Comparative Analysis of Sisal–Cement Composite Properties After Chemical and Thermal Fiber Treatments
Abstract
1. Introduction
2. Materials and Methods
2.1. Sisal Fiber Treatments
2.2. Cement Based Composite
2.3. Characterization of the Sisal Fiber
2.3.1. Thermogravimetric Analyses (TGA)
2.3.2. X-Ray Diffraction (XRD)
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. Water Absorption Capacity
2.3.5. Dimensional Variation
2.3.6. Direct Tensile Test
2.4. Characterization of Fiber Reinforced Cement Composites
2.4.1. Water Absorption by Immersion and by Capillarity
2.4.2. Drying Shrinkage Test
2.4.3. Mechanical Testing
3. Results and Discussion
3.1. Evaluation of Sisal Fibers
3.2. Effect of Fiber Treatment on Physical Properties of Fibers and Composite
3.3. Mechanical Behavior of Composites
3.3.1. Direct Tensile
3.3.2. Four-Point Bending Test
4. Conclusions
- Alkali treatments and hornification led to changes in the crystalline structure of the fibers, modifying the crystallinity index due to hemicellulose removal, which was confirmed by changes in fiber behavior in thermogravimetric analysis. As a result, the fibers showed reduced water absorption capacity and increased tensile strength. Alkali treatment without post-treatment washing was the most effective in improving the properties for application in cement-based composites.
- Composites reinforced with 4% treated fibers exhibited higher water absorption by immersion and capillarity compared to the fiber-free matrix, with composites containing U-WAFs showing the lowest values. Due to higher water absorption, the drying shrinkage of the composites was also higher than that of the matrix, whereas composites containing alkali-treated fibers showed lower shrinkage.
- The addition of fibers resulted in a ductile material, maintaining residual stress after the appearance of the first crack. In direct tension tests, the post-cracking stress was proportional to the fiber content added to the composite and was higher when U-WAFs were used.
- In bending tests, the fibers allowed for stress redistribution with the formation of multiple cracks in the composites, and toughness increased proportionally to the fiber content. No treatment proved superior to the others in achieving the best properties.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Ca(OH)2 | Calcium Hydroxide |
Crl | Crystallinity index |
DTG | Derivative Thermogravimetry |
E | Young’s modulus |
ε | Strain |
FRC | Fiber-Reinforced Composite |
HF | Hornified Fiber |
LVDT | Linear Variable Differential Transformer |
NF | Natural Fiber |
REF | Reference matrix without fibers |
SEM | Scanning Electron Microscopy |
σcr | First-cracking strength |
σf | First-crack flexural strength |
σp | Maximum flexural strength |
σpcr | Maximum post-cracking tensile strength |
T20 | Toughness index |
TGA | Thermogravimetric Analysis |
U-WAF | Unwashed Alkaline Fiber |
WAF | Washed Alkaline Fiber |
Wabs | Water absorption capacity |
XRD | X-Ray Diffraction |
References
- Liu, J.; Liu, S.; Zhu, L.; Sun, L.; Zhang, Y.; Li, X.; Wang, L. Carbon Neutrality Potential of Textile Products Made from Plant-Derived Fibers. Sustainability 2023, 15, 7070. [Google Scholar] [CrossRef]
- Teixeira, F.; Pinheiro, R.; Silva, A. Strengthening and Repair of RC Beams Using Natural Sisal Fabric-Reinforced Cementitious Matrix Composite. Constr. Build. Mater. 2024, 447, 138047. [Google Scholar] [CrossRef]
- Ferrara, G.; Coppola, B.; Di Maio, L.; Incarnato, L.; Martinelli, E. Tensile strength of flax fabrics to be used as reinforcement in cement-based composites: Experimental tests under different environmental exposures. Compos. Part B Eng. 2019, 168, 511–523. [Google Scholar] [CrossRef]
- Kohan, L.; Fioroni, C.A.; Azevedo, A.G.D.S.; Leonardi, B.; Baruque-Ramos, J.; Fangueiro, R.; Savastano, H., Jr. Jute Textiles with Enhanced Interfacial Bonding as Reinforcement for Cementitious Composites. J. Compos. Mater. 2024, 58, 1847–1862. [Google Scholar] [CrossRef]
- Teixeira, F.P.; de Andrade Silva, F. On the use of natural curauá reinforced cement based composites for structural applications. Cem. Concr. Compos. 2020, 114, 103775. [Google Scholar] [CrossRef]
