Influence of Steel and Macro-Synthetic Fibers on Concrete Properties
Abstract
:1. Introduction
2. Experimental Program
2.1. Material Properties
- C50 with a mean cylindrical compressive strength of about 50 MPa and water-to-cement ratio (w/c) of 0.45;
- C45 with a mean cylindrical compressive strength of about 45 MPa and w/c ratio of 0.50.
- Two steel fibers having a hooked end shape: short fibers 35 mm long (s1) and long fibers 60 mm long (s2);
- Two macro-synthetic fibers: crimped polypropylene fibers 40 mm long (p1) and embossed polypropylene fibers 54 mm long (p2).
2.2. Test Methods
- Dry-mix the sand, coarse aggregate and fibers for 90 s;
- Addition of cement. Mix for 90 s;
- 90 s of rest;
- Addition of liquid (water + superplasticizer listed in Table 1) in the mixer to have “base concrete + fibers”; mix for 5 min. The mixture is then ready for evaluating workability and air content.
- Addition of supplementary superplasticizer to obtain PC consistency (slump of 180 ± 20 mm); mix for 2 min.
- The mixture is then ready for casting.
- Measure the air content, consistency (slump test) and flowability (DIN flow table test) on “base concrete + fibers”.
- Adjust polycarboxylate-based superplasticizer to obtain the target slump of 180 ± 20 mm, then repeat slump test, DIN flow table test and air content measurement.
- Cast beams and cylinders.
- Test compressive and residual flexural tensile strength at 28 days.
3. Experimental Results and Discussion
3.1. Fresh State Properties of PC and FRC
3.1.1. Influence of Fibers on Air Content
3.1.2. Influence of Fibers on Slump
3.1.3. Influence of Fibers on Concrete Flow
3.1.4. Behavior of FRC with High Workability
3.1.5. Integrating the Slump and Flow Table Test
3.2. Hardened State Properties of PC and FRC
- compressive strength (fcm);
- first-peak flexural strength (f1) according to ASTM C1609 [52];
- residual flexure tensile strengths at net deflection of 0.75 mm (f150,0.75) and 3.00 mm (f150,3.00) according to ASTM C1609 [52];
- flexural toughness at net deflection of 3.00 mm (T150,3.00) according to ASTM C1609 [52].
4. Conclusions
- Both steel and macro-synthetic fibers (up to 1% of volume fraction) led to a slight increase in air content as compared to the plain concretes, indicating that the influence of fibers was negligible. This was supported by the compressive strength results, where all PC and FRC mixes within each concrete base mix exhibited very similar strength.
- For a given fiber volume fraction, concrete workability was overall more affected by steel fibers than macro-synthetic ones. On the contrary, for a target flexural toughness, steel fibers influenced concrete workability less as compared to polypropylene ones.
- For a given aspect ratio and fiber volume fraction, longer fibers (both steel and macro-synthetic) caused a greater increase in concrete stiffness as compared to shorter fibers.
- Concrete flow behavior differed between SFRC and PFRC mixes, where SFRC mixes exhibited a less uniform spread overall. This may be attributed to the steel fibers re-orienting and interlocking, resulting in flow in a preferential direction and the final spread forming an elongated shape.
- The DIN flow table test may be used in situ to evaluate the fluidity of FRC as an extension of the static slump test. However, it should be supplemented with an additional parameter—the ratio between the diameters along the two axes of symmetry (ρ)—to describe any potential preferential flow direction.
