The Effect of Inorganic Pigments on the Rheological Properties of the Color Masterbatches from Polylactic Acid
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Polymers
2.1.2. Inorganic Pigments
2.1.3. Dispersing Agent
2.2. Preparation of Color PLA Masterbatches
2.3. Methods
2.3.1. Processability Properties
2.3.2. Rheological Properties
- Rotary rheoviscosimeter Physica MCR 101 (Anton Paar, Graz, Austria) with parallel plate geometry (diameter of 25 mm and gap of 1 mm). The conditions of measurement: temperature 190 °C, air atmosphere, at 1% strain from 0.1 to 100 rad/s.
- Capillary viscosimeter GÖTTFERT RG20 with a circular diameter (L/D = 30/1; diameter of piston 15 mm). The conditions of measurement: temperature 190 °C, air atmosphere, shear speeds in the range of 90–4500 s−1 with preheating for 5 min.
3. Results and Discussion
4. Conclusions
- From the evaluation of the processing and flow properties of the prepared color PLA masterbatches, we can see differences in the rheological behavior of the color masterbatches depending on the polymer carrier used.
- All four inorganic pigments influenced the MFR values of color PLA masterbatches minimally compared to the MFR values of pure PLA6100 and PLA175.
- The results of rheological properties measurements using a capillary viscometer and a rotary rheoviscometer with plate/plate geometry were comparable and gave us reliable information about the rheological behavior of pure PLA as well as color PLA masterbatches.
- From the obtained flow curves (dependence of viscosity on shear rate) as well as the dependencies of complex viscosity on angular frequency (in oscillatory measurements), we found that in color masterbatches based on PLA6100, the influence of inorganic pigments led to a certain increase in viscosity. This increase in viscosity was (more or less) significant with respect to the type and concentration of a particular inorganic pigment.
- On the contrary, in masterbatches based on PLA175, the specific type and concentration of the given pigment caused a greater or lesser decrease in viscosity compared to pure PLA175.
- A slightly different behavior was recorded only for color PLA masterbatches containing the inorganic pigment PXA, regardless of the type of polymer carrier.
- The results obtained from the evaluation of storage and loss modules confirm the previous conclusions of the influence of the polymer carrier, type, and concentration of the inorganic pigment on the rheological properties of color PLA masterbatches.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vlachopoulos, J.; Polychronopoulos, N. Chapter 1 Basic Concepts in Polymer Melt Rheology and Their Importance in Processing. In Applied Polymer Rheology: Polymeric Fluids with Industrial Applications, 1st ed.; Kontopoulou, M., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012; pp. 1–26. [Google Scholar] [CrossRef]
- Sangroniz, L.; Fernández, M.; Santamaria, A. Polymers and rheology: A tale of give and take. Polymer 2023, 271, 125811. [Google Scholar] [CrossRef]
- Alexy, P. Processes of Polymer Processing, (in Slovak: Procesy Spracovania Polymérov), 1st ed.; STU: Bratislava, Slovakia, 2010; pp. 5–14. [Google Scholar]
