Next Article in Journal
Critical Velocity of High-Performance Yarn Transversely Impacted by Razor Blade
Next Article in Special Issue
Quasi-Static and Low-Velocity Impact Behavior of Intraply Hybrid Flax/Basalt Composites
Previous Article in Journal
Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates
Article Menu
Issue 4 (December) cover image

Export Article

Open AccessArticle
Fibers 2018, 6(4), 94; https://doi.org/10.3390/fib6040094

Mechanical, Degradation and Water Uptake Properties of Fabric Reinforced Polypropylene Based Composites: Effect of Alkali on Composites

1
College of Fashion Technology & Management, Uttara, Dhaka 1230, Bangladesh
2
Textile Engineering College, Begumganj, Noakhali 3820, Bangladesh
3
Department of Textile Engineering, World University of Bangladesh, Green Road, Dhaka 1209, Bangladesh
*
Author to whom correspondence should be addressed.
Received: 16 August 2018 / Revised: 7 November 2018 / Accepted: 12 November 2018 / Published: 6 December 2018
(This article belongs to the Special Issue Natural Fiber-Reinforced Hybrid Composites)
Full-Text   |   PDF [2499 KB, uploaded 10 December 2018]   |  

Abstract

In this study, a fabric was manufactured consisting of 50% pineapple, 25% jute and 25% cotton fibers by weight, to make composites using polypropylene (PP) as a matrix material. We used compression molding technique, which kept 30% of the fabric content by total weight as the composite. The tensile strength (TS), tensile modulus (TM), elongation break (Eb%), bending strength (BS) and bending modulus (BM) were investigated. From analyzed data, it was found that the composite values of TS, TM, Eb%, BS and BM were 58 MPa, 867 MPa, 22.38%, 42 MPa and 495 MPa, respectively. The TS, TM, Eb%, BS and BM of the neat polypropylene sheet were 28 MPa, 338 MPa, 75%, 20 MPa and 230 MPa, respectively. Due to fabric reinforcement, composite values for TS, TM, BS and BM increased 107%, 156%, 110% and 115%, respectively in comparison with a polypropylene sheet. A water absorption test was performed by dipping the composite samples in deionized water and it was noticed that water absorption was lower for PP-based composites. For investigating the effect of alkali, we sunk the composites in a solution containing 3%, 5% and 7% sodium hydroxide alkali solutions by weight, for 60 min after which their mechanical properties were investigated. A degradation test was carried out by putting the samples in soil for six months and it was noticed that the mechanical properties of fabric/PP composites degraded slowly. View Full-Text
Keywords: polypropylene (PP); composites; natural fiber; fabric; compression molding polypropylene (PP); composites; natural fiber; fabric; compression molding
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Hoque, M.B.; Solaiman; Alam, A.H.; Mahmud, H.; Nobi, A. Mechanical, Degradation and Water Uptake Properties of Fabric Reinforced Polypropylene Based Composites: Effect of Alkali on Composites. Fibers 2018, 6, 94.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Fibers EISSN 2079-6439 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top