- Unlike for PC systems, DIN flow table and slump test measurements did not show any apparent correlation in the case of FRC systems.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cuenca, E.; Echegaray-Oviedo, J.; Serna, P. Influence of concrete matrix and type of fiber on the shear strength behavior of self-compacting fiber reinforced concrete. Compos. Part B Eng. 2015, 75, 135–147. [Google Scholar] [CrossRef]
- Watanabe, K.; Kimura, T.; Niwa, J. Synergetic effect of steel fibers and shear reinforcing bars on the shear-resistance mechanisms of RC linear members. Constr. Build. Mater. 2010, 24, 2369–2375. [Google Scholar] [CrossRef]
- Ding, Y.; You, Z.; Jalali, S. The composite effect of steel fibres and stirrups on the shear behaviour of beams using self-consolidating concrete. Eng. Struct. 2011, 33, 107–117. [Google Scholar] [CrossRef]
- Slater, E.; Moni, M.; Alam, M.S. Predicting the shear strength of steel fiber reinforced concrete beams. Constr. Build. Mater. 2012, 26, 423–436. [Google Scholar] [CrossRef]
- Chalioris, C.E. Steel fibrous RC beams subjected to cyclic deformations under predominant shear. Eng. Struct. 2013, 49, 104–118. [Google Scholar] [CrossRef]
- Chalioris, C.E. Analytical approach for the evaluation of minimum fibre factor required for steel fibrous concrete beams under combined shear and flexure. Constr. Build. Mater. 2013, 43, 317–336. [Google Scholar] [CrossRef]
- Sorelli, L.G.; Meda, A.; Plizzari, G.A. Steel fiber concrete slabs on ground: A structural matter. ACI Struct. J. 2006, 103, 551–558. [Google Scholar]
- Caratelli, A.; Meda, A.; Rinaldi, Z.; Romualdi, P. Structural behavior of precast tunnel segments in fiber reinforced concrete. Tunn. Undergr. Space Technol. 2011, 26, 284–291. [Google Scholar] [CrossRef]
- ACI Committee 544. Report on Fiber Reinforced Concrete ACI Report 544.1R-96; Technical Report; American Concrete Institute: Farmington Hills, MI, USA, 1996; p. 66. [Google Scholar]
- Guidelines for the Design, Construction and Production Control of Fiber Reinforced Concrete Structures; CNR DT 204; National Research Council of Italy: Roma, Italy, 2006; p. 59.
- Deutscher Ausschuss für Stahlbeton (DAfStb). DAfStb Guideline: German Committee for Reinforced Concrete, Steel Fiber Reinforced Concrete; Design and Construction, Specification, Performance, Production and Conformity, Execution of Structures—Draft; Deutscher Ausschuss für Stahlbeton: Berlin, Germany, 2012; 48p. [Google Scholar]
- Instrucción de hormigón estructural EHE-08; Comisión Permanente del Hormigón, Ministerio de Fomento: Madrid, Spain, 2011; p. 670.
- Model Code 2010—Final Draft; fib Bulletin 65; fib: Lausanne, Switzerland, 2012; Volume 1, 350p, ISBN 978-2-88394-105-2.
- Model Code 2010—Final Draft; fib Bulletin 66; fib: Lausanne, Switzerland, 2012; Volume 2, 370p, ISBN 978-2-88394-106-9.