- Jain, S.; Misra, M.; Mohanty, A.K.; Ghosh, A.K. Thermal, Mechanical and Rheological Behavior of Poly(lactic acid)/Talc Composites. J. Polym. Environ. 2012, 20, 1027–1037. [Google Scholar] [CrossRef]
- Unal, H. Morphology and mechanical properties of composites based on polyamide 6 and mineral additives. Mater. Des. 2004, 25, 483–487. [Google Scholar] [CrossRef]
- Surendren, A.; Pal, A.K.; Rodriguez-Uribe, A.; Shankar, S.; Lim, L.T.; Mohanty, A.K.; Misra, M. Upcycling of post-industrial starch-based thermoplastics and their talc-filled sustainable biocomposites for single-use plastic alternative. Int. J. Biol. Macromol. 2023, 253, 126751. [Google Scholar] [CrossRef]
- Helanto, K.; Talja, R.; Rojas, O.J. Effects of talc, kaolin and calcium carbonate as fillers in biopolymer packaging materials. J. Polym. Eng. 2021, 41, 746–758. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Haddleton, D.M.; McNally, T.; Tan, B.; Sun, Z.; Huang, W.; Ji, Y.; Wan, C. Poly(glycolic acid) (PGA): A versatile building block expanding high performance and sustainable bioplastic applications. Green Chem. 2020, 22, 4055–4081. [Google Scholar] [CrossRef]
- Samantaray, P.K.; Little, A.; Wemyss, A.M.; Iacovidou, E.; Wan, C. Design and Control of Composability in Synthetic Biopolyesters. ACS Sustain. Chem. Eng. 2021, 9, 9151–9164. [Google Scholar] [CrossRef]
- Nofar, M.; Salehiyan, R.; Ray, S.S. Rheology of poly (lactic acid)-based systems. Polym. Rev. 2019, 59, 465–509. [Google Scholar] [CrossRef]
- Dorgan, J.R.; Williams, J.S. Melt rheology of poly(lactic acid): Entanglement and chain architecture effects. J. Rheol. 1999, 43, 1141–1155. [Google Scholar] [CrossRef]
- Dorgan, J.R.; Lehermeier, H.; Mang, M. Thermal and rheological properties of commercial-grade poly (lactic acid)s. J. Polym. Environ. 2000, 8, 1–9. [Google Scholar] [CrossRef]
- Palade, L.I.; Lehermeier, H.J.; Dorgan, J.R. Melt rheology of high L-content polylactic acid. Macromolecules 2001, 34, 1384–1390. [Google Scholar] [CrossRef]
- Dorgan, J.R.; Lehermeier, H.J.; Palade, L.I.; Cicero, J. Polylactides: Properties and prospects of an environmentally benign plastic from renewable resources. Macromol. Symp. 2001, 175, 55–66. [Google Scholar] [CrossRef]
- Lehermeier, H.J.; Dorgan, J.R. Melt rheology of poly (lactic acid): Consequences of blending chain architectures. Polym. Eng. Sci. 2001, 41, 2172–2184. [Google Scholar] [CrossRef]
- Dorgan, J.R.; Janzen, J.; Clayton, M.P.; Hait, S.B.; Knauss, D.M. Melt rheology of variable L-content poly(lactic acid). J. Rheol. 2005, 49, 607–619. [Google Scholar] [CrossRef]
- Dorgan, J.R. Rheology of Poly(Lactic Acid). In Poly (Lactic Acid) Synthesis, Structures, Properties, Processing, Applications, and End of Life, 2nd ed.; Auras, R.A., Lim, L.T., Selke, S.E.M., Tsuji, H., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 153–167. [Google Scholar] [CrossRef]
- Cooper-White, J.J.; Mackay, M.E. Rheological properties of poly(lactides). Effect of molecular weight and temperature on the viscoelasticity of poly(L-lactic acid). J. Polym. Sci. Part B Polym. Phys. 1999, 37, 1803–1814. [Google Scholar] [CrossRef]
- Hirata, M.; Kimura, Y. Thermomechanical properties of stereoblock poly(lactic acid)s with different PLLA/PDLA block compositions. Polymer 2008, 49, 2656–2661. [Google Scholar] [CrossRef]