- Biskri, Y.; Babouri, L.; Boukhelf, F.; Charradi, K.; Annaba, K.; El Mendili, Y. On the Physical-Mechanical Behavior of Fiber Cement Composite: Effect of Chemical Treatment of Sisal Fibers. J. Build. Eng. 2025, 101, 111978. [Google Scholar] [CrossRef]
- Lima, P.R.L.; Silva, J.M.; Barros, J.A.; Roque, A.B.; Fontes, C.M.; Lima, J.M. Short Sisal Fiber Reinforced Recycled Concrete Block for One-Way Precast Concrete Slabs. Constr. Build. Mater. 2018, 187, 620–634. [Google Scholar] [CrossRef]
- Singh, A.; Yadav, B.P. Sustainable Innovations and Future Prospects in Construction Material: A Review on Natural Fiber-Reinforced Cement Composites. Environ. Sci. Pollut. Res. 2024, 31, 62549–62587. [Google Scholar] [CrossRef]
- Amsalu Fode, T.; Ali, R.; Chande Jande, Y.A.; Kivevele, T.; Rahbar, N. A Review on Degradation Improvement of Sisal Fiber by Alkali and Pozzolana for Cement Composite Materials. J. Nat. Fibers 2024, 21, 2335327. [Google Scholar] [CrossRef]
- Ferreira, S.R.; Lima, P.R.L.; de Andrade Silva, F.; Lima, P.R.L.; Filho, R.D.T. Effect of Fiber Treatments on the Sisal Fiber Properties and Fiber–Matrix Bond in Cement-Based Systems. Constr. Build. Mater. 2015, 101, 730–740. [Google Scholar] [CrossRef]
- Zhao, L.; Ding, Y.; Li, S.; Song, Y.; Gong, H.; Zhang, Y. Silane Treatment for Sisal Fibers to Improve the Degradation Resistance and Interface with Cement Matrix. Constr. Build. Mater. 2024, 429, 136435. [Google Scholar] [CrossRef]
- Savastano, H., Jr.; Santos, S.F.; Radonjic, M.; Soboyejo, W.O. Fracture and Fatigue of Natural Fiber-Reinforced Cementitious Composites. Cem. Concr. Compos. 2009, 31, 232–243. [Google Scholar] [CrossRef]
- de Souza Castoldi, R.; Liebscher, M.; de Souza, L.M.S.; Mechtcherine, V.; Menezes, R.P.; de Andrade Silva, F. Effect of Polymeric Fiber Coating on the Mechanical Performance, Water Absorption, and Interfacial Bond with Cement-Based Matrices. Constr. Build. Mater. 2023, 404, 133222. [Google Scholar] [CrossRef]
- do Amaral, L.M.; de Souza Rodrigues, C.; Poggiali, F.S.J. Hornification on Vegetable Fibers to Improve Fiber-Cement Composites: A Critical Review. J. Build. Eng. 2022, 48, 103947. [Google Scholar] [CrossRef]
- Arruda Filho, A.B.; Dantas, C.L.D.E.R.; Lima, P.R.L.; Fontes, C.M.A. Autoclave Treatment of Sisal Fiber and Its Effect on Fiber Properties and on the Pull-Out Behavior from Cementitious Matrix. J. Nat. Fibers 2022, 19, 11204–11217. [Google Scholar] [CrossRef]
- Ferreira, S.R.; de Andrade Silva, F.; Lima, P.R.L.; Filho, R.D.T. Effect of Hornification on the Structure, Tensile Behavior and Fiber-Matrix Bond of Sisal, Jute and Curauá Fiber Cement-Based Composite Systems. Constr. Build. Mater. 2017, 139, 551–561. [Google Scholar] [CrossRef]
- Begum, H.A.; Tanni, T.R.; Shahid, M.A. Analysis of Water Absorption of Different Natural Fibers. J. Text. Sci. Technol. 2021, 7, 152–160. [Google Scholar] [CrossRef]
- Bledzki, A.K.; Gassan, J. Composites Reinforced with Cellulose-Based Fibres. Prog. Polym. Sci. 1999, 24, 221–274. [Google Scholar] [CrossRef]
- Kindole, C.F.; Bigambo, P.N. Effect of Alkali Treatment on the Chemical Composition and Dyeability of Sisal Fibers. Tanz. J. Sci. 2024, 50, 639–649. [Google Scholar] [CrossRef]
- Raharjo, W.P.; Raharjo, W.W.; Kusharjanta, B. Characterization of Calcium Hydroxide-Treated Zalacca Fibers for Improving Properties as Reinforcement for Composites. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1096, 012036. [Google Scholar] [CrossRef]
- Khan, M.A.; Guru, S.; Padmakaran, P.; Mishra, D.; Mudgal, M.; Dhakad, S. Characterisation Studies and Impact of Chemical Treatment on Mechanical Properties of Sisal Fiber. Compos. Interfaces 2011, 18, 527–541. [Google Scholar] [CrossRef]
- Ferreira, S.R. Influência da Hornificação na Aderência Fibra-Matriz e no Comportamento Mecânico de Compósitos Cimentícios Reforçados com Fibras Curtas de Sisal. Master’s Thesis, Universidade Estadual de Feira de Santana, Feira de Santana, Brazil, 2012. [Google Scholar]
- ASTM C1557-03; Standard Test Method for Tensile Strength and Young’s Modulus of Fibers. ASTM International: West Conshohocken, PA, USA, 2003.