- Ortiz-Navas, F.; Navarro-Gregori, J.; Leiva-Herdocia, G.E.; Serna, P.; Cuenca, E. An experimental study on the shear behaviour of reinforced concrete beams with macro-synthetic fibres. Constr. Build. Mater. 2018, 169, 888–899. [Google Scholar] [CrossRef]
- Conforti, A.; Tiberti, G.; Plizzari, G.A.; Caratelli, A.; Meda, A. Precast tunnel segments reinforced by macro-synthetic fibers. Tunn. Undergr. Space Technol. 2017, 63, 1–11. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.S.D. Engineering properties of ambient cured alkali-activated fly ash-slag concrete reinforced with different types of steel fiber. J. Mater. Civ. Eng. 2018, 30, 04018142. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.S.D. Experimental Investigation on the Effect of Corrosion on the Bond Between Reinforcing Steel Bars and Fibre Reinforced Geopolymer Concrete. Structures 2018, 14, 251–261. [Google Scholar] [CrossRef]
- Farhan, N.A.; Sheikh, M.N.; Hadi, M.S.D. Design of geopolymer concrete with GGBFS at ambient curing condition using Taguchi method. Constr. Build. Mater. 2017, 140, 424–431. [Google Scholar]
- Ortega, J.M.; Sanchez, I.; Anton, C.; de Vera, G.; Climent, G.A. Influence of environment on durability of fly ash cement mortars. ACI Mater. J. 2012, 109, 647–656. [Google Scholar]
- Sanchez, I.; Anton, C.; de Vera, G.; Ortega, J.M.; Climent, G.A. Moisture distribution in partially saturated concrete studied by impedance spectroscopy. J. Nondestruct. Eval. 2013, 32, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Williams, M.; Ortega, J.M.; Sanchez, I.; Cabeza, M.; Climent, G.A. Non-Destructive Study of the Microstructural Effects of Sodium and Magnesium Sulphate Attack on Mortars Containing Silica Fume Using Impedance Spectroscopy. Appl. Sci. 2017, 7, 648. [Google Scholar] [CrossRef]
- Cuenca, E.; Ferrara, L. Self-healing capacity of fiber reinforced cementitious composites. State of the art and perspectives. KSCE J. Civ. Eng. 2017, 21, 2777–2789. [Google Scholar] [CrossRef] [Green Version]
- Cuenca, E.; Tejedor, A.; Ferrara, L. A methodology to assess crack-sealing effectiveness of crystalline admixtures under repeated cracking-healing cycles. Constr. Build. Mater. 2018, 179, 619–632. [Google Scholar] [CrossRef]
- Hughes, B.P.; Fattuhi, N.I. The workability of steel-fiber-reinforced concrete. Mag. Concr. Res. 1976, 28, 157–161. [Google Scholar] [CrossRef]
- Bentur, A.; Mindess, S. Fiber Reinforced Cementitious Composites; Taylor & Francis Group: Abingdon, UK, 2007; p. 601. ISBN 0-415-25048-X. [Google Scholar]
- Mehta, K.P.; Monteiro, P.J.M. Concrete: Microstructure, Properties and Materials; McGraw-Hill: New York, NY, USA, 2005; p. 659. ISBN 0071797874. [Google Scholar]
- Ferrara, L.; Meda, A. Relationships between fiber distribution, workability and the mechanical properties of SFRC applied to precast roof elements. Mater. Struct. 2006, 39, 411–420. [Google Scholar] [CrossRef]
- Johnston, C.D. Measures of the Workability of Steel Fiber Reinforced Concrete and their Precision. Cem. Concr. Aggreg. 1984, 6, 74–83. [Google Scholar]
- Balaguru, P.; Ramakrishnan, V. Comparison of slump cone and V-B tests as measures of workability for fiber-reinforced and plain concrete. Cem. Concr. Aggreg. CCAGDP 1987, 9, 3–11. [Google Scholar]
- Balaguru, P.; Ramakrishnan, V. Properties of fiber reinforced concrete: Workability, Behavior under long-term loading, and air-void characteristics. ACI Mater. J. 1988, 85, 189–196. [Google Scholar]
- Sachan, A.K.; Kameswara Rao, C.V.S. A cone penetration test for workability of fiber reinforced concrete. Mater. Struct. 1988, 21, 448–452. [Google Scholar] [CrossRef]