- Rahaman, M.H.; Tsuji, H. Synthesis and Characterization of Stereo Multiblock Poly(lactic acid)s with Different Block Lengths by Melt Polycondensation of Poly(L-lactic acid)/Poly(D-lactic acid) Blends. Macromol. React. Eng. 2012, 6, 446–457. [Google Scholar] [CrossRef]
- Dealy, J.M.; Wissbrun, K.F. Melt Rheology and Its Role in Plastics Processing—Theory and Applications, 1st ed.; Van Nostrand Reinhold: New York, NY, USA, 1990; 665p. [Google Scholar] [CrossRef]
- Fang, Q.; Hanna, M.A. Rheological properties of amorphous and semicrystalline polylactic acid polymers. Ind. Crops Prod. 1999, 10, 47–53. [Google Scholar] [CrossRef]
- Al-Itry, R.; Lamnawar, K.; Maazouz, A. Improvement of thermal stability, rheological and mechanical properties of PLA, PBAT and their blends by reactive extrusion with functionalized epoxy. Polym. Degrad. Stab. 2012, 97, 1898–1914. [Google Scholar] [CrossRef]
- Matta, A.K.; Rao, R.U.; Suman, K.N.S.; Rambabu, V. Preparation and characterization of biodegradable PLA/PCL polymeric blends. Procedia Mater. Sci. 2014, 6, 1266–1270. [Google Scholar] [CrossRef]
- Muniyasamy, S.; Ofosu, O.; John, M.J.; Anandjiwala, R.D. Mineralization of poly(lactic acid)(PLA), poly(3-hydroxybutyrate-covalerate) (PHBV) and PLA/PHBV blend in compost and soil environments. J. Renew. Mater. 2016, 4, 133–145. [Google Scholar] [CrossRef]
- Li, Y.; Shimizu, H. Improvement in toughness of poly(L-lactide) (PLLA) through reactive blending with acrylonitrile–butadiene–styrene copolymer (ABS): Morphology and properties. Eur. Polym. J. 2009, 45, 738–746. [Google Scholar] [CrossRef]
- Rodríguez-Panes, A.; Claver, J.; Camacho, A.M. The Influence of Manufacturing Parameters on the Mechanical Behaviour of PLA and ABS Pieces Manufactured by FDM: A Comparative Analysis. Materials 2018, 11, 1333. [Google Scholar] [CrossRef]
- Peltola, H.; Pääkkönen, E.; Jetsu, P.; Heinemann, S. Wood based PLA and PP composites: Effect of fibre type and matrix polymer on fibre morphology, dispersion and composite properties. Compos. Part A Appl. Sci. Manuf. 2014, 61, 13–22. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Preparation and characterization of binary and ternary blends with poly(lactic acid), polystyrene, and acrylonitrile-butadiene-styrene. J. Biomater. Nanobiotechnology 2012, 3, 405–412. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Effect of recycling on the rheological and mechanical properties of poly(lactic acid)/polystyrene polymer blend. J. Mater. Sci. 2011, 46, 3013–3019. [Google Scholar] [CrossRef]
- Keshtkar, M.; Nofar, M.; Park, C.B.; Carreau, P.J. Extruded PLA/clay nanocomposite foams blown with supercritical CO2. Polymer 2014, 55, 4077–4090. [Google Scholar] [CrossRef]
- Morici, E.; Pecoraro, G.; Carroccio, S.C.; Bruno, E.; Scarfato, P.; Filippone, G.; Dintcheva, N.T. Understanding the Effects of Adding Metal Oxides to Polylactic Acid and Polylactic Acid Blends on Mechanical and Rheological Behaviour, Wettability, and Photo-Oxidation Resistance. Polymers 2024, 16, 922. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, C.; Pamies, R.; Sanes, J.; Carrión-Vilches, F.J.; Bermúdez, M.D. Bio-based materials in tribology: New salicylate ionic liquid+ZnO nanolubricant of PLA and PLA nanocomposite. Tribol. Int. 2024, 198, 109868. [Google Scholar] [CrossRef]
