resistance and mechanical properties of self-compacting concrete reinforced with recycled CFRP pieces. Compos. B Eng. 2016, 92, 360–376. [Google Scholar] [CrossRef]
- Ismail, M.K.; Hassan, A.A. Impact resistance and mechanical properties of self-consolidating rubberized concrete reinforced with steel fibers. ASCE J. Mater. Civil. Eng. 2017, 29, 1–14. [Google Scholar] [CrossRef]
- Abid, S.R.; Hilo, A.; Daek, Y.H. Experimental tests on the underwater abrasion of engineered cementitious composites. Constr. Build. Mater. 2018, 171, 779–792. [Google Scholar] [CrossRef]
- Kim, D.J.; Naaman, A.E.; El-Tawil, S. Comparative flexural behavior of four fiber reinforced cementitious composites. Cem. Concr. Compos. 2008, 30, 917–928. [Google Scholar] [CrossRef]
- Pakravan, H.R.; Latifi, M.; Jamshidi, M. Hybrid short fiber reinforcement system in concrete: A review. Constr. Build. Mater. 2017, 142, 280–294. [Google Scholar] [CrossRef]
- Ali, A.Y.; Al-Rammahi, A.A. Flexural Behavior of Hybrid-Reinforced Concrete Exterior Beam-Column Joints under Static and Cyclic Loads. Fibers 2019, 7, 94. [Google Scholar] [CrossRef] [Green Version]
- Abdul Hussein, M.L.; Abid, S.R.; Ali, S.H. Abrasion of reactive powder concrete under water impact. Appl. Mech. Mater. 2020, 897, 41–48. [Google Scholar] [CrossRef]
- Qian, C.X.; Stroeven, P. Development of hybrid polypropylene-steel fibrereinforced concrete. Cem. Concr. Res. 2000, 30, 63–69. [Google Scholar] [CrossRef]
- Yao, W.; Li, J.; Wu, K. Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction. Cem. Concr. Res. 2003, 33, 27–30. [Google Scholar] [CrossRef]
- Libre, N.A.; Shekarchi, M.; Mahoutian, M.; Soroushian, P. Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice. Constr. Build. Mater. 2011, 25, 2458–2464. [Google Scholar] [CrossRef]
- Dawood, E.T.; Ramli, M. High strength characteristics of cement mortar reinforced with hybrid fibres. Constr. Build. Mater. 2011, 25, 2240–2247. [Google Scholar] [CrossRef]
- Rashiddadash, P.; Ramezanianpour, A.A.; Mahdikhani, M. Experimental investigation on flexural toughness of hybrid fiber reinforced concrete (HFRC) containing metakaolin and pumice. Constr. Build. Mater. 2014, 51, 313–320. [Google Scholar] [CrossRef]
- Kruminš, J.; Zesers, A. Experimental investigation of the fracture of hybridfiber-reinforced concrete. Mech. Compos. Mater. 2015, 51, 25–32. [Google Scholar] [CrossRef]
- Almusallam, T.H.; Siddiqui, N.A.; Iqbal, R.A.; Abbas, H. Response of hybrid-fiber reinforced concrete slabs to hard projectile impact. Int. J. Impact Eng. 2013, 58, 17–30. [Google Scholar] [CrossRef]
- Fu, Q.; Niu, D.; Zhang, J.; Huang, D.; Hong, M. Impact response of concrete reinforced with hybrid basalt-polypropylene fibers. Powder Technol. 2018, 326, 411–424. [Google Scholar] [CrossRef]
- Feng, J.; Gao, X.; Li, J.; Dong, H.; Yao, W.; Wang, X. Influence of fiber mixture on impact response of ultra-high-performance hybrid fiber reinforced cementitious composite. Compos. Part B 2019, 163, 487–496. [Google Scholar] [CrossRef]
- Feng, J.; Gao, X.; Li, J.; Dong, H.; He, Q.; Liang, J.; Sun, W. Penetration resistance of hybrid-fiber-reinforced high-strength concrete under projectile multi-impact. Constr. Build. Mater. 2019, 202, 341–352. [Google Scholar] [CrossRef]
- Manzhilevskaya, S.E. Organizational and economic problems of ecological safety in construction. Constr. Mater. Prod. 2019, 2, 73–78. [Google Scholar]