- Bayasi, M.Z.; Soroushian, P. Effect of steel fiber reinforcement on fresh mix properties of concrete. ACI Mater. J. 1992, 89, 369–374. [Google Scholar]
- Pasini, F.; Garcia, T.; Gettu, R.; Agulló, L. Experimental study of the properties of flowable fiber reinforced concretes. In Proceedings of the Sixth RILEM International Symposium (BEFIB 2004), Varenna, Italy, 20–22 September 2004. [Google Scholar]
- Szwabowski, J.; Ponikiewski, T. The rheological properties of fresh polypropylene fiber reinforced mortar and concrete. In Proceedings of the Sixth RILEM International Symposium (BEFIB 2004), Varenna, Italy, 20–22 September 2004. [Google Scholar]
- Mohammadi, Y.; Singh, S.P.; Kaushik, S.K. Properties of steel fibrous concrete containing mixed fibers in fresh and hardened state. Constr. Build. Mater. 2007, 22, 956–965. [Google Scholar] [CrossRef]
- Laskar, A.I. Correlating slump, slump flow, Vebe and Flow tests to rheological parameters of high-performance concrete. Mater. Res. 2009, 12, 75–81. [Google Scholar] [CrossRef]
- De Figueiredo, A.D.; Ceccato, M.R. Workability analysis of steel fiber reinforced concrete using slump and Ve-Be test. Mater. Res. 2015, 18, 1284–1290. [Google Scholar] [CrossRef]
- Glanville, W.H.; Collins, A.R.; Matthews, D.D. The Grading of Aggregates and Workability of Concrete; Road Research Technical Paper; H.M.S.O.: London, UK, 1947. [Google Scholar]
- Shah, S.P.; Daniel, J.I.; Ahmad, S.H.; Arockiasamy, M.; Balaguru, P.N.; Ball, C.G.; Ball, H.P.; Batson, G.B.; Bentur, A.; Craig, R.J.; et al. Measurement of properties of fiber reinforced concrete. ACI Mater. J. 1988, 85, 583–593. [Google Scholar]
- Graf, O. Experiments of the behavior of Reinforcement in Concrete of Various Compositions. Deutsch. Aussch. Eisenbeton 1933, 71, 37–60. [Google Scholar]
- Testing Fresh Concrete—Part 5: Flow Table Test; EN 12350-5; Deutsches Institut fur Normung E.V. (DIN): Berlin, Germany, 2009.
- Martinie, L.; Rossi, P.; Roussel, N. Rheology of fiber reinforced cementitious materials: Classification and prediction. Cem. Concr. Res. 2010, 40, 226–234. [Google Scholar] [CrossRef]
- Kuder, K.G.; Ozyurt, N.; Mu, E.B.; Shah, S.P. Rheology of fiber-reinforced cementitious materials. Cem. Concr. Res. 2007, 37, 191–199. [Google Scholar] [CrossRef]
- Haist, M.; Ferrara, L. Rheological characterization of high performance fiber reinforced cementitious composites. In Proceedings of the Eighth RILEM International Symposium (BEFIB 2012), Guimaraes, Portugal, 19–21 September 2012. [Google Scholar]
- Page, J.; Khadraoui, F.; Boutouil, M.; Gomina, M. Multi-physical properties of a structural concrete incorporating short flax fibers. Constr. Build. Mater. 2017, 140, 344–353. [Google Scholar] [CrossRef]
- Ferrara, L.; Park, Y.D.; Shah, S.P. A method for mix-design of fiber-reinforced self-compacting concrete. Cem. Concr. Res. 2007, 37, 957–971. [Google Scholar] [CrossRef]
- Standard Test Method for Air Content of Freshly Mixed Concrete by the Pressure Method; ASTM C231; ASTM International: West Conshohocken, PA, USA, 2017.
- Standard Test Method for Slump of Hydraulic-Cement Concrete; ASTM C143; ASTM International: West Conshohocken, PA, USA, 2015.
- Testing Fresh Concrete—Part 2: Slump-Test; EN 12350-2; BSI: London, UK, 2009.
- Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory; ASTM C192; ASTM International: West Conshohocken, PA, USA, 2016.
- Standard Test Method for Flexural Performance of Fiber-Reinforced Concrete (Using Beam with Third-Point Loading); ASTM C1609; ASTM International: West Conshohocken, PA, USA, 2012.
- Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens; ASTM C39; ASTM International: West Conshohocken, PA, USA, 2016.
- Concrete—Specification, Performance, Production and Conformity; EN 206-1; BSI: London, UK, 2013.
