Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates
Abstract
:1. Introduction and Motivation
2. Experimental Investigations
2.1. Test Program
2.2. Test Specimen
2.3. Tested Fasteners and Test Setup
3. Test Results
4. Discussion
4.1. Influence of Steel Fiber Reinforcement
4.2. Influence of Loading Rate
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Stroeven, P. Some Aspects of the Micromechanics of Concrete. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands, February 1973. [Google Scholar]
- Reinhardt, H.W. Concrete under impact loading Tensile strength and Bond. HERON 1982, 27, 1982. [Google Scholar]
- Ozbolt, J.; Rah, K.K.; Mestrovic, D. Influence of loading rate on concrete cone failure. Int. J. Fract. 2006, 139, 239–252. [Google Scholar] [CrossRef] [Green Version]
- Ozbolt, J.; Sharma, A.; Reinhardt, H.W. Dynamic fracture of concrete—Compact tension specimen. Int. J. Solids Struct. 2011, 48, 1534–1543. [Google Scholar] [CrossRef]
- Fujikake, K.; Nakayama, J.; Sato, H.; Mindess, S.; Ishibashi, T. Chemically Bonded Anchors Subjected to Rapid Pullout Loading. ACI Mater. J. 2003, 100, 246–252. [Google Scholar]
- Hoehler, M.S. Behavior and Testing of Fastenings to Concrete for use in Seismic Applications. Ph.D.Thesis, Institut für Werkstoffe im Bauwesen, Universität Stuttgart, Stuttgart, Germany, 2006. [Google Scholar]
- Hoehler, M.S. Influence of earthquake relevant tensile loading rates on fastener failure mode. Institut für Werkstoffe im Bauwesen, Universität Stuttgart, Stuttgart, Germany, 2006. Report, Not published. [Google Scholar]
- Hoehler, M.S. Tension Cycling of Fasteners at High Load Levels (Extension of Series A2 to HIGH Load Rates): Series A4–Test Report; Institut für Werkstoffe im Bauwesen, Universität Stuttgart: Stuttgart, Germany, 2004. [Google Scholar]
- Klingner, R.E.; Hallowell, J.M.; Lotze, D.; Park, H.-G.; Rodriguez, M.; Zhang, Y.-G. Anchor Bolt Behavior and Strength during Earthquakes; NUREG/CR-5434; Prepared at University of Texas at Austin, Prepared for U.S. Nuclear Regulatory Commission: Washington, DC, USA, 1998. [Google Scholar]
- Eibl, J.; Keintzel, E. Zur Beanspruchung von Befestigungsmitteln bei Dynamischen Lasten (On the Dynamic Loading of Fastenings); Institut für Massivbau und Baustofftechnologie, Universität Karlsruhe: Karlsruhe, Germany, 1989. (In German) [Google Scholar]
- Eibl, J.; Keintzel, E. Verhalten von Dübeln unter Hoher Stoß- und Wechselbeanspruchung (Behavior of Anchors under High Speed Impact and Reversed Cyclic Loads); Institut für Massivbau und Baustofftechnologie, Universität Karlsruhe: Karlsruhe, Germany, 1989. (In German) [Google Scholar]
- Balaguru, P.N.; Shah, S.P. Fiber-Reinforced Cement Composites; McGraw-Hill: New York, NY, USA, 1992; ISBN 0070564000. [Google Scholar]
- Mechtcherine, V. Rissbeherrschung durch Faserbewehrung, Beherrschung von Rissen in Beton. In Proceedings of the 7 Symposium Baustoffe und Bauwerkserhaltung, Karlsruher Institut für Technologie, Karlsruhe, Germany, 23 March 2010; Müller, H., Nolting, U., Haist, M., Eds.; KIT Scientific Publishing: Karlsruhe, Germany, 2010; pp. 83–94. [Google Scholar]
- Døssland, Ä.L. Fibre Reinforcement in Load Carrying Concrete Structures. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway, February 2008. [Google Scholar]
- Schulz, M. Stahlfasern: Eigenschaften und Wirkungsweisen. Beton-Düsseldorf 2000, 50, 382–387. [Google Scholar]