- Alwesabi, E.A.; Abu Bakar, B.H.; Alshaikh, I.M.H.; Akil, H.M. Impact resistance of plain and rubberized concrete containing steel and polypropylene fiber. Mater. Today Commun. 2020, 25, 101640. [Google Scholar] [CrossRef]
- Yildirim, S.T.; Ekinci, C.E.; Findik, F. Properties of hybrid fiber reinforced concrete under repeated impact loads. Russian J. Nondestr. Test. 2010, 46, 82–92. [Google Scholar]
- ACI 544-2R. Measurement of Properties of Fiber Reinforced Concrete; American Concrete Institute ACI: Farmington Hills, MI, USA, 1999. [Google Scholar]
- Naraganti, S.R.; Pannem, R.M.R.; Putta, J. Impact resistance of hybrid fibre reinforced concrete containing sisal fibers. Ain Shams Eng. J. 2019, 10, 297–305. [Google Scholar] [CrossRef]
- Ali, M.A.E.M.; Soliman, A.M.; Nehdi, M.L. Hybrid-fiber reinforced engineered cementitious composite under tensile and impact loading. Mater. Des. 2017, 117, 139–149. [Google Scholar] [CrossRef]
- Gesoglu, M.; Güneyisi, E.; Nahhab, A.H.; Yazıcı, H. Properties of ultra-high performance fiber reinforced cementitious composites made with gypsum-contaminated aggregates and cured at normal and elevated temperatures. Constr. Build. Mater. 2015, 93, 427–438. [Google Scholar] [CrossRef]
- Roy, M.; Hollmann, C.; Wille, K. Influence of fiber volume fraction and fiber orientation on the uniaxial tensile behavior of rebar-reinforced ultra-high performance concrete. Fibers 2019, 7, 67. [Google Scholar] [CrossRef] [Green Version]
- Yoo, D.-Y.; Banthia, N. Mechanical properties of ultra-high-performance fiber-reinforced concrete: A review. Cem. Conc. Compos. 2016, 73, 267–280. [Google Scholar] [CrossRef]
- Yoo, D.-Y.; Banthia, N. Mechanical and structural behaviors of ultra-high-performance fiber-reinforced concrete subjected to impact and blast. Constr. Build. Mater. 2017, 149, 416–431. [Google Scholar] [CrossRef]
- Feng, J.; Sun, W.; Zhai, H.; Wang, L.; Dong, H.; Wu, Q. Experimental Study on Hybrid Effect Evaluation of Fiber Reinforced Concrete Subjected to Drop Weight Impacts. Materials 2018, 11, 2563. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabir, H.A.; Abid, S.R.; Abdul-Hussein, M.L.; Ali, S.H. Repeated drop-weight impact tests on RPC containing hybrid fibers. Appl. Mech. Mater. 2020, 897, 49–55. [Google Scholar] [CrossRef]
- Murali, G.; Abid, S.R.; Amran, Y.H.M.; Abdelgader, H.S.; Fediuk, R.; Susrutha, R.; Poonguzhali, K. Impact performance of novel multi-layered prepacked aggregate fibrous composites under compression and bending. Structure 2020, 28, 1502–1515. [Google Scholar] [CrossRef]
- Murali, G.; Asrani, N.P.; Ramkumar, V.R.; Siva, A.; Haridharan, M.K. Impact resistance and strength reliability of novel two-stage fibre-reinforced concrete. Arabian. J. Sci. Eng. 2019, 44, 4477–4490. [Google Scholar] [CrossRef]
- Chen, X.L.; Zhu, X.Q. Mechanical behavior and damage evolution for concrete subjected to multiple impact loading. KSCE J. Civil. Eng. 2017, 21, 2351–2359. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Z.; Guo, S.; Huang, Y.; Xu, W. Experimental study on fatigue properties of normal and rubberized self-compacting concrete under bending. Constr. Build. Mater. 2019, 205, 10–20. [Google Scholar] [CrossRef]
- Abirami, T.; Loganaganandan, M.; Murali, G.; Fediuk, R.; Sreekrishna, R.V.; Vignesh, T.; Januppriya, G.; Karthikeyan, K. Experimental research on impact response of novel steel fibrous concretes under falling mass impact. Constr. Build. Mater. 2019, 222, 447–457. [Google Scholar] [CrossRef]
