Evaluating Carbon Fibre-Reinforced Polymer Composite Helical Spring Performances Under Various Compression Angles
Abstract
Highlights
- The optimal curing condition for epoxy resin was determined to be 120 °C for 8 h through tensile and three-point bending tests. This curing condition significantly enhances the mechanical performance of the resin matrix and provides a reliable process basis for subsequent composite spring fabrication.
- Under varying compression angles and loads, the helical direction consistently exhibited the maximum strain, with the highest strain concentrated in the central coil (region 2), indicating this region as the structural weak point most prone to damage.
- The stiffness of the spring gradually decreases with the increase in compression angle.
- The clarified strain distribution across different regions and directions facilitates the structural optimisation of composite helical springs and helps reduce the risk of mechanical failure.
- This study fills the research gap regarding the performance of composite springs under multi-angle loading, promoting their potential applications in complex working environments such as automotive suspension.
Abstract
1. Introduction
2. Methodology
2.1. Manufacturing Epoxy Resin Samples and TCHS
2.2. Epoxy Resin and TCHS Characterisations
3. Results and Discussions
3.1. Performance Evaluation of Epoxy Under Different Curing Conditions
3.2. Compression Characterisation of TCHS
3.3. Strain Analysis of TCHS Under Various Angle Compression
3.4. The Failure Region of the TCHS
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, L.; Xing, W.; Wu, L.; Chong, J.; Lei, T.; Jiang, Q.; Tang, Y. Understanding multiple parameters affecting static and dynamic performances of composite helical springs. J. Mater. Res. Technol. 2022, 20, 532–550. [Google Scholar] [CrossRef]
- Procházka, R.; Stehlík, A.; Kotous, J.; Salvetr, P.; Bucki, T.; Stránský, O.; Zulić, S. Fatigue Properties of Spring Steels after Advanced Processing. Materials 2023, 16, 3327. [Google Scholar] [CrossRef] [PubMed]
- Zani, N.; Solazzi, L. Analysis and Prediction of Spring-Back in Cylindrical Helical Springs Using Analytical and Numerical Models. Eng 2024, 5, 1696–1707. [Google Scholar] [CrossRef]
- Mougin, J.; Mostacchi, A.; Hersart, Y. Study of the Corrosion Fatigue Resistance of Steel Grades for Automotive Suspension Springs. 2004. Available online: https://www.osti.gov/etdeweb/servlets/purl/20671829 (accessed on 8 April 2025).
- Shinde, R. “Comparison of Weights of Steel and Composite Coil Spring for Two-Wheeler Suspension Systems.” Academia.edu, 22 Apr. 2018. Available online: www.academia.edu/87303546/Comparison_Of_Weights_Of_Steel_And_Composite_Coil_Spring_For_Two_Wheeler_Suspension_Systems?ucsbsw=36187208 (accessed on 7 May 2025).
- Tanabe, K.; Seino, T.; Kajio, Y. Characteristics of Carbon/Glass Fiber Reinforced Plastic Leaf Spring. SAE Trans. 1982, 91, 1628–1636. [Google Scholar]
- Chen, L.; Xing, W.; Chong, J.; Jiang, Q.; Ouyang, Y.; Wu, L.; Tang, Y. Understanding stiffness degradation of composite helical springs with multi-braided layers under impact. Compos. Part A Appl. Sci. Manuf. 2024, 185, 108327. [Google Scholar] [CrossRef]
- Londhe, A. FEA and analytical analysis of natural fibers composite leaf spring. Int. J. Mech. Eng. Res. 2013, 3, 355–360. [Google Scholar]
- Chen, L.; Chong, J.; Jiang, Q.; Wu, L.; Tang, Y. Understanding the static performance of composite helical springs with braided nested structures. Compos. Part A Appl. Sci. Manuf. 2024, 176, 107822. [Google Scholar] [CrossRef]
- Wu, L.; Chen, L.; Fu, H.; Jiang, Q.; Wu, X.; Tang, Y. Carbon fiber composite multistrand helical springs with adjustable spring constant: Design and mechanism studies. J. Mater. Res. Technol. 2020, 9, 5067–5076. [Google Scholar] [CrossRef]
- Chen, L.; Xing, W.; Chong, J.; Jiang, Q.; Ouyang, Y.; Wu, L.; Tang, Y. Analysing Impact Characteristics of Composite Helical Springs with Multi-braided Layers Based on Virtual Fiber Model. Compos. Commun. 2025, 53, 102255. [Google Scholar] [CrossRef]