- Stratiotou Efstratiadis, V.; Argyros, A.; Efthymiopoulos, P.; Maliaris, G.; Nasikas, N.K.; Michailidis, N. Utilization of Silica Filler as Reinforcement Material of Polylactic Acid (PLA) in 3D Printing Applications: Thermal, Rheological, and Mechanical Performance. Polymers 2024, 16, 1326. [Google Scholar] [CrossRef]
- Kuan, C.F.; Kuan, H.C.; Ma, C.C.M.; Chen, C.H. Mechanical and electrical properties of multi-wall carbon nanotube/poly(lactic acid) composites. J. Phys. Chem. Solids 2008, 69, 1395–1398. [Google Scholar] [CrossRef]
- Dhar, P.; Bhasney, S.M.; Kumar, A.; Katiyar, V. Acid functionalized cellulose nanocrystals and its effect on mechanical, thermal, crystallization and surfaces properties of poly (lactic acid) bionanocomposites films: A comprehensive study. Polymer 2016, 101, 75–92. [Google Scholar] [CrossRef]
- Sabzi, M.; Jiang, L.; Liu, F.; Ghasemi, I.; Atai, M. Graphene nanoplatelets as poly(lactic acid) modifier: Linear rheological behavior and electrical conductivity. J. Mater. Chem. A 2013, 1, 8253–8261. [Google Scholar] [CrossRef]
- Xu, P.; Tian, H.; Han, L.; Yang, H.; Bian, J.; Pan, H.; Zhang, H. Improved heat resistance in poly (lactic acid)/ethylene butyl methacrylate glycidyl methacrylate terpolymer blends by controlling highly filled talc particles. J. Therm. Anal. Calorim. 2022, 147, 5719–5732. [Google Scholar] [CrossRef]
- Przekop, R.E.; Kujawa, M.; Pawlak, W.; Dobrosielska, M.; Wieleba, W. Graphite modified polylactide (PLA) for 3D printed (FDM/FFF) sliding elements. Polymers 2020, 12, 1250. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.; Ramírez, J.A.A.; Mehrkhodavandi, P.; Dorgan, J.R.; Hatzikiriakos, S.G. Solution and melt viscoelastic properties of controlled microstructure poly(lactide). J. Rheol. 2011, 55, 987–1005. [Google Scholar] [CrossRef]
- Othman, N.; Jazrawi, B.; Mehrkhodavandi, P.; Hatzikiriakos, S.G. Wall slip and melt rheology of poly(lactides). Rheol. Acta 2012, 51, 357–369. [Google Scholar] [CrossRef]
- Chile, L.E.; Mehrkhodavandi, P.; Hatzikiriakos, S.G. A Comparison of the Rheological and Mechanical Properties of Isotactic, Syndiotactic, and Heterotactic Poly(lactide). Macromolecules 2016, 49, 909–919. [Google Scholar] [CrossRef]
- Othman, N.; Xu, C.; Mehrkhodavandi, P.; Hatzikiriakos, S.G. Thermorheological and mechanical behavior of polylactide and its enantiomeric diblock copolymers and blends. Polymer 2012, 53, 2443–2452. [Google Scholar] [CrossRef]
- Yang, H.; Du, J. Crystallinity, Rheology, and Mechanical Properties of Low-/High-Molecular-Weight PLA Blended Systems. Molecules 2024, 29, 15. [Google Scholar] [CrossRef]
- Gupta, B.; Revagade, N.; Hilborn, J. Poly(lactic acid) fiber: An overview. Prog. Polym. Sci. 2007, 32, 455–482. [Google Scholar] [CrossRef]
- Rasal, R.M.; Janorkar, A.V.; Hirt, D.E. Poly(lactic acid) modifications. Prog. Polym. Sci. 2010, 35, 338–356. [Google Scholar] [CrossRef]
- Saeidlou, S.; Huneault, M.A.; Li, H.; Park, C.B. Poly (lactic acid) crystallization. Prog. Polym. Sci. 2012, 37, 1657–1677. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Melt rheology of poly(lactic acid)/low density polyethylene polymer blends. Adv. Chem. Eng. Sci. 2011, 1, 208–214. [Google Scholar] [CrossRef]