- Salaimanimagudam, M.P.; Suribabu, C.R.; Murali, G.; Abid, S.R. Impact response of hammerhead pier fibrous concrete beams designed with topology optimization. Period. Polytech-Civ. 2020. [Google Scholar] [CrossRef]
Material | M1 | M2 | M3 | M4 | M5 | M6 |
---|---|---|---|---|---|---|
Cement (kg/m3) | 800 | 800 | 800 | 800 | 800 | 800 |
Silica Fume (kg/m3) | 240 | 240 | 240 | 240 | 240 | 240 |
Fly Ash (kg/m3) | 120 | 120 | 120 | 120 | 120 | 120 |
Silica Sand (kg/m3) | 960 | 960 | 960 | 960 | 960 | 960 |
Water (kg/m3) | 232 | 232 | 232 | 232 | 232 | 232 |
SP (kg/m3) | 47 | 47 | 47 | 47 | 47 | 47 |
S6 fiber (Vf %) | 2.5 | 0 | 1.25 | 2.0 | 0 | 1.0 |
S15 fiber (Vf %) | 0 | 2.5 | 1.25 | 0 | 2.0 | 1.0 |
PP fiber (Vf %) | 0 | 0 | 0 | 0.5 | 0.5 | 0.5 |
Mixture | Compressive Strength (MPa) | Splitting Tensile Strength (MPa) | |
---|---|---|---|
7 Days | 28 Days | ||
M1 | 56.6 | 81.5 | 10.58 |
M2 | 48.7 | 77.74 | 13.18 |
M3 | 58.7 | 82.8 | 10.71 |
M4 | 45.3 | 76.9 | 10.28 |
M5 | 47.5 | 75.2 | 14.03 |
M6 | 48.6 | 79.6 | 11.45 |
SD | 5.41 | 2.88 | 1.545 |
COV | 10.63 | 3.65 | 13.2 |
Mix Id | b | Intercept | Za | R2 |
---|---|---|---|---|
M1 | 1.998 | −10.005 | 150 | 0.9153 |
M2 | 2.465 | −13.888 | 280 | 0.9551 |
M3 | 2.594 | −12.569 | 127 | 0.9415 |
M4 | 2.809 | −13.755 | 134 | 0.9085 |
M5 | 2.249 | −12.217 | 229 | 0.9371 |
M6 | 2.193 | −10.456 | 118 | 0.8354 |
Reliability Level | M1 | M2 | M3 | M4 | M5 | M6 |
---|---|---|---|---|---|---|
0.99 | 15 | 43 | 22 | 26 | 30 | 14 |
0.9 | 49 | 112 | 53 | 60 | 84 | 42 |
0.80 | 71 | 152 | 71 | 78 | 117 | 59 |
0.70 | 89 | 184 | 85 | 93 | 145 | 74 |
0.6 | 107 | 213 | 98 | 105 | 170 | 87 |
0.50 | 125 | 241 | 110 | 117 | 194 | 100 |
0.40 | 143 | 270 | 123 | 130 | 220 | 113 |
0.3 | 164 | 301 | 137 | 143 | 248 | 128 |
0.20 | 190 | 339 | 153 | 159 | 282 | 146 |
0.1 | 227 | 392 | 175 | 180 | 331 | 172 |
0.01 | 322 | 519 | 229 | 231 | 451 | 236 |
Specimen No | M1 | M2 | M3 | M4 | M5 | M6 |
---|---|---|---|---|---|---|
1 | 33 | 102 | 53 | 60 | 60 | 54 |
2 | 71 | 140 | 60 | 78 | 127 | 63 |
3 | 91 | 172 | 89 | 85 | 146 | 65 |
4 | 114 | 189 | 90 | 89 | 156 | 72 |
5 | 115 | 210 | 93 | 110 | 175 | 77 |
6 | 130 | 243 | 97 | 117 | 190 | 80 |
7 | 133 | 251 | 110 | 121 | 206 | 90 |
8 | 135 | 267 | 122 | 121 | 228 | 94 |
9 | 150 | 286 | 135 | 122 | 233 | 101 |
10 | 172 | 293 | 135 | 132 | 250 | 136 |
11 | 182 | 302 | 144 | 154 | 276 | 198 |
12 | 201 | 490 | 216 | 233 | 318 | 201 |
Mean | 127 | 245 | 112 | 118 | 197 | 102 |
SD | 47.4 | 99.5 | 43.5 | 44.4 | 70.4 | 50.1 |
COV | 37.27 | 40.55 | 38.81 | 37.49 | 35.72 | 48.81 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabir, H.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Klyuev, S.; Fediuk, R.; Vatin, N.; Promakhov, V.; Vasilev, Y. Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC. Fibers 2020, 8, 74. https://doi.org/10.3390/fib8120074
Jabir HA, Abid SR, Murali G, Ali SH, Klyuev S, Fediuk R, Vatin N, Promakhov V, Vasilev Y. Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC. Fibers. 2020; 8(12):74. https://doi.org/10.3390/fib8120074
Chicago/Turabian StyleJabir, Hussain A., Sallal R. Abid, Gunasekaran Murali, Sajjad H. Ali, Sergey Klyuev, Roman Fediuk, Nikolai Vatin, Vladimir Promakhov, and Yuriy Vasilev. 2020. "Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC" Fibers 8, no. 12: 74. https://doi.org/10.3390/fib8120074
APA StyleJabir, H. A., Abid, S. R., Murali, G., Ali, S. H., Klyuev, S., Fediuk, R., Vatin, N., Promakhov, V., & Vasilev, Y. (2020). Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC. Fibers, 8(12), 74. https://doi.org/10.3390/fib8120074