- Keller, S.G.; Gordon, A. Equivalent stress and strain distribution in helical compression springs subjected to bending. J. Strain Anal. Eng. Des. 2011, 46, 405–415. [Google Scholar] [CrossRef]
- Kong, Y.; Abdullah, S.; Schramm, D.; Omar, M.; Haris, S.M. Development of multiple linear regression-based models for fatigue life evaluation of automotive coil springs. Mech. Syst. Signal Process. 2019, 118, 675–695. [Google Scholar] [CrossRef]
- Chin, C.; Abdullah, S.; Singh, S.; Schramm, D.; Ariffin, A. Durability prediction of coil spring through multi-body-dynamics-based strain generation. Mech. Syst. Signal Process. 2021, 154, 107580. [Google Scholar] [CrossRef]
- Chen, L.; Wu, L.; Fu, H.; Tang, Y. Design and performance evaluation of polymer matrix composite helical springs. Polymers 2022, 14, 3900. [Google Scholar] [CrossRef] [PubMed]
- Deubel, C.; Schubert, B.; Prokop, G. Velocity and load dependent dynamic shock absorber friction at stationary conditions. Tribol. Int. 2024, 193, 109424. [Google Scholar] [CrossRef]
- Liu, J.; Zhuang, D.; Yu, F.; Lou, L. Optimized design for a MacPherson strut suspension with side load springs. Int. J. Automot. Technol. 2008, 9, 29–35. [Google Scholar] [CrossRef]
- Cho, S.; Kim, H.H.; Kim, C. Design of end coil angular position and centerline shape of C-type side load coil spring for reducing side load of MacPherson strut suspension. J. Mech. Sci. Technol. 2021, 35, 1153–1160. [Google Scholar] [CrossRef]
- Chandra, T.; Sentanu, D.; Gornes, W.; Sentanuhady, J.; Setiawan, A.; Santos, G.; Muflikhun, M. Tensile properties of epoxy resin filled with activated carbon derived from coconut shell. Mater. Today Proc. 2022, 66, 2967–2971. [Google Scholar] [CrossRef]
- Paiva, J.; Mayer, S.; Rezende, M. Evaluation of mechanical properties of four different carbon/epoxy composites used in aeronautical field. Mater. Res. 2005, 8, 91–97. [Google Scholar] [CrossRef]
- Sandanamsamy, L.; Mogan, J.; Rajan, K.; Harun, W.; Ishak, I.; Romlay, F.; Samykano, M.; Kadirgama, K. Effect of process parameter on tensile properties of FDM printed PLA. Mater. Today Proc. 2023, 109, 1–6. [Google Scholar] [CrossRef]
- Yetgin, A.; Karakaş, A.; Acar, B.; Özaslan, E. Failure analysis of a helical compression spring with relatively low spring index. Eng. Fail. Anal. 2024, 165, 108798. [Google Scholar] [CrossRef]
Region | Outer Vertical | Outer Helical | Outer Horizontal | Inner Vertical | Inner Helical | Inner Horizontal |
---|---|---|---|---|---|---|
1 | 1-OV | 1-OHe | 1-OHo | 1-IV | 1-IHe | 1-IHo |
2 | 2-OV | 2-OHe | 2-OHo | 2-IV | 2-IHe | 2-IHo |
3 | 3-OV | 3-OHe | 3-OHo | 3-IV | 3-IHe | 3-IHo |
Tensile Strength (MPa) | Yield Strength (MPa) | Young’s Modulus (GPa) | Tensile Strain | Flexural Strength (MPa) | Flexural Yield Strength (MPa) | Flexural Modulus (GPa) | Flexural Strain | |
---|---|---|---|---|---|---|---|---|
60 °C for 16 h | 38.3 | 38.3 | 3.15 | 1.2% | 58.3 | 58.3 | 3.05 | 1.9% |
25 °C for 24 h + 12 0 °C for 2 h | 61.6 | 38.5 | 3.14 | 2.9% | 110.3 | 79.6 | 2.87 | 9.3% |
120 °C for 8 h | 65.2 | 47.4 | 2.44 | 3.9% | 119.0 | 89.3 | 3.52 | 8.4% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Chong, J.; Chen, L.; Tang, Y. Evaluating Carbon Fibre-Reinforced Polymer Composite Helical Spring Performances Under Various Compression Angles. Fibers 2025, 13, 65. https://doi.org/10.3390/fib13050065
Dai Y, Chong J, Chen L, Tang Y. Evaluating Carbon Fibre-Reinforced Polymer Composite Helical Spring Performances Under Various Compression Angles. Fibers. 2025; 13(5):65. https://doi.org/10.3390/fib13050065
Chicago/Turabian StyleDai, Yupu, Joel Chong, Ling Chen, and Youhong Tang. 2025. "Evaluating Carbon Fibre-Reinforced Polymer Composite Helical Spring Performances Under Various Compression Angles" Fibers 13, no. 5: 65. https://doi.org/10.3390/fib13050065
APA StyleDai, Y., Chong, J., Chen, L., & Tang, Y. (2025). Evaluating Carbon Fibre-Reinforced Polymer Composite Helical Spring Performances Under Various Compression Angles. Fibers, 13(5), 65. https://doi.org/10.3390/fib13050065