Processing Iron Oxide Nanoparticle-Loaded Composite Carbon Fiber and the Photosensitivity Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. Electrohydrodynamic (EHD) Co-Casting
2.3. Microstructure Analysis
3. Results
3.1. Structure of the Composite Fiber
3.2. Photosensitivity to Visible Light
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhu, J.D.; Lu, Y.; Chen, C.; Ge, Y.; Jasper, S.; Leary, J.D.; Li, D.; Jiang, M.; Zhang, X. Porous one-dimensional carbon/iron oxide composite for rechargeable lithium-ion batteries with high and stable capacity. J. Alloys Compd. 2016, 672, 79–85. [Google Scholar] [CrossRef]
- Guan, C.; Zhao, W.; Hu, Y.; Ke, Q.; Li, X.; Zhang, H.; Wang, J. High-performance flexible solid-state Ni/Fe battery consisting of metal oxides coated carbon cloth/carbon nanofiber electrodes. Adv. Energy Mater. 2016, 6, 1601034. [Google Scholar] [CrossRef]
- Cho, J.S.; Park, J.S.; Kang, Y.C. Preparation of hollow Fe2O3 nanorods and nanospheres by nanoscale Kirkendall diffusion, and their electrochemical properties for use in lithium-ion batteries. Sci. Rep. 2016, 6, 38933. [Google Scholar] [CrossRef]
- Xu, Z.; Wang, L.; Wang, W.; Li, N.; Chen, C.; Li, C.; Yang, C.; Fu, H.; Kuang, L. Migration behavior, oxidation state of iron and graphitization of carbon nanofibers for enhanced electrochemical performance of composite anodes. Electrochim. Acta 2016, 222, 385–392. [Google Scholar] [CrossRef]
- He, J.; Zhao, S.; Lian, Y.; Zhou, M.; Wang, L.; Ding, B.; Cui, S. Graphene-doped carbon/Fe3O4 porous nanofibers with hierarchical band construction as high-performance anodes for lithium-ion batteries. Electrochim. Acta 2017, 229, 306–315. [Google Scholar] [CrossRef]
- Xu, Z.L.; Yao, S.S.; Cui, J.; Zhou, L.M.; Kim, J.K. Atomic scale, amorphous FeOx/carbon nanofiber anodes for Li-ion and Na-ion batteries. Energy Storage Mater. 2017, 8, 10–19. [Google Scholar] [CrossRef]
- Xu, X.; Wan, Y.; Liu, J.; Chen, Y.; Li, L.; Wang, X.; Xue, G.; Zhou, D. Encapsulating iron oxide@carbon in carbon nanofibers as stable electric conductive network for lithium-ion batteries. Electrochim. Acta 2017, 246, 766–775. [Google Scholar] [CrossRef]
- Samuel, E.; Joshi, B.; Jo, H.S.; Kim, Y.; An, S.; Swihart, M.T.; Yun, J.M.; Kim, K.H.; Yoon, S.S. Carbon nanofibers decorated with FeOx nanoparticles as a flexible electrode material for symmetric supercapacitors. Chem. Eng. J. 2017, 328, 776–784. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Liang, S.; Zhang, S.; Ma, S.; Li, H.; Zhang, J.; Zheng, C. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3−xMnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas. Chem. Eng. J. 2018, 334, 216–224. [Google Scholar] [CrossRef]
- Fard, G.C.; Mirjalili, M.; Almasian, A.; Najafi, F. PAMAM grafted alpha-Fe2O3 nanofiber: Preparation and dye removal ability from binary system. J. Taiwan Inst. Chem. Eng. 2017, 80, 156–167. [Google Scholar] [CrossRef]
- Mohamed, A.; Osman, T.A.; Toprak, M.S.; Mohammed, M.; Uheida, A. Surface functionalized composite nanofibers for efficient removal of arsenic from aqueous solutions. Chemosphere 2017, 180, 108–116. [Google Scholar] [CrossRef] [PubMed]
- Peter, K.T.; Johns, A.J.; Myung, N.V.; Cwiertny, D.M. Functionalized polymer-iron oxide hybrid nanofibers: Electrospun filtration devices for metal oxyanion removal. Water Res. 2017, 117, 207–217. [Google Scholar] [CrossRef] [PubMed]
- Xiong, W.; Tong, J.; Yang, Z.; Zeng, G.; Zhou, Y.; Wang, D.; Song, P.; Xu, R.; Zhang, C.; Cheng, M. Adsorption of phosphate from aqueous solution using iron-zirconium modified activated carbon nanofiber: Performance and mechanism. J. Colloid Interface Sci. 2017, 493, 17–23. [Google Scholar] [CrossRef]
- Han, C.; Jing, M.X.; Shen, X.Q.; Qiao, G.J. Electrospinning fabrication of mesoporous nano Fe2O3-TiO2@activated carbon fiber membrane for hybrid removal of phenol from waste water. Russian J. Appl. Chem. 2016, 89, 2008–2015. [Google Scholar] [CrossRef]
- Mondal, K.; Ali, M.A.; Singh, C.; Sumana, G.; Malhotra, B.D.; Sharma, A. Highly sensitive porous carbon and metal/carbon conducting nanofiber based enzymatic biosensors for triglyceride detection. Sens. Actuators B Chem. 2017, 246, 202–214. [Google Scholar] [CrossRef]
- Fan, P.C.; Liu, L.J.; Guo, Q.H.; Wang, J.L.; Yang, J.H.; Guan, X.Y.; Chen, S.L.; Hou, H.Q. Three-dimensional N-doped carbon nanotube@carbon foam hybrid: An effective carrier of enzymes for glucose biosensors. RSC Adv. 2017, 7, 26574–26582. [Google Scholar] [CrossRef]