- Mor, A.; Ravina, D. The DIN Flow Table. Concr. Int. 1986, 8, 53–56. [Google Scholar]
Concrete | C45 | C50 |
---|---|---|
Sand 0–4.75 [kg/m3] | 690 | 730 |
Coarse aggregate 4.75–25 [kg/m3] | 992 | 992 |
Maximum Aggregate Size [mm] | 25 | 25 |
Cement Type | Type I | Type I |
Cement Content [kg/m3] | 429 | 429 |
Water-Cement Ratio 1 | 0.50 | 0.45 |
Superplasticizer (% of cement content) | 0.05 | 0.11 |
Fiber Designation | s1 | s2 | p1 | p2 |
---|---|---|---|---|
Type | Steel | Steel | Polypropylene | Polypropylene |
Shape | Hooked-End | Hooked-End | Crimped | Embossed |
Length l [mm] | 35 | 60 | 40 | 54 |
Diameter Ø [mm] | 0.54 | 0.92 | 0.75 | 0.81 |
Aspect Ratio l/Ø | 65 | 65 | 53 | 67 |
Tensile Strength [MPa] | >1345 | >1100 | >450 | >552 |
Elastic Modulus [GPa] | 210 | 210 | 3.6 | 6 |
Density [kg/m3] | 7850 | 7850 | 910 | 910 |
Designation | Base Concrete | Fiber | Fiber Content [kg/m3] | Vf [%] |
---|---|---|---|---|
C45 | ||||
C45-PC | C45 | - | 0 | 0 |
C45-s1-0.5% | C45 | s1 | 39.2 | 0.5 |
C45-s1-1.0% | C45 | s1 | 78.5 | 1.0 |
C45-s2-0.5% | C45 | s2 | 39.2 | 0.5 |
C45-s2-1.0% | C45 | s2 | 78.5 | 1.0 |
C45-p1-0.5% | C45 | p1 | 4.6 | 0.5 |
C45-p1-1.0% | C45 | p1 | 9.1 | 1.0 |
C45-p2-0.5% | C45 | p2 | 4.6 | 0.5 |
C45-p2-1.0% | C45 | p2 | 9.1 | 1.0 |
C50 | ||||
C50-PC | C50 | - | 0 | 0 |
C50-s1-0.5% | C50 | s1 | 39.2 | 0.5 |
C50-s1-1.0% | C50 | s1 | 78.5 | 1.0 |
C50-s2-0.5% | C50 | s2 | 39.2 | 0.5 |
C50-s2-1.0% | C50 | s2 | 78.5 | 1.0 |
C50-p1-0.5% | C50 | p1 | 4.6 | 0.5 |
C50-p1-1.0% | C50 | p1 | 9.1 | 1.0 |
C50-p2-0.5% | C50 | p2 | 4.6 | 0.5 |
C50-p2-1.0% | C50 | p2 | 9.1 | 1.0 |
Concrete Designation | Base Concrete + Fibers | Slump Target 180 ± 20 mm | ||||
---|---|---|---|---|---|---|
Air Content [%] | Slump [mm] | Flow [mm] | Air Content [%] | Slump [mm] | Flow [mm] | |
C45 | ||||||
C45-PC | 2.7 (0.02) | 182 (0.01) | 495 (0.01) | - | - | - |
C45-s1-0.5% | 2.7 (0.04) | 115 (0.06) | 385 (0.02) | 2.4 (0.05) | 179 (0.05) | 465 (0.04) |
C45-s1-1.0% | 2.8 (0.06) | 98 (0.06) | 398 (0.02) | 2.9 (0.08) | 175 (0.02) | 500 (0.02) |
C45-s2-0.5% | 2.7 (0.06) | 109 (0.06) | 428 (0.03) | 2.4 (0.05) | 180 (0.05) | 437 (0.02) |
C45-s2-1.0% | 2.9 (0.04) | 69 (0.19) | 400 (0.07) | 2.5 (0.04) | 176 (0.03) | 480 (0.04) |