- Hamad, K.; Kaseem, M.; Deri, F. Poly(lactic acid)/low density polyethylene polymer blends: Preparation and characterization. Asia-Pac. J. Chem. Eng. 2012, 7, S310–S316. [Google Scholar] [CrossRef]
- Jiang, G.; Huang, H.X.; Chen, Z.K. Rheological responses and morphology of polylactide/linear low density polyethylene blends produced by different mixing type. Polym.-Plast. Technol. Eng. 2011, 50, 1035–1039. [Google Scholar] [CrossRef]
- Balakrishnan, H.; Hassan, A.; Wahit, M.U. Mechanical, thermal, and morphological properties of polylactic acid/linear low density polyethylene blends. J. Elastomers Plast. 2010, 42, 223–239. [Google Scholar] [CrossRef]
- Huang, T.; Yang, J.; Zhang, N.; Zhang, J.; Wang, Y. Crystallization of poly(l-lactide) in the miscible poly(l-lactide)/poly(vinyl acetate) blend induced by carbon nanotubes. Polym. Bull. 2018, 75, 2641–2655. [Google Scholar] [CrossRef]
- Wang, L.; Yu, G.; Zhu, Y.; Li, C.; Li, J.; Guo, S. Fabrication of polylactide with high-content, ordered, and continuous transcrystallinity via multilayered two-dimensional interface. Mater. Des. 2021, 204, 109687–109695. [Google Scholar] [CrossRef]
- Nofar, M.; Heuzey, M.C.; Carreau, P.; Kamal, M. Effects of nanoclay and its localization on the morphology stabilization of PLA/PBAT blends under shear flow. Polymer 2016, 98, 353–364. [Google Scholar] [CrossRef]
- Eslami, H.; Kamal, M.R. Elongational rheology of biodegradable poly(lactic acid)/poly[(butylene succinate)-co-adipate] binary blends and poly(lactic acid)/poly[(butylene succinate)-co-adipate]/clay ternary nanocomposites. J. Appl. Polym. Sci. 2012, 127, 2290–2306. [Google Scholar] [CrossRef]
- D’Anna, A.; Arrigo, R.; Frache, A. Rheology, Morphology and thermal properties of a PLA/PHB/clay blend nanocomposite: The influence of process parameters. J. Polym. Environ. 2022, 30, 102–113. [Google Scholar] [CrossRef]
- Ebadi-Dehaghani, H.; Khonakdar, H.A.; Barikani, M.; Jafari, S.H.; Wagenknecht, U.; Heinrich, G. On localization of clay nanoparticles in polypropylene/poly(lactic acid) blend nanocomposites: Correlation with mechanical properties. J. Macromol. Sci. Part B Phys. 2016, 55, 344–360. [Google Scholar] [CrossRef]
- Nuñez, K.; Rosales, C.; Perera, R.; Villarreal, N.; Pastor, J.M. Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym. Eng. Sci. 2011, 52, 988–1004. [Google Scholar] [CrossRef]
- Bitinis, N.; Verdejo, R.; Maya, E.M.; Espuche, E.; Cassagnau, P.; Lopez-Manchado, M.A. Physicochemical properties of organoclay filled polylactic acid/natural rubber blend bionanocomposites. Composites. Sci. Technol. 2012, 72, 305–313. [Google Scholar] [CrossRef]
- D’Urso, L.; Acocella, M.R.; Guerra, G.; Iozzino, V.; De Santis, F.; Pantani, R. PLA Melt Stabilization by High-Surface-Area Graphite and Carbon Black. Polymers 2018, 10, 139. [Google Scholar] [CrossRef]
- D’Urso, L.; Acocella, M.R.; De Santis, F.; Guerra, G.; Pantani, R. Poly(l-lactic acid) nucleation by alkylated carbon black. Polymer 2022, 256, 125237. [Google Scholar] [CrossRef]