- Associação Brasileira de Normas Técnicas. Argamassa e Concreto Endurecidos: Determinação da Absorção de Água, Índice de Vazios e Massa Específica; NBR 9778; ABNT: Rio de Janeiro, Brazil, 2009. [Google Scholar]
- Associação Brasileira de Normas Técnicas. Argamassa e Concreto Endurecidos: Determinação da Absorção de Água por Capilaridade; NBR 9779; ABNT: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- ASTM Subcommittee C09.68; Standard Test Method for Length Change of Hardened Hydraulic-Cement Mortar and Concrete. ASTM C157-08. ASTM International: West Conshohocken, PA, USA, 2008.
- Martin, A.R.; Martins, M.A.; da Silva, O.R.; Mattoso, L.H. Studies on the Thermal Properties of Sisal Fiber and Its Constituents. Thermochim. Acta 2010, 506, 14–19. [Google Scholar] [CrossRef]
- Wei, J. Degradation Behavior and Kinetics of Sisal Fiber in Pore Solutions of Sustainable Cementitious Composite Containing Metakaolin. Polym. Degrad. Stab. 2018, 150, 1–12. [Google Scholar] [CrossRef]
- Barreto, A.C.H.; Rosa, D.; Fechine, P.; Mazzetto, S. Properties of Sisal Fibers Treated by Alkali Solution and Their Application into Cardanol-Based Bio-Composites. Compos. Part A Appl. Sci. Manuf. 2011, 42, 492–500. [Google Scholar] [CrossRef]
- Costa Santos, E.B.; Gomes Moreno, C.; Pereira Barros, J.J.; de Moura, D.A.; de Carvalho Fim, F.; Ries, A.; Ramos Wellen, R.M.; da Silva, L.B. Effect of Alkaline and Hot Water Treatments on the Structure and Morphology of Piassava Fibers. Mater. Res. 2018, 21, e20170365. [Google Scholar] [CrossRef]
- Yuan, T.; Zeng, J.; Wang, B.; Cheng, Z.; Chen, K. Cellulosic Fiber: Mechanical Fibrillation-Morphology-Rheology Relationships. Cellulose 2021, 28, 7651–7662. [Google Scholar] [CrossRef]
- Jo, B.W.; Chakraborty, S.; Kim, H. Efficacy of Alkali-Treated Jute as Fibre Reinforcement in Enhancing the Mechanical Properties of Cement Mortar. Mater. Struct. 2016, 49, 1093–1104. [Google Scholar] [CrossRef]
- You, X.; Chen, F.; Ma, Y.; Roselli, A.; Enqvist, E.; Hassi, H. Single Fiber Swelling Behavior for Natural and Man-Made Cellulose Fibers under Alkaline Treatment. Cellulose 2021, 28, 11287–11298. [Google Scholar] [CrossRef]
- Jamshaid, H.; Mishra, R.K.; Raza, A.; Hussain, U.; Rahman, M.L.; Nazari, S.; Chandan, V.; Muller, M.; Choteborsky, R. Natural Cellulosic Fiber Reinforced Concrete: Influence of Fiber Type and Loading Percentage on Mechanical and Water Absorption Performance. Materials 2022, 15, 874. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhang, X.; Wang, X.; Fu, Z.; Li, Z.; Liang, L.; Luo, Q.; Long, W. Enhancing the Applicability of Sisal Fibers in Cement-Based Materials through Alkali Treatment and Penetrating Crystallization. J. Clean. Prod. 2025, 490, 144736. [Google Scholar] [CrossRef]