C45-p1-0.5% | 2.9 (0.08) | 133 (0.03) | 425 (0.04) | 3.0 (0.05) | 177 (0.03) | 435 (0.09) |
C45-p1-1.0% | 3.2 (0.06) | 100 (0.08) | 395 (0.04) | 3.0 (0.05) | 180 (0.01) | 420 (0.03) |
C45-p2-0.5% | 2.8 (0.03) | 123 (0.04) | 395 (0.01) | 2.7 (0.04) | 173 (0.03) | 395 (0.05) |
C45-p2-1.0% | 3.0 (0.03) | 77 (0.06) | 400 (0.01) | 3.1 (0.06) | 163 (0.03) | 440 (0.02) |
C50 | ||||||
C50-PC | 2.4 (0.02) | 185 (0.02) | 500 (0.01) | - | - | - |
C50-s1-0.5% | 2.4 (0.05) | 112 (0.08) | 343 (0.06) | 2.7 (0.08) | 172 (0.08) | 360 (0.05) |
C50-s1-1.0% | 2.9 (0.08) | 73 (0.06) | 388 (0.06) | 2.8 (0.05) | 165 (0.07) | 393 (0.04) |
C50-s2-0.5% | 2.4 (0.06) | 100 (0.22) | 345 (0.03) | 2.2 (0.03) | 180 (0.02) | 460 (0.02) |
C50-s2-1.0% | 2.5 (0.04) | 58 (0.28) | 395 (0.05) | 2.9 (0.05) | 172 (0.06) | 485 (0.02) |
C50-p1-0.5% | 2.9 (0.09) | 127 (0.05) | 415 (0.05) | 3.6 (0.07) | 172 (0.04) | 435 (0.03) |
C50-p1-1.0% | 3.0 (0.06) | 73 (0.06) | 375 (0.05) | 3.2 (0.05) | 177 (0.03) | 465 (0.03) |
C50-p2-0.5% | 2.8 (0.06) | 117 (0.08) | 400 (0.08) | 2.8 (0.05) | 173 (0.03) | 390 (0.04) |
C50-p2-1.0% | 3.1 (0.07) | 67 (0.19) | 405 (0.05) | 3.0 (0.06) | 170 (0.01) | 465 (0.02) |
Concrete | Base Concrete + Fibers | Slump Target 180 mm ± 20 mm | ||||||
---|---|---|---|---|---|---|---|---|
0.5% | 1.0% | 0.5% | 1.0% | |||||
C45 | C50 | C45 | C50 | C45 | C50 | C45 | C50 | |
PC | 0.98 (0.01) | 0.99 (0.01) | 0.98 (0.01) | 0.99 (0.01) | - | - | - | - |
s1 | 0.97 (0.01) | 0.80 (0.02) | 0.92 (0.03) | 0.72 (0.05) | 0.95 (0.01) | 0.99 (0.01) | 0.88 (0.05) | 0.82 (0.05) |
s2 | 0.97 (0.01) | 0.84 (0.03) | 0.90 (0.02) | 0.72 (0.10) | 0.94 (0.01) | 0.99 (0.01) | 0.93 (0.02) | 0.94 (0.04) |
p1 | 0.93 (0.04) | 0.98 (0.01) | 0.93 (0.02) | 0.97 (0.00) | 0.98 (0.01) | 0.98 (0.03) | 0.96 (0.04) | 0.98 (0.03) |
p2 | 0.93 (0.04) | 0.93 (0.03) | 0.90 (0.03) | 0.90 (0.04) | 0.98 (0.02) | 0.95 (0.04) | 0.99 (0.02) | 0.98 (0.01) |
Concrete | fcm | fl | f150,0.75 | f150,3.00 | T150,3.00 |
---|---|---|---|---|---|
[MPa] | [MPa] | [MPa] | [MPa] | [J] | |
C45 | |||||
C45-PC | 42.84 (0.05) | 5.40 (0.06) | - | - | - |
C45-s1-0.5% | 46.57 (0.01) | 5.38 (0.07) | 5.98 (0.05) | 3.67 (0.06) | 117.9 (0.04) |