- Abdalla, A.; Hamzah, H.H.; Keattch, O.; Covill, D.; Patel, B.A. Augmentation of conductive pathways in carbon black/PLA 3D-printed electrodes achieved through varying printing parameters. Electrochim. Acta 2020, 354, 136618. [Google Scholar] [CrossRef]
- Seetala, K.; Clower, W.; Wilson, C.G. Electrochemical enhancement of carbon black-infused poly(lactic acid) filament for additive manufactured electronic applications. Addit. Manuf. 2023, 61, 103283. [Google Scholar] [CrossRef]
- Fernandes-Junior, W.S.; Orzari, L.O.; Kalinke, C.; Bonacin, J.A.; Janegitz, B.C. A miniaturized additive-manufactured carbon black/PLA electrochemical sensor for pharmaceuticals detection. Talanta 2024, 275, 126154. [Google Scholar] [CrossRef]
- Zhang, Y.; Dong, S.T.; Zhou, Y.G.; Zou, J. Conductivity of PLA/PBAT blends with carbon black as a conductive filler. Mater. Lett. 2025, 378, 137592. [Google Scholar] [CrossRef]
- Silva, L.R.G.; Bertolim, L.V.; Stefano, J.S.; Bonacin, J.A.; Richter, E.M.; Munoz, R.A.A.; Janegitz, B.C. New route for the production of lab-made composite filaments based on soybean oil, polylactic acid and carbon black nanoparticles, and its application in the additive manufacturing of electrochemical sensors. Electrochim. Acta 2025, 513, 145566. [Google Scholar] [CrossRef]
- Wu, D.; Zhang, Y.; Zhang, M.; Yu, W. Selective localization of multiwalled carbon nanotubes in poly(ε-caprolactone)/polylactide blend. Biomacromolecules 2009, 10, 417–424. [Google Scholar] [CrossRef]
- Park, D.H.; Kan, T.G.; Lee, Y.K.; Kim, W.N. Effect of multi-walled carbon nanotube dispersion on the electrical and rheological properties of poly(propylene carbonate)/poly(lactic acid)/multi-walled carbon nanotube composites. J. Mater. Sci. 2012, 48, 481–488. [Google Scholar] [CrossRef]
- Jang, M.G.; Lee, Y.K.; Kim, W.N. Influence of lactic acid-grafted multi-walled carbon nanotube (LA-g-MWCNT) on the electrical and rheological properties of polycarbonate/poly(lactic acid)/LA-g-MWCNT composites. Macromol. Res. 2015, 23, 916–923. [Google Scholar] [CrossRef]
- Markarian, J. Back-to-basics: Adding colour to plastics. Plast. Addit. Compd. 2009, 11, 12–15. [Google Scholar] [CrossRef]
- Dawson, T. Progress towards a greener textile industry. Color. Technol. 2012, 128, 1–8. [Google Scholar] [CrossRef]
- Baig, G.A. Coloration of poly(lactic acid) based textiles—A review. Polimery 2020, 65, 417–429. [Google Scholar] [CrossRef]
- Avinc, O.; Bakan, E.; Demirçalı, A.; Gedik, G.; Karcı, F. Dyeing of poly(lactic acid) fibres with synthesised novel heterocyclic disazo disperse dyes. Color. Technol. 2020, 136, 356–369. [Google Scholar] [CrossRef]
- Ujjin, S.; Jantip, S. Study on the Dyeing Properties of Poly(Lactic Acid) and Silk Yarns with Natural Dyes. Adv. Mater. Res. 2012, 486, 384–387. [Google Scholar] [CrossRef]
- Burkinshaw, S.M.; Jeong, D.S.; Chun, T.I. The coloration of poly(lactic acid) fibres with indigoid dyes: Part 2: Wash fastness. Dye. Pigment. 2013, 97, 374–387. [Google Scholar] [CrossRef]
- Hussain, T.; Tausif, M.; Ashraf, M. A review of progress in the dyeing of eco-friendly aliphatic polyester-based polylactic acid fabrics. J. Clean. Prod. 2015, 108, 476–483. [Google Scholar] [CrossRef]
- EN 13432; Certified Bioplastics, Performance in Industrial Composting. European Bioplastics Association: Berlin, Germany, 2015.