- Hasan, M.; Saidi, T.; Jamil, M.; Amalia, Z.; Mubarak, A. Mechanical Properties and Absorption of High-Strength Fiber-Reinforced Concrete (HSFRC) with Sustainable Natural Fibers. Buildings 2022, 12, 2262. [Google Scholar] [CrossRef]
Treatment | Crystallinity Index (%) |
---|---|
NF | 56.70 |
HF | 63.18 |
WAF | 71.19 |
U-WAF | 69.54 |
Treatments | Tensile Strength MPa | Young’s Modulus GPa |
---|---|---|
Natural fiber (NF) | 468.74 (9.97) | 21.00 (7.00) |
Hornified fiber (HF) | 513.77 (18.33) | 22.95 (19.03) |
Washed alkaline fiber (WAF) | 573.52 (14.29) | 24.25 (14.67) |
Unwashed alkaline fiber (U-WAF) | 547.30 (14.51) | 23.78 (14.03) |
Mix | Water Absorption (%) | Capillarity (g/cm2) |
---|---|---|
Matrix | 14.08 (7.3) | 1.01 (4.5) |
FRC-HF | 17.96 (6.5) | 3.27 (6.3) |
FRC-WAF | 15.11 (5.1) | 3.16 (6.8) |
FRC-U-WAF | 14.92 (2.2) | 2.73 (9.2) |
Mixtures | σcr (MPa) | σpcr (MPa) |
---|---|---|
MATRIX | 1.36 (10) | - |
HF 2% | 1.53(35) | 0.46 (24) |
WAF 2% | 1.61 (23) | 0.54 (11) |
U-WAF 2% | 2.16 (11) | 0.68 (37) |
HF 3% | 1.77 (10) | 0.70 (34) |
WAF 3% | 1.91 (20) | 0.67 (6) |
U-WAF 3% | 2.02 (8) | 0.74 (10) |
HF 4% | 1.94 (4) | 0.79 (33) |
WAF 4% | 1.76 (14) | 0.67 (34) |
U-WAF 4% | 2.56 (12) | 1.02 (13) |
Mixtures | σf (MPa) | σp (MPa) | T20 (kJ/m2) |
---|---|---|---|
MATRIX | 4.37 (3.12) | 0.19 (2.63) | 0.007 (7.77) |
HF 2% | 4.73 (1.58) | 0.40 (1.47) | 1.42 (6.45) |
WAF 2% | 4.57 (6.93) | 0.61 (10.12) | 1.68 (9.32) |
U-WAF 2% | 4.53 (3.64) | 0.43 (9.73) | 1.13 (15.87) |
HF 3% | 3.97 (7.16) | 0.64 (2.92) | 1.44 (7.23) |
WAF 3% | 4.47 (9.02) | 0.65 (7.88) | 1.94 (3.73) |
U-WAF 3% | 3.94 (6.91) | 0.54 (0.78) | 1.68 (1.01) |
HF 4% | 4.37 (2.15) | 0.66 (4.20) | 1.79 (16.67) |
WAF 4% | 3.83 (3.68) | 0.31 (1.16) | 1.71 (8.89) |
U-WAF 4% | 4.16 (3.01) | 0.46 (7.61) | 1.89 (6.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
dos Santos, D.O.J.; Toledo Filho, R.D.; Lima, P.R.L. Comparative Analysis of Sisal–Cement Composite Properties After Chemical and Thermal Fiber Treatments. Fibers 2025, 13, 138. https://doi.org/10.3390/fib13100138
dos Santos DOJ, Toledo Filho RD, Lima PRL. Comparative Analysis of Sisal–Cement Composite Properties After Chemical and Thermal Fiber Treatments. Fibers. 2025; 13(10):138. https://doi.org/10.3390/fib13100138
Chicago/Turabian Styledos Santos, Daniele Oliveira Justo, Romildo Dias Toledo Filho, and Paulo Roberto Lopes Lima. 2025. "Comparative Analysis of Sisal–Cement Composite Properties After Chemical and Thermal Fiber Treatments" Fibers 13, no. 10: 138. https://doi.org/10.3390/fib13100138
APA Styledos Santos, D. O. J., Toledo Filho, R. D., & Lima, P. R. L. (2025). Comparative Analysis of Sisal–Cement Composite Properties After Chemical and Thermal Fiber Treatments. Fibers, 13(10), 138. https://doi.org/10.3390/fib13100138