Classification of Embroidered Conductive Stitches Using a Structural Neural Network
Abstract
1. Introduction
2. Materials and Methods
2.1. Sensor Fabrication
2.2. Data Acquisition Protocol
2.3. Structural Convolutional Neural Network
3. Results and Discussion
3.1. Characterization
3.1.1. Sensitivity
3.1.2. Durability
3.2. Analysis of Measured Data
3.3. S-CNN-Based Classification of Stitch Patterns
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hou, S.; Lv, Z.; Wu, H.; Cai, X.; Chu, Z.; Zou, D. Flexible conductive threads for wearable dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 6549–6552. [Google Scholar] [CrossRef]
- Ruppert-Stroescu, M.; Balasubramanian, M. Effects of stitch classes on the electrical properties of conductive threads. Text. Res. J. 2018, 88, 2454–2463. [Google Scholar] [CrossRef]
- Stavrakis, A.K.; Simić, M.; Stojanović, G.M. Electrical characterization of conductive threads for textile electronics. Electronics 2021, 10, 967. [Google Scholar] [CrossRef]
- Stavrakis, A.K.; Simić, M.; Stojanović, G.M. A study of the performance degradation of conductive threads based on the effects of tensile forces and repeated washing. Polymers 2022, 14, 4581. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, C.; Ferreira da Silva, A.; Gomes, J.; Simoes, R. Wearable e-textile technologies: A review on sensors, actuators and control elements. Inventions 2018, 3, 14. [Google Scholar] [CrossRef]
- Tangsirinaruenart, O.; Stylios, G. A novel textile stitch-based strain sensor for wearable end users. Materials 2019, 12, 1469. [Google Scholar] [CrossRef]
- Carpi, F.; De Rossi, D. Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans. Inf. Technol. Biomed. 2005, 9, 295–318. [Google Scholar] [CrossRef]
- Hu, L.; Pasta, M.; La Mantia, F.; Cui, L.; Jeong, S.; Deshazer, H.D.; Choi, J.W.; Han, S.M.; Cui, Y. Stretchable, porous, and conductive energy textiles. Nano Lett. 2010, 10, 708–714. [Google Scholar] [CrossRef]
- Marculescu, D.; Marculescu, R.; Zamora, N.H.; Stanley-Marbell, P.; Khosla, P.K.; Park, S.; Jayaraman, S.; Jung, S.; Lauterbach, C.; Weber, W. Electronic textiles: A platform for pervasive computing. Proc. IEEE 2003, 91, 1995–2018. [Google Scholar] [CrossRef]
- Mecnika, V.; Hoerr, M.; Krievins, I.; Jockenhoevel, S.; Gries, T. Technical embroidery for smart textiles. Mater. Sci. Text. Cloth. Technol. 2014, 9, 56–63. [Google Scholar]
- Ismar, E.; Zaman, S.U.; Tao, X.; Cochrane, C.; Koncar, V. Effect of water and chemical stresses on the silver coated polyamide yarns. Fibers Polym. 2019, 20, 2604–2610. [Google Scholar] [CrossRef]
- Dils, C.; Werft, L.; Walter, H.; Zwanzig, M.; Krshiwoblozki, M.v.; Schneider-Ramelow, M. Investigation of the mechanical and electrical properties of elastic textile/polymer composites for stretchable electronics at quasi-static or cyclic mechanical loads. Materials 2019, 12, 3599. [Google Scholar]
- Schwarz, A.; Kazani, I.; Cuny, L.; Hertleer, C.; Ghekiere, F.; De Clercq, G.; De Mey, G.; Van Langenhove, L. Electro-conductive and elastic hybrid yarns–The effects of stretching, cyclic straining and washing on their electro-conductive properties. Mater. Des. 2011, 32, 4247–4256. [Google Scholar]
- Truong, T.; Kim, J.-S.; Kim, J. Design and optimization of embroidered antennas on textile using silver conductive thread for wearable applications. Fibers Polym. 2021, 22, 2900–2909. [Google Scholar] [CrossRef]