- Parra-Campos, A.; Albán-Bolaños, P.; Villada-Castillo, H.S.; Portela-Guarín, H.; Palacios, L.M.; Arboleda-Muñoz, G.A. Evaluation of a biodegradable color concentrate in bags for coffee seedlings. DYNA 2020, 87, 16. Available online: https://www.redalyc.org/articulo.oa?id=49663642004 (accessed on 12 June 2023). [CrossRef]
- Pagnan, C.S.; Mottin, A.C.; Oréfice, R.L.; Ayres, E.; Câmara, J.J.D. Annatto-colored Poly(3-hydroxybutyrate): A Comprehensive Study on Photodegradation. J. Polym. Environ. 2018, 26, 1169–1178. [Google Scholar] [CrossRef]
- Moreira, J.B.; Terra, A.L.M.; Costa, J.A.V.; de Morais, M.G. Development of pH indicator from PLA/PEO ultrafine fibers containing pigment of microalgae origin. Int. J. Biol. Macromol. 2018, 118, 1855–1862. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R.P. Non-Newtonian fluids: An introduction. In Rheology of Complex Fluids, 1st ed.; Krishnan, J.M., Deshpande, A.P., Kumar, P.B.S., Eds.; Springer: New York, NY, USA, 2010; pp. 3–34. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Ma, X.; Fang, J. Influence of carbon black on the properties of plasticized poly(lactic acid) composites. Polym. Degrad. Stab. 2008, 93, 1044–1052. [Google Scholar] [CrossRef]
- Arrigo, R.; Bartoli, M.; Malucelli, G. Poly(lactic acid)–biochar biocomposites: Effect of processing and filler content on rheological, thermal, and mechanical properties. Polymers 2020, 12, 892. [Google Scholar] [CrossRef] [PubMed]
- Botta, L.; Scaffaro, R.; La Mantia, F.P.; Dintcheva, N.T. Effect of different matrices and nanofillers on the rheological behavior of polymer-clay nanocomposites. J. Polym. Sci. Part B Polym. Phys. 2009, 48, 344–355. [Google Scholar] [CrossRef]
Polymer | Pigment [wt.%] | Dispersing Agent [wt.%] | ||
---|---|---|---|---|
PLA6100 | - | - | - | - |
PLA6100 | Ti | 1 | V350 | 0.3 |
3 | 0.6 | |||
PXA | 1 | 0.3 | ||
3 | 0.6 | |||
Fe303 | 1 | 0.3 | ||
3 | 0.6 | |||
Fe200 | 1 | 0.3 | ||
3 | 0.6 | |||
PLA175 | - | - | - | - |
PLA175 | Ti | 1 | V350 | 0.3 |
3 | 0.6 | |||
PXA | 1 | 0.3 | ||
3 | 0.6 | |||
Fe303 | 1 | 0.3 | ||
3 | 0.6 | |||
Fe200 | 1 | 0.3 | ||
3 | 0.6 |
Polymer | Pigment | Power Law Exponent | ||
---|---|---|---|---|
[wt.%] | nrotary | ncapillary | ||
PLA6100 | - | - | 0.52 | 0.81 |
PLA6100 | Ti | 1 | 0.53 | 0.80 |
3 | 0.53 | 0.80 | ||
PXA | 1 | 0.53 | 0.79 | |
3 | 0.50 | 0.76 | ||
Fe303 | 1 | 0.49 | 0.80 | |
3 | 0.50 | 0.81 | ||
Fe200 | 1 | 0.65 | 0.81 | |
3 | 0.56 | 0.80 | ||
PLA175 | - | - | 0.31 | 0.55 |
PLA175 | Ti | 1 | 0.34 | 0.53 |
3 | 0.35 | 0.59 | ||
PXA | 1 | 0.37 | 0.56 | |
3 | 0.32 | 0.46 | ||
Fe303 | 1 | 0.41 | 0.64 | |
3 | 0.47 | 0.71 | ||
Fe200 | 1 | 0.42 | 0.66 | |
3 | 0.52 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hricova, M.; Petkova, M.; Tomcikova, Z.; Ujhelyiova, A. The Effect of Inorganic Pigments on the Rheological Properties of the Color Masterbatches from Polylactic Acid. Fibers 2025, 13, 122. https://doi.org/10.3390/fib13090122
Hricova M, Petkova M, Tomcikova Z, Ujhelyiova A. The Effect of Inorganic Pigments on the Rheological Properties of the Color Masterbatches from Polylactic Acid. Fibers. 2025; 13(9):122. https://doi.org/10.3390/fib13090122
Chicago/Turabian StyleHricova, Marcela, Maria Petkova, Zita Tomcikova, and Anna Ujhelyiova. 2025. "The Effect of Inorganic Pigments on the Rheological Properties of the Color Masterbatches from Polylactic Acid" Fibers 13, no. 9: 122. https://doi.org/10.3390/fib13090122
APA StyleHricova, M., Petkova, M., Tomcikova, Z., & Ujhelyiova, A. (2025). The Effect of Inorganic Pigments on the Rheological Properties of the Color Masterbatches from Polylactic Acid. Fibers, 13(9), 122. https://doi.org/10.3390/fib13090122