- Shin, D.Y.; An, G.H.; Ahn, H.J. Iron-embedded porous carbon nanofibers as Pt electrocatalyst supports for direct methanol fuel cells. J. Nanosci. Nanotech. 2017, 17, 8180–8185. [Google Scholar] [CrossRef]
- An, X.; Shin, D.; Jeong, J.; Lee, J. Metal-derived mesoporous structure of a carbon nanofiber electrocatalyst for improved oxygen evolution reaction in alkaline water electrolysis. Chemelectrochem 2016, 3, 1720–1724. [Google Scholar] [CrossRef]
- Tissera, N.D.; Wijesena, R.N.; Sandaruwan, C.S.; Zhang, M.L.; Chen, Y.H.; Liu, Z.J.; Chen, H.S. Photocatalytic activity of ZnO nanoparticle encapsulated poly(acrylonitrile) nanofibers. Mater. Chem. Phys. 2018, 204, 95–206. [Google Scholar] [CrossRef]
- Song, S.H. Synergistic effect of carbon nanofiber decorated with iron oxide in enhancing properties of styrene butadiene rubber nanocomposites. J. Appl. Polym. Sci. 2017, 134, 45376. [Google Scholar] [CrossRef]
- Lee, S.; Kim, J.; Ku, B.C.; Kim, J.; Joh, H.I. Structural evolution of polyacrylonitrile fibers in stabilization and carbonization. Adv. Chem. Eng. Sci. 2012, 2, 275–282. [Google Scholar] [CrossRef]
- Ma, Q.; Gao, A.; Tong, Y.; Zhang, Z. The densification mechanism of polyacrylonitrile carbon fibers during carbonization. New Carbon Mater. 2016, 31, 550–554. [Google Scholar] [CrossRef]
- Hameed, N.; Sharp, J.; Nunna, S.; Creighton, C.; Magniez, K.; Jyotishkumar, P.; Salim, N.V.; Fox, B. Structural transformation of polyacrylonitrile fibers during stabilization and low temperature carbonization. Polym. Degrad. Stab. 2016, 128, 39–45. [Google Scholar] [CrossRef]
- Liu, J.; Wang, P.H.; Li, R.Y. Continuous carbonization of polyacrylonitrile-based oxidized fibers: Aspects on mechanical properties and morphological structure. J. Appl. Polym. Sci. 1994, 52, 945–950. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X.; Zhang, Y.; Cheng, N.; Yu, T.; Yang, Y.; Yang, G. Study of carbonization behavior of polyacrylonitrile/tin salt as anode material for lithium-ion batteries. J. Appl. Polym. Sci. 2016, 133, 43914. [Google Scholar] [CrossRef]
- Sun, J.; Wu, G.; Wang, Q. The effects of carbonization temperature on the properties and structure of PAN-based activated carbon hollow fiber. J. Appl. Polym. Sci. 2005, 97, 2155–2160. [Google Scholar] [CrossRef]
- Rahaman, M.S.A.; Ismail, A.F.; Mustafa, A. A review of heat treatment on polyacrylonitrile fiber. Polym. Degrad. Stab. 2007, 92, 1421–1432. [Google Scholar] [CrossRef] [Green Version]
- Gan, Y.X.; Draper, C.W.; Gan, J.B. Carbon nanofiber network made by electrohydrodynamic casting immiscible fluids. Mater. Today Commun. 2017, 13, 248–254. [Google Scholar] [CrossRef]
- Saha, B.; Schatz, G.C. Carbonization in polyacrylonitrile (PAN) based carbon fibers studied by ReaxFF molecular dynamics simulations. J. Phys. Chem. B 2012, 116, 4684–4692. [Google Scholar] [CrossRef]
- Chung, D.D.L. Processing-structure-property relationships of continuous carbon fiber polymer-matrix composites. Mater. Sci. Eng. Rep. 2017, 113, 1–29. [Google Scholar] [CrossRef]
- Gan, Y.X.; Panahi, N.; Yu, C.; Gan, J.B.; Cheng, W. Europium containing red light emitting fibers made by electrohydrodynamic casting. Int. Nano Lett. 2018, 8, 123–135. [Google Scholar] [CrossRef]
Location | Spot 001 | Spot 002 | ||||||
---|---|---|---|---|---|---|---|---|
Element | C | O | N | C | O | Na | Fe | Cu |
Atom % | 86.79 | 10.54 | 2.67 | 86.32 | 9.13 | 0.16 | 4.15 | 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gan, Y.X.; Yu, C.; Panahi, N.; Gan, J.B.; Cheng, W. Processing Iron Oxide Nanoparticle-Loaded Composite Carbon Fiber and the Photosensitivity Characterization. Fibers 2019, 7, 25. https://doi.org/10.3390/fib7030025
Gan YX, Yu C, Panahi N, Gan JB, Cheng W. Processing Iron Oxide Nanoparticle-Loaded Composite Carbon Fiber and the Photosensitivity Characterization. Fibers. 2019; 7(3):25. https://doi.org/10.3390/fib7030025
Chicago/Turabian StyleGan, Yong X., Christina Yu, Niousha Panahi, Jeremy B. Gan, and Wanli Cheng. 2019. "Processing Iron Oxide Nanoparticle-Loaded Composite Carbon Fiber and the Photosensitivity Characterization" Fibers 7, no. 3: 25. https://doi.org/10.3390/fib7030025
APA StyleGan, Y. X., Yu, C., Panahi, N., Gan, J. B., & Cheng, W. (2019). Processing Iron Oxide Nanoparticle-Loaded Composite Carbon Fiber and the Photosensitivity Characterization. Fibers, 7(3), 25. https://doi.org/10.3390/fib7030025