C45-s1-1.0% | 46.84 (0.02) | 6.70 (0.09) | 7.74 (0.12) | 4.80 (0.11) | 149.6 (0.13) |
C45-s2-0.5% | 43.68 (0.02) | 5.59 (0.07) | 6.13 (0.09) | 4.73 (0.16) | 130.9 (0.12) |
C45-s2-1.0% | 46.48 (0.02) | 5.95 (0.06) | 8.81 (0.10) | 6.23 (0.06) | 173.8 (0.08) |
C45-p1-0.5% | 46.65 (0.01) | 5.62 (0.04) | 2.68 (0.19) | 2.79 (0.15) | 70.7 (0.13) |
C45-p1-1.0% | 48.83 (0.01) | 5.77 (0.03) | 3.59 (0.19) | 4.20 (0.19) | 99.0 (0.15) |
C45-p2-0.5% | 44.66 (0.03) | 6.43 (0.01) | 3.16 (0.25) | 2.84 (0.12) | 73.8 (0.15) |
C45-p2-1.0% | 46.37 (0.02) | 5.66 (0.07) | 3.92 (0.11) | 4.28 (0.08) | 100.7 (0.05) |
C50 | |||||
C50-PC | 49.97 (0.03) | 6.10 (0.04) | - | - | - |
C50-s1-0.5% | 53.27 (0.01) | 5.60 (0.06) | 4.62 (0.09) | 3.02 (0.08) | 90.1 (0.03) |
C50-s1-1.0% | 48.62 (0.02) | 5.48 (0.03) | 5.77 (0.07) | 3.84 (0.10) | 116.4 (0.06) |
C50-s2-0.5% | 52.21 (0.04) | 6.04 (0.06) | 5.83 (0.11) | 4.04 (0.13) | 114.9 (0.08) |
C50-s2-1.0% | 47.17 (0.03) | 6.41 (0.05) | 8.54 (0.11) | 6.50 (0.05) | 177.2 (0.09) |
C50-p1-0.5% | 54.97 (0.01) | 6.37 (0.02) | 2.58 (0.16) | 2.56 (0.09) | 65.9 (0.09) |
C50-p1-1.0% | 55.04 (0.06) | 6.43 (0.08) | 3.39 (0.29) | 3.60 (0.23) | 86.4 (0.22) |
C50-p2-0.5% | 49.86 (0.01) | 6.35 (0.07) | 2.35 (0.03) | 2.23 (0.13) | 60.8 (0.04) |
C50-p2-1.0% | 48.35 (0.03) | 6.39 (0.09) | 4.18 (0.32) | 4.27 (0.29) | 102.1 (0.29) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerini, V.; Conforti, A.; Plizzari, G.; Kawashima, S. Influence of Steel and Macro-Synthetic Fibers on Concrete Properties. Fibers 2018, 6, 47. https://doi.org/10.3390/fib6030047
Guerini V, Conforti A, Plizzari G, Kawashima S. Influence of Steel and Macro-Synthetic Fibers on Concrete Properties. Fibers. 2018; 6(3):47. https://doi.org/10.3390/fib6030047
Chicago/Turabian StyleGuerini, Veronica, Antonio Conforti, Giovanni Plizzari, and Shiho Kawashima. 2018. "Influence of Steel and Macro-Synthetic Fibers on Concrete Properties" Fibers 6, no. 3: 47. https://doi.org/10.3390/fib6030047
APA StyleGuerini, V., Conforti, A., Plizzari, G., & Kawashima, S. (2018). Influence of Steel and Macro-Synthetic Fibers on Concrete Properties. Fibers, 6(3), 47. https://doi.org/10.3390/fib6030047