- McCann, J. The garment design process for smart clothing: From fibre selection through to product launch. In Smart Clothes and Wearable Technology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 70–94. [Google Scholar]
- Roh, J.-S. Conductive Yarn Embroidered Circuits for System on Textiles. In Wearable Technologies; InTechOpen: London, UK, 2018; p. 161. [Google Scholar]
- Chen, Y.; Chen, E.; Wang, Z.; Ling, Y.; Fisher, R.; Li, M.; Hart, J.; Mu, W.; Gao, W.; Tao, X. Flexible, durable, and washable triboelectric yarn and embroidery for self-powered sensing and human-machine interaction. Nano Energy 2022, 104, 107929. [Google Scholar] [CrossRef]
- Chen, Y.; Hart, J.; Suh, M.; Mathur, K.; Yin, R. Electromechanical Characterization of Commercial Conductive Yarns for E-Textiles. Textiles 2023, 3, 294–306. [Google Scholar] [CrossRef]
- Chen, Y.; Ling, Y.; Yang, Y.; Wang, Z.; Liu, Y.; Gao, W.; Yang, B.; Tao, X.; Yin, R. A clickable embroidered triboelectric sensor for smart fabric. Device 2024, 2, 100355. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, Y.; Liu, Y.; Yin, R. Programmable and scalable embroidery textile resistive pressure sensors for integrated multifunctional smart wearable systems. Adv. Fiber Mater. 2025, 7, 574–586. [Google Scholar] [CrossRef]
- Mei, M.; Zeng, T.; Wang, W.; He, Y.; Jiang, S.; Wen, L.; Huang, J.; Li, X. Tensile failure strain mechanism of stitched composites with z-stitch method: Influence of stitch pattern and density. Polym. Compos. 2025, 46, 7362–7376. [Google Scholar]
- Sun, C.; Jia, P.; Chen, C.; Moradi, A.; Zhou, J.; Al Teneiji, M.; Cantwell, W.; Guan, Z. The effect of carbon fibre stitching on the tensile behaviour of secondary bonded single-and double-lap composite joints. Compos. Struct. 2021, 265, 113774. [Google Scholar]
- Yoshimura, A.; Nakao, T.; Yashiro, S.; Takeda, N. Improvement on out-of-plane impact resistance of CFRP laminates due to through-the-thickness stitching. Compos. Part A Appl. Sci. Manuf. 2008, 39, 1370–1379. [Google Scholar] [CrossRef]
- Briedis, U.; Valisevskis, A.; Grecka, M. Development of a smart garment prototype with enuresis alarm using an embroidery-machine-based technique for the integration of electronic components. Procedia Comput. Sci. 2017, 104, 369–374. [Google Scholar] [CrossRef]
- Juchnevičienė, Ž.; Briedis, U.; Vališevskis, A.; Jucienė, M.; Dobilaitė, V.; Sacevičienė, V. Electrical conductivity of a closed-circuit embroidery element. Proc. Est. Acad. Sci. 2018, 67, 158–164. [Google Scholar] [CrossRef]
- Simorangkir, R.B.; Yang, Y.; Esselle, K.P. Double-layer embroidery strategy for fabrication of textile antennas with improved efficiency. In Proceedings of the 2016 17th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM), Montreal, QC, Canada, 10–13 July 2016; pp. 1–2. [Google Scholar]
- Zulfiqar, R.; Majeed, F.; Irfan, R.; Rauf, H.T.; Benkhelifa, E.; Belkacem, A.N. Abnormal respiratory sounds classification using deep CNN through artificial noise addition. Front. Med. 2021, 8, 714811. [Google Scholar] [CrossRef]
- Shuvo, S.B.; Ali, S.N.; Swapnil, S.I.; Hasan, T.; Bhuiyan, M.I.H. A lightweight CNN model for detecting respiratory diseases from lung auscultation sounds using EMD-CWT-based hybrid scalogram. IEEE J. Biomed. Health Inform. 2020, 25, 2595–2603. [Google Scholar] [CrossRef]
- Lin, B.; Jia, C.; Yang, H.; Zhang, Y.; Xie, X.; Chen, Z.; Zhang, X. Vital Sign Monitoring for Cancer Patients Based on Dual-path Sensor and Divided-Frequency-CNN Model. IEEE J. Biomed. Health Inform. 2024, 28, 2636–2649. [Google Scholar] [CrossRef]