- Reinhardt, H.W.; Parra-Montesinos, G.J.; Garrecht, H. International Workshop Series on High Performance Fiber Reinforced Cement Composites (HPFRCC): History and Evaluation. In Proceedings of the 7th RILEM Workshop on High Performance Fiber Reinforced Cement Composites, Stuttgart, Germany, 1–3 June 2015; Department of Construction Materials, University of Stuttgart: Stuttgart, Germany, 2015; pp. 3–10, ISBN 978-2-35158-145-2. [Google Scholar]
- Klug, Y.; Holschemacher, K.; Wittmann, F. Tragverhalten von Befestigungselementen in Stahlfaserbeton. In Faserbeton; König, G., Holschemacher, K., Dehn, K., Eds.; Bauwerk Verlag: Berlin, Germany, 2002; pp. 89–105. ISBN 3-89932-019-0. [Google Scholar]
- Kurz, C.; Thiele, C.; Schnell, J.; Reuter, M.; Vitt, G. Tragverhalten von Dübeln in Stahlfaserbeton. Bautechnik 2012, 89, 545–552. [Google Scholar] [CrossRef]
- Coventry, K.; Richardson, A.; Intyre, C.M.; Aresh, B. Pullout Performance of Chemical Anchor Bolts in Fibre Concrete. In Proceedings of the Fibre Concrete 2011–6th International Conference, Czech Technical University, Prague, Czech Republic, 8–9 September 2011. [Google Scholar]
- Nilforoush, R.; Nilsson, M.; Elfgren, L. Experimental evaluation of tensile behaviour of single cast-in-place anchor bolts in plain and steel fibre-reinforced normal- and high-strength concrete. Eng. Struct. 2017, 147, 195–206. [Google Scholar] [CrossRef]
- Bokor, B.; Tóth, M.; Sharma, A. Influence of steel fiber content on the load-bearing capacity of anchorages in concrete. In Proceedings of the 3rd International Symposium on Connections between Steel and Concrete, Stuttgart, Germany, 27–29 September 2017; Sharma, A., Hofmann, J., Eds.; Institute of Construction Materials, University of Stuttgart: Stuttgart, Germany, 2017; pp. 1258–1269, ISBN 978-3-945773-06-2. [Google Scholar]
- Bokor, B.; Tóth, M.; Sharma, A.; Hofmann, J. Zugtragfähigkeit von Befestigungen in stahlfaserverstärkten Betonen—Experimentelle Untersuchungen, “Neues aus der Befestigungstechnik“. In Proceedings of the 5th Jahrestagung des DAfStb, TU Kaiserslautern, Kaiserslautern, Germany, 20–21 September 2017. [Google Scholar]
- Technical Data Sheet: Hooked-End Steel Fibers HE 75/35, ArcelorMittal. Available online: http://ds.arcelormittal.com/wiresolutions/steelfibres/products/hooked_end_fibres_he/language/EN (accessed on 7 April 2017).
- DIN EN 12390-1:2012-12. Prüfung von Festbeton—Teil 1: Form, Maße und Andere Anforderungen für Probekörper und Formen; Deutsche Fassung EN 12390-1:2012; DIN Deutsches Institut für Normung e. V., Beuth Verlag GmbH: Berlin, Germany, 2012. [Google Scholar]
- Vandewalle, L.; Nemegeer, D.; Balazs, L.; Di Prisco, M. Recommendations of RILEM TC 162-TDF: Test and design methods for steel fibre reinforced concrete: Bending test. Mater. Struct. 2002, 35, 579–582. [Google Scholar]
- Annex A: Details of Tests. In ETAG 001 Guideline for European Technical Approval of Metal Anchors for Use in Concrete; Edition 1997; EOTA: Brussels, Belgium, 2013.
- Eligehausen, R.; Mallée, R.; Silva, J.F. Anchorage in Concrete Construction; Ernst & Sohn: Berlin, Germany, 2006; ISBN 978-3-433-01143-0. [Google Scholar]
- Ulzurrun, G.; Zanuy, C. Flexural response of SFRC under impact loading. Constr. Build. Mater. 2017, 134, 397–411. [Google Scholar] [CrossRef]
Test ID | Loading Direction | Ramp Speed (Displ. Control) (mm/min) | Embedment Depth hef (mm) | Edge Distance c (mm) | No. of Tests in NSC C30/37 | No. of Tests in SFRC 30 kg/m3 | No. of Tests in SFRC 50 kg/m3 |
---|---|---|---|---|---|---|---|
T-1-0 | Tension | 1 | 70 | >ccr | 5 | - | - |
T-1-30 | Tension | 70 | >ccr | - | 4 | - | |
T-1-50 | Tension | 70 | >ccr | - | - | 5 | |
T-100-0 | Tension | 100 | 70 | >ccr | 5 | - | - |
T-100-30 | Tension | 70 | >ccr | - | 5 | - | |
T-100-50 | Tension | 70 | >ccr | - | - | 5 | |
T-1000-0 | Tension | 1000 | 70 | >ccr | 5 | - | - |
T-1000-30 | Tension | 70 | >ccr | - | 5 | - | |
T-1000-50 | Tension | 70 | >ccr | - | - | 4 | |
T-3500-0 | Tension | 3500 | 70 | >ccr | 7 | - | - |
T-3500-30 | Tension | 70 | >ccr | - | 4 | - | |
T-3500-50 | Tension | 70 | >ccr | - | - | 4 |
Test Specimen ID | Cem. Type | Cem. | Aggr. 0–2 mm | Aggr. 2–8 mm | Water | w/c | Fiber Cont. | Super-Plast | Retarder | Mean Compr. Strength fcc | Mean Flex. Tensile Strength fctm | CoV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(-) | (-) | (kg/m3) | (kg/m3) | (kg/m3) | (kg/m3) | (-) | (kg/m3) | (M% of Cem.) | (M% of Cem.) | (N/mm2) | (N/mm2) | (%) |
13F003/01-02/K035 | CEM II/A-LL 42.5R | 358.2 | 788.9 | 957.8 | 194.0 | 0.54 | 0 | 1.93 | 0.68 | 53.4 | 2.89 | 22.2 |
13F003/03-04/K035 | 30 | 1.93 | 0.68 | 61.6 | 2.88 | 10.5 | ||||||
13F003/05-06/K035 | 50 | 2.54 | 0.68 | 58.2 | 4.91 | 6.1 |
Test ID | Fiber Content (kg/m3) | Displacement Rate (= Ramp Speed) (mm/min) | Initial Loading Rate (Mean) | Embedment Depth hef(mm) | Ultimate Load | Mean Ultimate Displ. (mm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(kN/s) | #1 (kN) | #2 (kN) | #3 (kN) | #4 (kN) | #5 (kN) | #6 (kN) | #7 (kN) | Mean Value (kN) | CoV (-) | % Increase w.r.t. ref. (-) | |||||
T-1-0 | 0 | 1 | 0.4 | 70 | 56.8 | 52.8 | 54.4 | 52.1 | 51.4 | - | - | 53.5 | 4.1 | - | 0.36 |
T-100-0 | 100 | 50 | 70 | 64.8 | 58.5 | 60.0 | 67.2 | 56.3 | - | - | 61.4 | 7.3 | 14.8 | 0.40 | |
T-1000-0 | 1000 | 480 | 70 | 68.4 | 68.1 | 59.0 | 69.9 | 64.9 | - | - | 66.1 | 6.0 | 23.6 | 0.44 | |
T-3500-0 | 3500 | 1500 | 70 | 66.3 | 66.6 | 63.2 | 59.3 | 66.0 | 67.6 | 69.9 | 65.6 | 5.2 | 22.6 | 0.48 | |
T-1-30 | 30 | 1 | 0.6 | 70 | 82.4 | - | 71.9 | 82.3 | 85.0 | - | - | 80.4 | 7.2 | - | 0.98 |
T-100-30 | 100 | 55 | 70 | 81.9 | 81.1 | 77.4 | 91.0 | 107.3 | - | - | 87.7 | 13.7 | 9.1 | 0.93 | |
T-1000-30 | 1000 | 550 | 70 | 102.8 | 99.0 | 96.8 | 93.1 | 95.1 | - | - | 97.3 | 3.8 | 21.0 | 1.40 | |
T-3500-30 | 3500 | 1600 | 70 | 90.1 | 101.7 | 93.1 | 96.1 | - | - | - | 95.3 | 5.2 | 18.5 | 1.34 | |
T-1-50 | 50 | 1 | 0.5 | 70 | 68.1 | 73.5 | 65.6 | 73.7 | 82.6 | - | - | 72.7 | 9.0 | - | 0.78 |
T-100-50 | 100 | 54 | 70 | 93.9 | 96.6 | 76.1 | 66.0 | 71.1 | - | - | 80.7 | 17.0 | 11.0 | 1.06 | |
T-1000-50 | 1000 | 530 | 70 | 97.5 | 92.1 | 86.1 | 87.0 | - | - | - | 90.7 | 5.8 | 24.8 | 1.36 | |
T-3500-50 | 3500 | 1500 | 70 | 90.6 | 109.2 | 94.4 | 108.2 | - | - | - | 100.6 | 9.4 | 37.1 | 1.31 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bokor, B.; Tóth, M.; Sharma, A. Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates. Fibers 2018, 6, 93. https://doi.org/10.3390/fib6040093
Bokor B, Tóth M, Sharma A. Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates. Fibers. 2018; 6(4):93. https://doi.org/10.3390/fib6040093
Chicago/Turabian StyleBokor, Boglárka, Máté Tóth, and Akanshu Sharma. 2018. "Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates" Fibers 6, no. 4: 93. https://doi.org/10.3390/fib6040093
APA StyleBokor, B., Tóth, M., & Sharma, A. (2018). Fasteners in Steel Fiber Reinforced Concrete Subjected to Increased Loading Rates. Fibers, 6(4), 93. https://doi.org/10.3390/fib6040093