- Pham, L.; Phan, H.; Palaniappan, R.; Mertins, A.; McLoughlin, I. CNN-MoE based framework for classification of respiratory anomalies and lung disease detection. IEEE J. Biomed. Health Inform. 2021, 25, 2938–2947. [Google Scholar] [CrossRef]
- Gibadullin, R.; Marushkai, N. Development of predictive CNN based model for vital signs alerts. In Proceedings of the 2021 International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Sochi, Russia, 17–21 May 2021; pp. 404–409. [Google Scholar]
- Goodfellow, I. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Srivastava, R.K.; Greff, K.; Schmidhuber, J. Highway networks. arXiv 2015, arXiv:1505.00387. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Ince, T.; Hamila, R.; Gabbouj, M. Convolutional neural networks for patient-specific ECG classification. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 2608–2611. [Google Scholar]
- Kiranyaz, S.; Gastli, A.; Ben-Brahim, L.; Al-Emadi, N.; Gabbouj, M. Real-time fault detection and identification for MMC using 1-D convolutional neural networks. IEEE Trans. Ind. Electron. 2018, 66, 8760–8771. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Sassi, S.; Avci, O.; Kiranyaz, S.; Ibrahim, A.A.; Gabbouj, M. Fault detection and severity identification of ball bearings by online condition monitoring. IEEE Trans. Ind. Electron. 2018, 66, 8136–8147. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Optimization of Deep Learning Models for Enhanced Respiratory Signal Estimation Using Wearable Sensors. Processes 2025, 13, 747. [Google Scholar] [CrossRef]
- Kim, J.; Kim, J. Classification of breathing signals according to human motions by combining 1D convolutional neural network and embroidered textile sensor. Sensors 2023, 23, 5736. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, J. Characterization and Prediction of Stitch-Type Textile Sensors Using Deep Learning Model. Fibers Polym. 2025, 26, 3429–3440. [Google Scholar] [CrossRef]
- Ding, X.; Zhong, W.; Jiang, H.; Li, M.; Chen, Y.; Lu, Y.; Ma, J.; Yadav, A.; Yang, L.; Wang, D. Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn. ACS Appl. Mater. Interfaces 2020, 12, 35638–35646. [Google Scholar] [CrossRef]
- Jang, J.; Kim, J. Prediction of electrical resistance with conductive Sewing patterns by combining artificial neural networks and multiple linear regressions. Polymers 2023, 15, 4138. [Google Scholar] [CrossRef] [PubMed]
Metric | Straight | Zigzag | Joining | Satin | Wave | Macro Average |
---|---|---|---|---|---|---|
Precision | 1.0 | 0.8 | 1.0 | 1.0 | 0.88 | 0.94 |
Recall | 1.0 | 0.87 | 1.0 | 1.0 | 0.82 | 0.94 |
F1-score | 1.0 | 0.84 | 1.0 | 1.0 | 0.85 | 0.94 |
Accuracy | 0.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.; Kim, S.; Kim, J. Classification of Embroidered Conductive Stitches Using a Structural Neural Network. Fibers 2025, 13, 140. https://doi.org/10.3390/fib13100140
Kim J, Kim S, Kim J. Classification of Embroidered Conductive Stitches Using a Structural Neural Network. Fibers. 2025; 13(10):140. https://doi.org/10.3390/fib13100140
Chicago/Turabian StyleKim, Jiseon, Sangun Kim, and Jooyong Kim. 2025. "Classification of Embroidered Conductive Stitches Using a Structural Neural Network" Fibers 13, no. 10: 140. https://doi.org/10.3390/fib13100140
APA StyleKim, J., Kim, S., & Kim, J. (2025). Classification of Embroidered Conductive Stitches Using a Structural Neural Network. Fibers, 13(10), 140. https://doi.org/10.3390/fib13100140